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Generative Classifiers

• Model probability of a class given the data

• Decision theory: estimate log likelihood ratio

• In general, too many variables to estimate!

• Make assumptions about probability densities and decision 
boundaries
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Naïve Bayes

• Assume attributes/features are conditionally independent of each other, 
given class membership

• Decision rule simplifies to 
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Pros
• Fast learning and classification, especially when feature space is high-

dimensional

• Easy to compute densities and combine different variable types

• Explicit theoretical foundation

• Often performs well even when assumptions fail

Cons
• Conditional independence assumption is often wrong

• May perform poorly when assumptions fail
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Linear Classifiers

Linear Discriminant Analysis (LDA)

• Assume 2 classes have Gaussian densities 
with equal covariances

• Log likelihood ratio becomes linear in data

• Need to estimate class priors, means, and 
covariance

Fisher Linear Discriminant

• Formulate in subspace containing class 
centroids

• Decompose into series of 1D projections

• Maximize Rayleigh quotient: 
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Discriminative Classifiers

• Make assumptions about decision boundary, rather 
than class densities

• Optimize parameters describing decision boundary, 
e.g. hyperplane
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Linear Discriminative Classifiers

Logistic regression

• Explicitly model log likelihood ratio as linear decision 
boundary

• Class densities

• Guaranteed to find solution if linearly separable
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Linear Discriminative Classifiers

Perceptron

• Minimize distance of misclassified points to decision 
boundary

• Stochastic gradient descent

• Solution not unique; depends on initial guess

• If not separable, trapped in cycles
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Linear Discriminative Classifiers

Linear SVM: Margin Maximization

• compute the optimal separating 
hyperplane between data points 
belonging to two classes

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Linear

Optimal Hyperplane

• maximize the distance from 
the decision surface to the 
nearest point in each class

• orthogonal to shortest line 
between convex hulls

• maximum margin separation

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.

Linear SVM: Margin Maximization

• compute the optimal separating 
hyperplane between data points 
belonging to two classes
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Margin Maximization

• Maximize distance between two parallel 
supporting planes

• Distance = margin = 
||||
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Constrained Optimization Problem
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Lagrangian Formulation
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Solution depends only on support vectors 0s.t. ii x

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Nonlinear Decision Boundary

• Reality: classes may not be linearly separable

Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Nonlinear Decision Boundary
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• Reality: classes may not be linearly separable

• Map points to a higher-dimensional feature space

e.g. products up to degree d
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Nonlinear Decision Boundary
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• Map points to a higher-dimensional feature space

• Generalized inner product is called a kernel
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Kernels



• Decision boundary is a linear combination of

support vectors, optimally chosen from training set

• Can explicitly define kernel 

to induce implicit mapping 
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Chen, Lin, Schölkopf, A Tutorial on –Support Vector Machines, 2003.
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Example: 2D RBF

Schölkopf, 1998
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Handling Real Data

• No separating hyperplane, even after mapping!
• Soft margin classifiers
 Slack variables allowing points to lie inside margin:

 Or: penalty terms for number of examples that are 
support vectors, number of examples on wrong side of 
hyperplane
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Support Vector Machines

Pros

• Arbitrarily complicated decision boundaries

• Convex optimization so unique optimum

• Handles overlapping classes

Cons

• Parameters must be tuned by cross-validation

• Kernel is chosen empirically

• Solution may be difficult to interpret
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Neural Networks

Multi-Layer Perceptron single hidden layer back-propagation network
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• hidden units are functions of linear combinations of inputs

• parameters learned from data by minimizing error function

• gradient descent (typical back-propagation) or other optimization algorithms

nonlinearity
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Schraudolph & Cummins, Introduction to Neural Networks, http://www.idsia.ch/NNcourse



January 10, 2007

Neural Networks

Pros
• Can model any continuous real function arbitrarily well

• Easily parallelized due to local nature of weight updates

• Handles many features and many classes

Cons
• Sensitive to initial parameter values

• Generally over-parameterized so susceptible to overfitting

• Architecture design largely empirical; trial and error

• Nonconvex error fucntion with many local minima

• Training can be slow


