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Generative Classifiers

Model probability of a class given the data

P(kl |X)= P(X| kI)P(kI)
2 P(x[k;)P(k;)
Decision theory: estimajlte log likelihood ratio
L =log Pk, 1 x)
P(k, | x)

In general, too many variables to estimate!

Make assumptions about probability densities and decision
boundaries
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Nalve Bayes

« Assume attributes/features are conditionally independent of each other,

given class membership
P(x|k)=] ] P(x; k)
]

o Decision rule simplifies to

arg max P(ki)H P(x; |k;)

K

Pros
Fast learning and classification, especially when feature space is high-
dimensional
Easy to compute densities and combine different variable types
Explicit theoretical foundation
Often performs well even when assumptions fail

cons

« Conditional independence assumption is often wrong |
* May perform poorly when assumptions fail ;;}l '.’.}’
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Linear Classifiers

Linear Discriminant Analysis (LDA)

Assume 2 classes have Gaussian densities
with equal covariances

A

Log likelihood ratio becomes linear in data
Need to estimate class priors, means, and| ...

covariance
Fisher Linear Discriminant

Formulate in subspace containing class
centroids

Decompose into series of 1D projections
Maximize Rayleigh quotient: a' Ba

T -
a' Wa o
reeeee ﬂ
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Discriminative Classifiers

 Make assumptions about decision boundary, rather
than class densities

* Optimize parameters describing decision boundary,
e.g. hyperplane
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Linear Discriminative Classifiers

Logistic regression
« Explicitly model log likelihood ratio as linear decision
boundary
P(k: | x
L log P& _

i-I—WiTX
P(k; | x)

e Class densities 1
P(kO | X) — T
1+ ) exp(b; + W, x)
j

exp(b, + WiT X)

P(k | x)=
(i 1) 1+ exp(b; +w, x)
j

e Guaranteed to find solution if linearly separable
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Linear Discriminative Classifiers

Perceptron
 Minimize distance of misclassified points to decision

boundary y.=1, xw+b>0 foriec,
)
_Zyi(xiwm) y.=-1, x w+b<0 foriec

e Stochastic gradient descent

HRWEE

e Solution not unique; depends on initial guess .°

 |If not separable, trapped in cycles
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Linear Discriminative Classifiers

Linear SVM: Margin Maximization

e compute the optimal separating
hyperplane between data points
belonging to two classes

~~
A
reecoeec| |

Chen, Lin, Scholkopf, A Tutorial on vSupport Vector Machines, 2003. _F\




Linear

Linear SVM: Margin Maximization

e compute the optimal separating
hyperplane between data points
belonging to two classes

Optimal Hyperplane

e maximize the distance from
the decision surface to the
nearest point in each class

 orthogonal to shortest line
between convex hulls
separating

e maximum margin separation \_Ayperplane

rreerer
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Margin Maximization

X' W+

X w+b=-1 5

Maximize distance between two parallel
supporting planes 2

Distance = margin = 7,
[wl

Chen, Lin, Scholkopf, A Tutorial on vSupport Vector Machines, 2003.
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Constrained Optimization Problem

1 .
Obijective Function rEIVIbnEIIWII2 subject to

xw+b> 1 foriec,

xw+b<-1 foriec

Lagrangian L(w,b,a) = % | w || —Z a; (Y, (x] w+b)-1)

y.=1for iec,
y.=-1for iec.
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Lagrangian Formulation

1
Lagrangian L(w,b,a) = > Iw |I° _Zai (y; (x{ w+b)-1)

. . 0 0
Differentiate %L(W,b,a) =0, a—L(W’b’a) =0

W
= Zaiyi =0, W:Zaiyixi

Solution depends only on support vectors x; s.t.a; >0
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Nonlinear Decision Boundary

* Reality: classes may not be linearly separable

Chen, Lin, Scholkopf, A Tutorial on vSupport Vector Machines, 2003.




Nonlinear Decision Boundary

* Reality: classes may not be linearly separable
e Map points to a higher-dimensional feature space
e.g. products up to degree d

x' = [X11X2] §0(X)T = {X12’X1X2’X22J
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Nonlinear Decision Boundary

 Map points to a higher-dimensional feature space
e Generalized inner product is called a kernel

X' =[x, X, | p(x)" = {Xlzi X X X22J

X'W=XW, + X,W, kernel  k(x,w)=o¢(x)" o(w)
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Kernels

. Can explicitly define kernel @(x)" p(w) =k(x, w)

to induce implicit mapping ¢

. 2
e Gaussian radial basis function k(x,w) = exp(—|| X2 vzv | )
O

 Decision boundary is a linear combination of
support vectors, optimally chosen from training set
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Example: 2D RBF

~

;:}l ‘fﬁ
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Handling Real Data

 NoO separating hyperplane, even after mapping!
o Soft margin classifiers
» Slack variables allowing points to lie inside margin:
1 2 : T
= (x. > 1-&
min | w +CZ.§Z subject to Y, (x; w+b) &

= Or: penalty terms for number of examples that are
support vectors, number of examples on wrong side of
hyperplane
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Support Vector Machines

Pros

 Arbitrarily complicated decision boundaries
e Convex optimization so unique optimum

e Handles overlapping classes

Cons

« Parameters must be tuned by cross-validation
e Kernel is chosen empirically

e Solution may be difficult to interpret
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Neural Networks

Multi-Layer Perceptron single hidden layer back-propagation network

QD LA) oupns [AEEENTNES

hidden z =o(a,, +o.x)

nonlinearity

inputs

hidden units are functions of linear combinations of inputs
parameters learned from data by minimizing error function

R(6) = Z Z (Vi — fk(xi))z

» gradient descent (typical back-propagation) or other optimization algorithm

A
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Schraudolph & Cummins, Introduction to Neural Networks, _F\’
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Neural Networks

Pros

« Can model any continuous real function arbitrarily well

» Easily parallelized due to local nature of weight updates
 Handles many features and many classes

Cons
Sensitive to initial parameter values
Generally over-parameterized so susceptible to overfitting
Architecture design largely empirical; trial and error
Nonconvex error fucntion with many local minima
Training can be slow
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