Using High-Speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization

Wes Bethel, Brian Tierney, Jason Le® Dan Guntet, Stephen Lal
Lawrence Berkeley National Laboratory
University of California, Berkeley
Berkeley, CA 94720

1.0 Abstract

Visapult is a prototype application and framework for remote visualization of large scientific datasets. We
approach the technical challenges of tera-scale visualization with a unique architecture that employs high
speed WANSs and network data caches for data staging and transmission. This architecture allows for the
use of available cache and compute resources at arbitrary locations on the network. High data throughput
rates and network utilization are achieved by parallelizing I/O at each stage in the application, and by pipe-
lining the visualization process. On the desktop, the graphics interactivity is effectively decoupled from the
latency inherent in network applications. We present a detailed performance analysis of the application,
and improvements resulting from field-test analysis conducted as part of the DOE Combustion Corridor
project.

2.0 Introduction

As computing power increases, scientific simulations and instruments grow in size and complexity, result-
ing in a corresponding increase in output. During recent years, the increases in speed of infrastructure com-
ponents that must absorb this output, including storage systems, networks and visualization engines, has
not paced the increases in processor speeds. In response, solutions have tended toward parallel aggrega-
tions of slower, serial components, such as file systems striped across disk units.

FIGURE 1. Visualization and Rendering Pipeline

Data
Source \
Data /
Source

In particular, visualization and rendering pose interesting challenges as data sizes increase. In the visual-
ization and rendering pipeline (Figure 1), abstract scientific data is first transformed into renderable data,
such as geometry and image-based data, through the process of visualization. The resultant, renderable
data is then transformed into a viewable image by a “draw” or rendering process. The challenges posed by
large-model visualization stem from the sheer size of the data; it often won't fit within the confines of pri-
mary or secondary storage on a typical desktop workstation. Movement of large amounts of data to the

. . Object .
Visualization | pm! patabase ——s» Rendering User

1. [ewbethel, slau]@lbl.gov,Visualization Group.
2. [bltierney, jrlee, dkgunter]@lbl.gov, Distributed and Data Intensive Computing Group.

U.S. Government Work Not Protected By U.S. Copyright 1

workstation over typical network links is impractically slow, but even if practical, the graphics systems of
even high-end workstations quickly become overwhelmed.

Traditionally, visualization of large models has been approached using one of two strategies. In the first
strategy, which we’ll call “render remote,” images are created on a large machine, preferably the same
machine that has direct access to the data source (local filesystem), then transmitted to the user who views
them on a workstation. In Figure 1, the link betwBemderingandUserwould be over a network connec-

tion. In this configuration, a high-capacity resource has the potential to be applied to larger-sized problems
than could be addressed with desktop resources, but graphics interactivity suffers due to the combination

of latency and high bandwidth requiremé*ntm the second strategy, which we’ll call “render local,”
smaller portions of the data, subsets or decimated versions of the raw data, are sent to the workstation
where visualization and rendering take place. The network connection in this case is Dettae®ource

and Visualization.Increasing graphics capacity mitigates concerns about interactivity, but the constraints
encountered when moving remote data to the local workstation are exacerbated by limited network band-
width and local storage capacity.

In recent years, two key developments have motivated us to explore a slightly different approach. One
development is a network data cache that is tuned for wide-area network access, called the Distributed Par-
allel Storage System [1], or DPSS. The DPSS is a scalable, high-performance, distributed-parallel data
storage system developed at Lawrence Berkeley National Laboratory (LBL). The DPSS is a data block
server, built using low-cost commodity hardware components and custom software to provide parallelism
at the disk, server, and network level. This technology has been quite successful in providing an economi-
cal, high-performance, widely distributed, and highly scalable architecture for caching large amounts of
data that may potentially be used by many different users. Current performance results are 980 Mbps
across a LAN and 570 Mbps across a WAN.

The other key development is a proliferation of high-speed, testbed networks. There are currently a number
of Next Generation Internet networks whose goal is to provide network speeds of 100 or more times the
current speed of the Internet. These include NSF's Abilene [2], DARPAs Supernet [3], and the ESnet test-
beds [4]. Sites connected to these networks typically have WAN connection at speeds of OC12 (622 Mbps)
or OC48 (2.4 Gbps); speeds that are greater than most local area networks (LANS). Access to these net-
works enables new options for remote, distributed visualization.

The combined capabilities of emerging high speed networks and scalable network storage makes it possi-
ble to consider remote, distributed scientific visualization from a new perspective, one which combines the
best of both traditional methods.

3.0 Visapult: A Remote, Distributed Visualization Application Prototype

The Visapult application and framework consists of two distributed components (Figure 2): a viewer and a
back end. In the following sections, we discuss the architecture of these components. The rendering por-
tion of the viewer is built upon a scene graph model that proves useful for both asynchronous updates, as
well as acting as a framework for the display of divergent types of data. The back end is a parallelized soft-
ware volume rendering engine that uses a domain-decomposed partitioning, including the capability to
perform parallel read operations over the network to a storage cache as well as parallel I/O to the viewer.
Together, the viewer and back end implement a novel form of volume visualization that is fast but effec-
tive. More importantly, this novel form of volume visualization has been completely parallelized through

3. 1K by 1K, RGBA images at 30fps requires a sustained transfer rate of 960Mbps.

LBNL-45365 2

the visualization and rendering pipeline, from the data source to the display. We describe our use of the
DPSS as a network storage cache, as well as our methodology for obtaining performance data from the
application.

FIGURE 2. Visapult Architecture

PE O - Thread 0

PE 1 Y Y Thread 1

| | Database/
Scene Grap

Data | . —I—‘—> *

Source(s) | |

| Render

| * *

| [

| PEn #» Threadn

| (.

| Visapult Back End | | Visapult Viewer

Lo | Lo |

3.1 Visualization and Rendering Pipeline Architecture

The fundamental goal of Visapult, from a visualization perspective, is to provide the means to visualize
and render large scientific data sets with interactive frame rates on the desktop or in an immersive virtual
reality (VR) environment. In our design, we wanted the best of both worlds: performing as much visualiza-
tion and rendering as possible on a parallel machine with either tera-scale data storage capacity, or a high-
speed network link to such a storage resource, while leveraging the increasing graphics capacity of desktop
and deskside workstations. A primary Visapult design goal, graphics interactivity, is a crucial, but subtle,
part of the visualization process; studies have shown that motion parallax and a stereo display format
increase cognitive understanding of three dimensional depth relationships by 200%, as compared to view-
ing the same data in a still image [7].

One troublesome dilemma is the speed difference between the infrastructure components and the problem
size: disk transfer and network bandwidth rates are typically on the order of tens of megabytes per second,
but data sizes are on the order of hundreds of gigabytes. How does one achieve interactivity on the desktop
without moving all the data to the desktop?

Considering the visualization and rendering pipeline from Figure 1, we observe that in order to deploy a
visualization tool on the desktop which is capable of rendering large data sets at interactive rates, the
“object database” used by the renderer must be small enough to fit on the display platform. To that end, we
have implemented a relatively new technique for volume rendering with a unique architecture that pro-

duces a relatively small object database, or scene”grAprwiII be discussed later in the paper, we use a
unique combination of task partitioning and parallelism to perform interactive volume visualization of
large scientific data sets. Since visualization and rendering are pipelined and occur asynchronously, the
viewer, which is “downstream” from the parallel software volume renderer, can interact with the render-

LBNL-45365 3

able objects at interactive rates. Updates of the scene graph through the visualization pipeline asynchro-
nously from rendering, and occur at whatever rate the underlying infrastructure can provide.

A scene graph interface provides not only the means for parallel and asynchronous updates, but also an
“umbrella” framework for rendering divergent data types. The scene graph system used in our implementa-
tion [8] supports storage and rendering of surface-based primitives (triangles, triangle strips, quads, poly-
gons, etc.), vector-based primitives (lines, line strips), image-based data (volumes, textures, sprites and
bitmaps), and text. The flexibility of this underlying infrastructure layer allows us to perform simultaneous
rendering of volume and geometric data. Figure 3 is an image containing both volume rendering of density
data, along with vector geometry (line segments) representing the adaptive grid created and used by the
combustion simulation.

FIGURE 3. Visapult Rendering of Combustion Da

ta and Adaptive, Hierarchical Grids
]

3.2 Parallel Volume Rendering Algorithm Taxonomy

Since volume rendering [9] is a computationally expensive and time consuming operation even with mod-
est amounts of data, it is a likely candidate for parallelization. Algorithms for parallel volume rendering
can be classified into two broad categoriegge orderandobject orderbased upon how the volume ren-

dering task is decomposed across the pool of processors [10]. In an object order algorithm, the volume data
is distributed across the processors using one of a number of different domain decomposition strategies
(Figure 4). Each processor then renders its subset of the volume, producing an image. After all processors
have finished rendering, the images from each processor must be gathered, then recombined into a final
image. Recombination consists of image compaositing using alpha blending [11], and must occur in a pre-
scribed order (back-to-front or front-to-back). Note that each processor in an object order algorithm pro-
duces an intermediate image that may overlap in screen space with the images produced by other
processors.

4. The ternscene graphefers to a set of specialized data structures and associated services that provide manage-
ment of displayable data and rendering services.

LBNL-45365 4

FIGURE 4. Slab, Shaft and Block Decomposition

Image order algorithms, on the other hand, assign some region of screen space to each processor. The
resulting images produced by each processor do not overlap, so recombination is not subject to an ordered
image composition step. Depending upon the view, image order algorithms require some amount of data
duplication across the processors, so do not scale as well with data size as the object order algorithms. The
performance of image order parallel volume rendering algorithms is more sensitive to view orientation
than the object order counterparts. In some views, there may be some processors with little or no work. In
addition, as the model moves, the source volume data required at a given processor will change, requiring
data redistribution as a function of model and view orientation.

3.3 Image Based Rendering Assisted Volume Rendering

Image based rendering (IBR) methods [12, 13] have been the subject of much attention in recent years.
IBR methods are used primarily for generating different views of an environment from a set of pre-
acquired imagery. The properties of IBR which make it attractive include interactive viewing with low
computational cost irrespective of scene complexity, and the ability to use images from either digitized
photographs or rendered models. Common among IBR methods is a process of warping and blending
images from known views to represent what would be seen from an arbitrary view.

The concepts and principles of IBR model were recently applied to volume rendering [14]. Like the more
conventional IBR counterparts, IBR assisted volume rendering (IBRAVR), seeks to achieve interactive
rendering by avoiding the time-consuming process of completely rerendering the volume data for each
frame. Instead, renderings of a model at arbitrary orientations are “computed” from “nearby” prerendered
images. The prerendered images for the IBRAVR algorithm are obtained by volume rendering subsets of
the entire volume. Using a slab decomposition, each source image would be obtained by volume rendering
the slab of data. The total number of source images is equal to the number of data slabs created by data par-
titioning.

The per-frame, incremental rendering, or IBR component of IBRAVR, is implemented by using the pre-
computed imagery as two dimensional textures which are texture-mapped onto geometry derived from the
geometry of the slab decomposition, then rendered in depth order. In the basic algorithm, a single quadri-
lateral representing the center of the slab is used as the base geometry, and the computed imagery is texture
mapped using alpha blending upon that geometry. With multiple slabs, there are multiple, overlapping,
base geometries that are textured by the graphics hardware with the semi-transparent textures. As the
model is rotated, the multiple textures correspondingly rotate in three dimensions, producing the impres-
sion of interactive volume rendering. As nearly all graphics hardware supports two-dimensional texturing,
the IBRAVR viewer can be deployed on a wide variety of graphics platforms. An extension to this algo-
rithm, described in [14], is replace the single quadrilateral with a quadrilateral mesh using offsets from the
base plane for each point in the quad mesh. This enhancement will add a depth component to each of the
IBR images, thereby enhancing the visualization process. We have included this extension in the Visapult
implementation, but the details are omitted in this paper.

LBNL-45365 5

FIGURE 5. IBR Assisted Volume Rendering

The source volume is subdivided into some number
of slabs, each of which is volume rendered. The
resulting images, along with geometric information
derived from the original volume, are used as the)))
source data for an IBR rendering engine. The final IBR model can be interactively
transformed without the need to perform
costly volume rendering on each frame.

As described in [14], the IBRAVR model exhibits visual artifacts as the model is rotated away from an
axis-aligned view (Figure 6). These artifacts result from volume subdivision along an axis-aligned view,
but rendered using a view or orientation that is not “closely” axis aligned. As the model rotates away from
an axis-aligned view, the artifacts become more pronounced. [14] reports that objects viewed within a cone
of about sixteen degrees will appear to be relatively free of visual artifacts.

FIGURE 6. IBRAVR Artifacts

Using a nearly axis-aligned view, the IBRAVR method produces a high-fidelity image (left). When the
model is rotated off-axis, visual artifacts can be seen (right). For the right image, we disabled axis-switch-
ing within Visapult, otherwise we would be viewing slices along the X-axis of the data.

Our implementation does not provide any remedies to this fundamental artifact of IBRAVR, but extends

the base algorithm in a different manner that is useful for the purposes of visualization. On a per-frame
basis, the Visapult viewer computes the best view axis, and transmits this information to the back end. The
back end uses this information in order to select from either X-, Y-, or Z-axis aligned data slabs for use in

volume rendering.

LBNL-45365 6

3.4 Visapult: Parallel and Remote IBRAVR

Visapult is a parallel and distributed implementation of an IBR assisted volume rendering engine. Our
implementation can be thought of as a blend of an object-order parallel volume rendering engine with an
IBRAVR viewer that uses a parallel, network-based data gathering model as an image assembly frame-
work. The fundamental IBRAVR algorithm decomposes nicely into a distributed, pipelined and parallel
architecture: a parallel object-order, parallel I/O capable volume rendering engine that produces images,
and a parallel viewer that uses IBR techniques to assemble the individual images into a final display.

The Visapult back end reads raw scientific data from one of a number of different data sources, and each
back end process performs volume rendering on some subset of the data, regardless of the viewpoint. The
resulting images are transmitted to the Visapult viewer for final assembly into a model (scene graph), then
rendered to the user. Owing to the IBRAVR design, the raw scientific data is distributed, or partitioned,
amongst the back end processors using a slab-based decompaosition (Figure 4). During the partitioning pro-
cess, data is read into each processor in parallel. Each processor then performs software volume rendering
upon its subset of the data. The resulting image from each processor is transmitted over the network to a
peer receiver in the Visapult viewer, where it is inserted into the scene graph as a 2D texture.

On the viewer side, graphics interactivity results from a combination of the IBRAVR viewer model with a
decoupling of scene graph updates from rendering. The amount of viewer-side data to be rendered is much

smaller than the size of the raw volume dago even software-only graphics systems are not over-
whelmed. To implement the decoupling of rendering from scene graph updates, the viewer itself is a multi-
threaded application, with one thread dedicated to interactive rendering, and other threads dedicated to
receiving data from the Visapult back end visualization processes over multiple simultaneous network con-
nections (implemented with a custom TCP-based protocol over striped sockets). Except for a small amount
of scene graph access control with semaphores, 1/0 and rendering occur in an asynchronous fashion, so all
pipes are full, making effective use of network and computational resources. Additional architectural
details of the Visapult back end and viewer are presented in Appendix A.

3.5 Visapult’'s Use of the LBL DPSS as a Data Cache

In its role as data collector, the Visapult back end fetches raw scientific data for the purpose of visualiza-
tion. One source of data is the DPSS, which is used as a storage cache for data sets that are too large to fit
on the workstation. These data sets, generated on supercomputers or clusters of workstations, are typically
on the order of 30 to 100 GB, and are often stored on archival systems such as HPSS [15], a high perfor-
mance tertiary storage system. Clearly, it is impractical to transfer data sets of this magnitude to a local
disk for processing. Also, archival systems such as the HPSS are not typically tuned for wide-area network
access, and only provide full file, not block level, access to data. The DPSS addresses both of these issues;
it is optimized for wide-area access to large files, and provides block level access, eliminating the need to
transfer the entire file across the network. Therefore, we can migrate the files from HPSS to a nearby DPSS
cache.

The DPSS provides several important and unique capabilities for data intensive distributed computing
environments. It provides application-specific interfaces to an extremely large space of logical blocks. It
offers the ability to build large, high-performance storage systems from inexpensive commodity compo-
nents. It also offers the ability to increase performance by increasing the number of parallel disk servers.

5. Where the size of the raw volume data is¥p(the amount of data to be rendered in the viewer i§)O(n

LBNL-45365 7

Typical DPSS implementations consist of several low-cost workstations as DPSS block servers, each with
several disk controllers, and several disks on each controller. A four-server DPSS with a capacity of one
Terabyte (costing about $15K in mid-2000) can thus deliver throughput of over 150 megabytes per second
by providing parallel access to 15-20 disks. The overall architecture of the DPSS is illustrated in Figure 7.

FIGURE 7. DPSS Architecture

data blocks
" Parallel
=

DPSS Server

data block

b

Cli . ApRlicati P |
ient ApRlication g E aralle
%

DPSS Server

Logical Block
Requests

>
-

DPSS Server

DPSS Maste

logical to physical
block lookup
access control
load balancing

The application interface to the DPSS cache supports a variety of I/O semantics, including Unix-like 1/0
semantics, through an easy-to-use client API library (e.g., dpssOpen(), dpssRead(), dpssWrite(), dpssL-
Seek(), dpssClose()). The DPSS client library is multi-threaded, where the number of client threads is
equal to the number of DPSS servers. Therefore the speed of the client scales with the speed of the server,
assuming the client host is powerful enough. This parallelism is leveraged by the parallel volume rendering
performed by the Visapult back end.

3.6 Profiling and Performance Analysis - NetLogger

Profiling and analysis of an application’s behavior and performance is an important part of the develop-
ment process, but can prove challenging when the application consists of cooperative, distributed compo-
nents. In our project, we made use of the NetLogger profiling toolkit for obtaining performance data from
the application [16]. NetLogger includes tools for generating precision event logs that can be used to pro-
vide detailed end-to-end application and system level monitoring, and for visualizing log data to view the
state of the distributed system. NetLogger has proven to be invaluable for diagnosing problems in net-
works and in distributed systems code. This approach is novel in that it combines network, host, and appli-
cation-level monitoring, providing a complete view of the entire system.

The NetLogger system has a procedural interface: subroutine calls to generate NetLogger events are placed
inside the source code of the application. Prior to running the application, a NetLogger daemon is launched
on a host accessible to all components of the distributed application. During the course of application exe-
cution, the NetLogger subroutine calls communicate with the daemon host, where events are accumulated
into an event log. This event log is then used as input for NetLogger visualization and analysis tools.

NLV, the NetLogger visualization tool, generates two dimensional plots from the raw data accumulated
during a run. NetLogger and NLV were used extensively in Visapult field testing, and numerous examples
of NLV output appear later in upcoming sections.

LBNL-45365 8

4.0 Visapult Field Testing and Evolution

In this section, we present several field testing experiments along with performance enhancements sug-
gested by subsequent analysis. An early Visapult implementation was first presented at SC99 as part of a
Research Exhibit. Since then, Visapult has become the reference application for a research program spon-
sored by the U.S. Department of Energy calieé Combustion Corridpiand has been field-tested using
several configurations of high speed testbed WANs using several different facilities. Research projects
such as The Combustion Corridor seek to harness distributed resources for the purpose of scientific com-
puting, such as high speed testbed networks, network storage systems, computational resources and large
scale scientific data.

4.1 SC99 Research Exhibit

A preliminary version of Visapult was demonstrated at the SC99 conference in Portland, Oregon, reflect-
ing a collaborative effort involving several research institutions: LBL, Sandia National Laboratory (SNL)
and Argonne National Laboratory (ANL). Data from a cosmology hydrodynamic sim§latihzha reac-

tive chemistry combustion simulatibwere transmitted over a WAN and visualized on the show floor at

SC99. The demonstration required the use of NTON (National Transparent Optical Network) and
SciNet99, the SC99 show floor network, to connect all of the resources (Figure 8).

FIGURE 8. Visapult SC99 Configuration

SC'99 Show LBNL Booth

\
\
| Floor, 1000 BT 8 node }
| 1000 s7221taNd, OR Alpha
| Linux ‘

Cluster |

} PLL

\
\

\
! \

1000 BT

DPSS

- RS —
NTON (OC-48)
EOOO BT
1000 BT

FER

0C-12 OC-48:

. Sandia Livermore,

Berkeley Lab: NTON Oakland 32 Node Linux

.15 TB, 4 server POP

DPSS Cluster

During the course of SC99, we used several different configurations of data sources, computational
engines and networks as illustrated in Figure 8. Cosmology data was stored on DPSS systems at LBL and
in the Argonne National Laboratory booth. Combustion data was stored on a parallel file system on the
Cray T3E at the National Energy Research Scientific Computing Center (NERSC), located in Berkeley at
LBL. Cosmology data was processed by a Visapult back end on the SNL CPlant [17] located in Livermore,
California, or on the Babel Cluster [18] located in the LBL booth at SC99. The combustion data was pro-

6. Cosmology data courtesy of Julian Borrill, Scientific Computing Group, National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National Laboratory.

7. Combustion data courtesy of Vince Beckner and John Bell, Center for Computational Sciences and Engineering,
National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory.

LBNL-45365 9

cessed by a Visapult back end running on the Cray T3E at NERSC in Berkeley. We also used multiple dis-
play devices for final rendering at SC99, including an ImmersaDesk located in the LBL booth, and a tiled
surface display, located in the SNL booth. The ImmersaDesk allowed us to render the results in stereo. The
tiled display system allowed us to demonstrate Visapult using a large-screen, theater-sized output format
suitable for larger audiences.

We performed some preliminary analysis of the behavior of the system at SC99 using different network
topologies and facilities. Our preliminary results showed that the majority of communication was between
the DPSS (the network data cache) and the Visapult back end, with the link between the Visapult back end
and viewer requiring much less bandwidth. This behavior is expected from the architecture of the system.
Since the Visapult back end performs parallel volume visualization to reduce the data down to a small sub-
set of images, it is expected that the amount of data resulting from the visualization and transmitted
between the back end and viewer will be significantly less than the amount of data moved to the back end
from the data source.

FIGURE 9. Visualization of Hydrodynamic Co

smology Simulation Results at SC99

We were capable of sustaining a data transfer rate of 250Mbps between the DPSS located at LBL and
CPlant, and a rate of 150Mbps between the DPSS at LBL and the LBL cluster at SC99. The difference in
transfer rates was based upon the different network topologies. The link between the SC99 show floor and
LBL required resource sharing over SciNet.

4.2 Combustion Corridor First Light Campaign

More recently, we have undertaken field testing using many of the same resources as for the SC99 project,
but with an eye towards careful instrumentation and profiling analysis, and with larger data sets. This work
is part of a project calleihe Combustion Corridpsponsored by the U. S. Department of Energy, which

is a collaborative research effort that includes LBL, ANL and SNL-CA. The @mbustion Corridor

refers to theprocessof remote and collaborative visualization of large, scientific data sets for the Combus-
tion Research community. The term “corridor” has been coined to refer to the metaphorical path from data
source to human consumer, where the path spans geographical and system boundaries. A theme common
across “corridor” projects is that many endeavors that were once possible only over LANs are now possi-
ble over WANSs using a wider array of distributed resources. To a large extent, the needs and requirements
of the Combustion Corridor are sufficiently general to be applicable to a wide variety of problem domains,
including medicine, physics, and the geosciences.

Within the Combustion Corridor effort, we have performed several end-to-end runs using differing net-
work topologies and platform configurations, which we refer to as “campaigns.” The first such campaign
took place on 12 April 2000, and was a collaboration between LBL and SNL-CA. In this campaign, we
used resources connected by NTON, a high speed testbed network. For this example, the raw scientific
data was located on a DPSS at LBL in Berkeley, while the Visapult back end was located on the CPlant

LBNL-45365 10

Linux/Alpha cluster at SNL-CA. The Visapult viewer was running on a desktop machine at SNL-CA. The
combustion simulation used for this example was from a 640x256x256 grid, and each grid value was rep-
resented with a single IEEE floating point number, for a total of 160 megabytes of data per time step for
each of the 265 time steps. The theoretical limit of the network link is 622 Mbps, or the OC-12 connection
between LBL and NTON.

FIGURE 10. NetLogger Instrumentation/Profiling of Visapult
LBL/CPlant (NTON) April 12, 2000

V_FRAME_END | 1 ! ! 1 | ! 1 o]
V_HEAVYPAYLOAD_END / / /J 1
V_HEAVYPAYLOAD START [—
V_LIGHTPAYLOAD_END } |
V_LIGHTPAYLOAD_START |
V_FRAME_START |
BE_FRAME_END |
BE_HEAVY_END |
BE_HEAVY_SEND |
BE_RENDER_END}
BE_LOAD_END F

BE_FRAME_START}

65 70 75 80 85 90 95 100 105
time/sec.
backend-worker viewer-master

backend-master

For this image, profile data was collected from both the Visapult back end and viewer. The top row of traces, in
green, represent the profile data from the viewer, while the bottom row of traces were obtained from the back
end. The horizontal axis represents elapsed time from the start of the application. Each of the entries along the
vertical axis of the code are strings associated with specific events, which occurred in order from bottom to
top. The viewer events are prefixed with “V_", while the back end events have a “BE_" prefix. Refer to
Appendix A for additional details that will aid in interpretation of this data.

In Figure 10, we wish to draw attention to the performance profile of the Visapult back end performance
shown by NetLogger instrumentation. The time required to load 160 megabytes of data into the back end

from the DPSS over NTON was approximately three sebofmisan approximate throughput rate of 433
megabits per second, which is in excess of the network performance realized during the SC99 demonstra-
tion over the same network link, reflecting improvements in the underlying Visapult implementation. The
improvement in raw network performance was the result of a change to data staging and communications
streamlining within Visapult. This amounts to a respectable 70% utilization rate of the theoretical band-
width limit of the network while data was being transferred. The software rendering then consumed about
eight or nine seconds on four processors of the CPlant cluster.

From this campaign, one significant design modification is suggested by the performance data - overlap-
ping network transfers with rendering could have a significant positive impact upon the overall application
performance. NetLogger performance profiles, such as that shown in Figure 10, are invaluable for identify-
ing potential performance bottlenecks in distributed applications.

8. Displacement along the horizontal axis, time, between the tags BE_FRAME_START and BE_LOAD_END,
which bracket the process of moving data from the DPSS into the Visapult back end on CPlant.

LBNL-45365 11

4.3 Overlapped I/0 and Rendering

Each processing element (PE) in the Visapult back end loads a subset of a large scientific dataset, then vol-
ume renders it's subset of data. The resulting image is then transmitted to the viewer for use as a two-
dimensional texture in a scene graph. Then, the process repeats, looping over time. If loading and render-
ing were overlapped, so as to occur simultaneously, then we would expect the overall application perfor-
mance to significantly increase.

FIGURE 11. Overlapped I/O and Rendering Timing Diagram

A Time spent performing loading (network 1/0) for a given data framle €).
Q Time spent performing rendering for a given data frame).

A A A .

Serial I/0 and Rendering time

’ p Rendering time

Overlapped I/O and Rendering

In the discussion that follows, we refer teaxial implementation as one in which, in each PE of the paral-

lel Visapult back end, rendering and data loading occur in a serial fashion. Note that even though we use
the termserial, the back end is in fact a parallel job. Serial refers to how rendering and data loading are
executed within each back end process. On the other tvaedppedmeans that the process of rendering

and data loading is implemented in a pipeline-parallel fashion, and occur simultaneously. Also, note that
while the data for framH is being rendered, data for frame 1 is being loaded.

We can capture the behavior of both serial and overlapped versions, and estimate overall improvement as
follows: letR be the time spent in each PE performing rendering for ealhtiofesteps of data (the red

zones in Figure 11, above), and llebe the time spent by each PE loading data for each time step. The
amount of time, T, required for N time steps’ worth of data using the serial implementation

is:Tg = NL(L+ R). In contrast, the time required fdrtime steps using an overlapped implementation
is: T, = NOmax L, R+min(L R).

For illustrative purposes, if we assume thandR are approximately equal, then the theoretical speedup
realized using an overlapped implementation over one that is séliidl,jsor 2N/(N+1), which is nearly a

100 percent improvement. As the difference betwleemdR increases, the effective speedup resulting
from an overlapped implementation will diminish. At one extreme, the overlapped implementation could
be as much as nearly twice as fast as a serial implementation. At the other extreme, they will be nearly
equal in performance.

The following two figures show the profiling results that compare serial and overlapped implementations
of the Visapult back end data loading and rendering tasks. These tests were run using an eight processor

Sun Microsystems E4500 serveonnected to the LBL DPSS via gigabit ethernet (LAN), and were per-

LBNL-45365 12

formed using ten timesteps from a large scientific data set. The serial implementation required approxi-

mately 265 seconds, while the overlapped version required approximately 169 seconds. In e&ach case,
was approximately 15 seconds, wiia&vas approximately 12 seconds.

FIGURE 12. Execution Profile of Non-Overlapped 1/0 and Rendering
Serial L+R (diesel)

V_FRAME_END | - ‘ ! 1
V_HEAVYPAYLOAD_END |
: i = e >
V_HEAVYPAYLOAD_START | . =
V_LIGHTPAYLOAD_END

.) ,
V_LIGHTPAYLOAD START }— | — : //////

V_FRAME_START |
BE_HEAVY_END }
BE_HEAVY_SEND |}
BE_RENDER_END}
BE_RENDER_START}
BE_LOAD_END }
BE_LOAD_START

0 20 . 60 80 100
time/sec.
backend-master-ever—— backend-master-odd—— viewer-master
backend-worker-even—— backend-worker-odd——

Figures 12 and 13 were created using the NetLogger visualization tool, NLV, and graphically depict and
contrast the performance of serial and overlapped implementations of the Visapult back end. In these Fig-

ures, the profile traces for the back end are colored according to data frame number; odd frames are blue
while even frames are red.

FIGURE 13. Execution Profile for Overlapped 1/0 and Rendering
Overlapped L+R (diesel)

V_FRAME_END |
V_HEAVYPAYLOAD_END }
V_HEAVYPAYLOAD_START |
V_LIGHTPAYLOAD_END |
V_LIGHTPAYLOAD_START [
V_FRAME_START |
BE_HEAVY_END |
BE_HEAVY_SEND |
BE_RENDER_END}
BE_RENDER_START}
BE_LOAD_END }

BE_LOAD_START

0 20 . 60 80 100
time/sec.
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-even—— backend-master-odd——

Note that in Figure 13, data loading for frahi€l and rendering for framl commence simultaneously.
In both the serial and overlapped tests, the time required for eachnafR are approximately equal. As

9. Eight, 336Mhz UltraSparcll processors.

LBNL-45365 13

we shall see in the next section, the time required for edcladR in serial and overlapped implementa-
tions can vary as a function of the underlying architecture. Details of the overlapped implementation are
presented in Appendix B.

4.4 Further Combustion Corridor Testing

In this section, we present performance results obtained while executing Visapult over two different WANs
and using two different compute platforms on the back end. One of the WANs, NTON, is a high-speed test-
bed network that includes an OC12 path from LBL to SNL-CA. The other network, ESnet, is built atop an
OC-12 backbone between LBL and ANL, but is a shared resource. The two compute platforms consist of a
distributed memory Linux-Alpha cluster, and a large SMP. Each cluster node contains a pair of network
interfaces: one for inter-node communication, and the other for external network access. The SMP uses a
single gigabit ethernet interface for external network access, which is shared amongst all processors of the
SMP. Our goals in the following tests are to obtain an estimate of network bandwidth utilization, and to
compare the effect of serial and overlapped implementations of the Visapult back end on two different
compute platforms.

4.4.1 LBL to CPlant over NTON

In the following two tests, we read data from a DPSS at LBL into CPlant nodes over NTON, performed
parallel volume rendering on CPlant, then transmitted the resultant imagery to a viewer at LBL over ESnet.
In the earlier campaign that used the LBL DPSS/CPlant/NTON combination (Figure 10), the back end did
not yet support overlapped data loading and rendering. The profiles that follow compare and contrast the
effect of serial and overlapped data loading and rendering. Figure 14 shows the performance profile of a
serial implementation.

FIGURE 14. Serial L+R on Eight CPlant Nodes
LBL/SNL-CA/LBL (NTON) Serial L+R

V_FRAME_END } ‘
V_HEAVYPAYLOAD_END ¢} 1 | I

V_HEAVYPAYLOAD_START } / J J
] i -) // / //
V_LIGHTPAYLOAD_END } ¢ // |]

V_LIGHTPAYLOAD_START [(

V_FRAME_START ¥ !
BE_HEAVY_END }
BE_HEAVY_SEND |
BE_RENDER_END}
BE_RENDER_START}
BE_LOAD_END |

BE_LOAD_START

0 10

tlme/sec
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-evenr—— backend-master-odd——

In this example, we used eight nodes of CPlant, a Linux-Alpha cluster. Note that the time required to load
160 MB of data using eight nodes is approximately equal to the time required when using four nodes. From
this, we observe that the use of additional nodes will not necessarily improve data throughput, as we have
completely consumed all available network bandwidth. On the other hand, rendering time has been
reduced to approximately half the time required when using four processors. Given the domain decomposi-

LBNL-45365 14

tion of the volume data, we expect linear speedup in the rendering process as the number of processors
increases.

FIGURE 15. Overlapped L+R on Eight CPlant Nodes
LBL/SNL/LBL (NTON) Overlapped L+R

V_FRAME_END } 1 ; P
V_HEAVYPAYLOAD_END |
V_HEAVYPAYLOAD_START |} / ‘/ ‘ i
V_LIGHTPAYLOAD_END |)
V_LIGHTPAYLOAD_START |
V_FRAME_START [‘
BE_HEAVY_END |
BE_HEAVY _SEND |}
BE_RENDER_END}

BE_RENDER_START}
BE_LOAD_END | J

BE_LOAD_START

0 10 20 .30 40 50
time/sec.
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-even—— backend-master-odd——

The performance profile in Figure 15 was obtained by running a Visapult back end with overlapped data
loading and rendering. One feature in Figure 15 that was expected, but difficult to characterize, is the
increased time required for data loading, and the variability in load times from time step to time step. We
can presume, based upon the results shown in Figure 15, there may be a relationship between the variabil-
ity in completion times of transmission of image data from the back end to the viewer and the variability in

data loading timé$. The results indicate that as completion of transmission of outbound images becomes
more staggered, inbound data loading is delayed. Another area of interest is CPU contention between the
rendering and data loading processes. On CPlant, both rendering and data loading activities share a single
CPU. While the render task is CPU intensive and the data loader is an I/O process, there appears to be a
significant CPU demand incurred by the data loading process. This may be due in part to implementation
details of the underlying network interface card (NIC) driver. It is widely known that some NIC drivers
generate more interrupts than others, and these interrupts incur a cost in terms of CPU load. Some gigabit
ethernet cards provide the option for using “jumbo frames” (9KB MTUs vs. 1.5KB MTUs), which incur
lower interrupt overhead. However, using jumbo frames over a WAN is problematic.

4.4.2 LBL to ANL over ESnet

The following two tests contrast serial and overlapped load and render operations on a large symmetric

multiprocessing platform with shared memory (SHHa)cated at ANL. The Visapult back end, running

on the SMP at ANL read data from the DPSS at LBL over ESnet, then transmitted partial volume render-
ing results to a viewer located at LBL, also connected via ESnet. The ESnet link in these tests has a higher
latency than the NTON link between LBL and SNL, and delivers an average bandwidth of approximately

100Mbps as measured with commonly available network tools, sdphr&g.

10.BE_LOAD_START and BE_LOAD_END bracket movement of data from the DPSS into each back end PE,
while BE_HEAVY_SEND and BE_HEAVY_END bracket image transmission from the back end to the viewer.

11.A sixteen processor SGI Onyx2.

LBNL-45365 15

Figure 16 shows the performance profile of a serial Visapult back end running on eight processors of the
SMP. We observe that approximately ten seconds is required to move 160 megabytes of data per data frame
from the DPSS at LBL to ANL over ESnet, yielding a bandwidth consumption of about 128Mbps. Note
that data loading time dominates in this case, owing to the significantly lower network capacity. We are
able to achieve slightly better bandwidth utilization than a toolifikef owing to the highly parallelized

nature of our data loading.

FIGURE 16. Serial L+R on an SMP
LBL/ANL/LBL (ESnet/Clipper) Serial L+R

V_FRAME_END } / 1 ‘ 1 '(
V_HEAVYPAYLOAD_END | / | | ‘
V_HEAVYPAYLOAD_START }

V_LIGHTPAYLOAD END | //
V_LIGHTPAYLOAD_ START //// ///// ////J
V_FRAME_START ////

BE_HEAVY_END }
BE_HEAVY_SEND |
BE_RENDER_END}

BE_RENDER_START|

BE_LOAD_END }

BE_LOAD_START

0 20 40 60 80 100

time/sec.
backend-master-evep—— backend-master-odd—— viewer-master
backend-worker-even—— backend-worker-odd——-

Performance profile for the overlapped Visapult back end is shown in Figure 17. Similar to the NTON/
CPlant tests, average elapsed time for overlapped data loading is slightly higher than the serial implemen-
tation. After the first time step’s worth of data was loaded and the TCP window fully opened, we were able
to steadily consume in excess of 100Mbps between the LBL DPSS and ANL over ESnet.

FIGURE 17. Overlapped L+R on an SMP
LBL/ANL/LBL (Clipper/ESnet) Overlapped L+R

V_FRAME_END [
V_HEAVYPAYLOAD END | /// /// /// // /// /// //
V_HEAVYPAYLOAD_START |
V_LIGHTPAYLOAD_END |
V_LIGHTPAYLOAD START |} , /// //// ///
V_FRAME_START |/ ‘
BE_HEAVY_END |
BE_HEAVY_SEND |
BE_RENDER_END}

BE_RENDER_START}
BE_LOAD_END |

BE_LOAD_START

0 20 40

. 0

time/set’
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-evenr—— backend-master-odd——

12.http://dast.nlanr.net/Projects/Iperf/

LBNL-45365 16

It appears that the SMP platform is better suited for the Visapult back end than a distributed memory plat-
form: when each back end process, consisting of a rendering and a data loading thread, map directly onto a
CPU, there appears to be less contention and context switching. In contrast, on the cluster, each of the two
components of a single back end process must share a single CPU. In addition, the multiple NIC interfaces
present on clusters present the possibility of achieving higher aggregate bandwidth utilization than the
common SMP configuration of a single NIC shared by all nodes.

5.0 Future Work

We have obtained performance numbers for only a subset of contemporary architectures and available high
speed testbed networks: large SMPs over a relatively slow and high latency network, and distributed mem-
ory systems with single CPU nodes as the compute platform over NTON, a high speed, low latency testbed
network. Testing on additional compute platforms, particularly distributed memory architectures with mul-
tiple CPUs and shared memory on a single node, as well as an MPI-only implementation of the back end
would serve to explore a significant portion of the platform-specific parameter space, and would serve to
reveal additional strengths and weaknesses in the overall Visapult architecture.

Access to additional testbed networks is not a trivial task, and often requires the coordination of divergent
research and operational groups. From the performance numbers shown in the previous section, it is clear
that Visapult completely saturated all of the networks tested, and application throughput will be a function
of the capacity of the underlying network. Despite completely using all available network bandwidth, the
networks we tested do not have sufficient capacity to meet the challenges of terascale visualization. To put
the problem into perspective, the time required to move our 265-timestep dataset (a total of 41.4 gigabytes)
over NTON is on the order of eight minutes (a new timestep every 3 seconds), while over ESnet, the time
required is on the order of 44 minutes (a new timestep every 10 seconds). A reasonable target rate would
be, for this problem, five timesteps per second, requiring effective bandwidth on the order of fifteen times
faster than our OC12 connection to NTON; approximately a dedicated OC192 link. This application points
out the importance of having Quality of Service (QoS) (including bandwidth reservation) capabilities in
future networks. In our testing we were able to completely saturate the WAN link in each network configu-
ration. QoS is needed to insure that this application does not adversely affect other bandwidth-sensitive
applications using the link, and to provide some minimum bandwidth guarantees to a Visapult session.

As a parallelized and pipelined implementation of IBRAVR capable of performing interactive volume
visualization of large scientific data sets, Visapult's use of IBR-like rendering techniques corroborates the
experiences of others who have sought to apply IBR to large model visualization. One such effort used IBR
representations of complex geometry as the basis for distance-based model switching as a rendering accel-
eration aid for navigation through complex CAD models [19]. From a graphics perspective, an architecture
built around an embedded scene graph core has proven to be successful in this project. As scene graph
technology has been targeted at retained mode rendering of primarily geometric-based data, the question
remains as to the applicability of this technology to general IBR technigques. More importantly, the Visapult
implementation highlights the relevance of embedded rendering technology within the context of network-
based 3D graphics and visualization. Although there are many examples of emerging commercial 3D web-
based applications, these tend to use VRML [20] as a medium for data exchange. VRML is a data storage
format with an emphasis upon surface and vector geometry. More recently in the VRML97 and Web3D
efforts, the VRML base extends geometric modeling to include sound and asynchronous “sensors” that
generate events to be consumed and processed by the VRML browser. VRML as a data format doesn’t
appear to readily lend itself for use by distributed IBR applications: IBR allows for navigation through
environments where the source is either precomputed or acquired imagery. We envision interesting future
3D, web-based applications that use the notion of navigating through environments constructed from
acquired, rather than computed imagery.

LBNL-45365 17

In our experience, remote resource access and management can be a troublesome and tedious endeavor.
One of the appealing themes in Corridor projects is the ability of a user to transparently take advantage of
remote and distributed resources, such as network storage caches and computational facilities, without spe-
cialized knowledge about the distributed resources: access to testbed networks may require modifications
to routing tables; the ability to launch a parallel job likely requires shell access to the remote resource; and
access to DPSS systems is typically provided on an as-needed basis. In order for research scientists to suc-
cessfully use a tool like Visapult, they may need detailed technical knowledge of networks, knowledge of
the existence of and access to the remote resources, and must be capable of diagnosing the inevitable diffi-
culties that arise when attempting to launch multiple components of a distributed application. Users want
tools that are easy to use and help them accomplish their work. A good deal of our future work will be
focused upon simplifying the access to and use of the remote and distributed resources upon which
Visapult is built.

In this project, the DPSS has proven to be a useful tool. Storage systems of this type present an economical
and scalable storage solution that will assume an increasingly important role in a network-centric comput-
ing environment. We expect that by augmenting the block data services with additional processing capabil-
ities, the DPSS will become even more useful. For example, “wire level” compression would benefit a
wide array of applications. In the case of lossy compression techniques, the degree of lossiness could be a
function of network line parameters and under application control. Additional possibilities include off-line
visualization services, such as the offline and automatic creation of thumbnail representations of datasets
or metadata.

6.0 Conclusion

Remote and distributed visualization and rendering algorithms increasingly depend upon a foundation of
data management and data movement. As a Corridor project, Visapult has demonstrated the feasibility of
using combinations of distributed resources, such as parallel network data caches and computational
resources. A unique combination of data staging, parallel rendering and parallel I/0 has produced a proto-
type application and framework that is capable of performing interactive visualization of large scientific
data sets. Several instrumented test cases have shown that Visapult is capable of saturating the fastest high
speed testbed networks available today. Despite these results, we conclude that these networks are still
inadequate for the purposes of tera-scale visualization. Access to the networks can be troublesome, and
applications such as Visapult can benefit from related research projects, such as QoS and bandwidth reser-
vation to streamline access to and use of these emerging resources.

7.0 Acknowledgement

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S.

Department of Energy under Contract No. DE-AC03-76SF00098. Special thanks to Helen Chen, Jim
Brandt, Pete Wyckoff, and Mike Hertzer at Sandia National Laboratories for providing access to CPlant

and for providing extraordinary support for this project. The scientific data sets used in our experiments
were generated by and used with the permission of Julian Borrill, Scientific Computing Group, NERSC

and Vince Beckner and John Bell at the Center for Computational Science and Engineering, also at
NERSC. Access to computing facilities at Argonne was provided by Rick Stevens and Mike Papka of the
Math and Computing Sciences Division at Argonne National Laboratory.

LBNL-45365 18

8.0 References

[1] “A Network-Aware Distributed Storage Cache for Data Intensive Environments”, Tierney, B. Lee, J.,
Crowley, B., Holding, M., Hylton, J., Drake, F., Proceedings of IEEE High Performance Distributed Com-
puting conference, August 1999, LBNL-42896. see: http://www-didc.Ibl.gov/IDPSS/

[2] Abilene: http://www.internet2.edu/abilene/

[3] Supernet: http://www.ngi-supernet.org/

[4] ESnet: http://www.es.net/

[5] National Transparent Optical Network (NTON): http://www.ntonc.org/

[6] The Message Passing Interface (MPI) Standard, http://www.mcs.anl.gov/mpi/

[7] “Evaluating Stereo and Motion Cues for Visualizing Information Nets in Three Dimensions,” C. Ware
and G. Franck, ACM Transactions on Graphics, 15, 2, April 1996, pp. 121-140.

[8] OpenRM Scene Graph, http://openrm.sourceforge.net/

[9] “Volume Rendering,” R. Drebin, L. Carpenter, P. Hanrahan, in Proceedings of Siggraph 1988, Com-
puter Graphics, Volume 22, Number 4, pp. 65-74.

[10] “Communication Costs for Parallel Volume Rendering Algorithms,” Ulrich Neumann, IEEE Com-
puter Graphics and Applications, Volume 14, Number 4, pp 49-58, July 1994.

[11] “Compositing Digital Images,” T. Porter and T. Duff, in Proceedings of Siggraph 1984, Computer
Graphics 18, Volume 3, pp. 253-260.

[12] “Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based
Approach,” P. Debevec, C. Taylor, and J. Malik, Proceedings of Siggraph 1986jriputer Graphics
Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 11-20.

[13] “Light Field Rendering,” M. Levoy and P. Hanrahan, Proceedings of Siggraph 19@@mputer
GraphicsProceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp 31-40.

[14] “IBR Assisted Volume Rendering”, K. Mueller, N. Shareef, K. Huang, R. Crawfis, in Proceedings of
IEEE Visualization 1999, Late Breaking Hot Topics, October 1999, pp 5-8.

[15] The High Performance Storage System (HPSS), http://www.sdsc.edu/projects/HPSS/hpss1.html

[16] “The NetLogger Methodology for High Performance Distributed Systems Performance Analysis”, B.
Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter, Proceedings of IEEE High Performance
Distributed Computing Conference, July 1998, LBNL-42611. see: http://www-didc.Ibl.gov/NetLogger/

[17] CPlant (Computational Plant), http://www.cplant.ca.sandia.gov/.

[18] “Production Linux Clusters: Architecture and System Software for Manageability and Multi-User
Access”. W. Saphir, P. Bozeman, R. Evard and P. Beckman. SC ‘99 Tutorial on 11/14/99. Available at
http://www.nersc.gov/research/ftg/tribble/production_linux_clusters_v1.pdf

LBNL-45365 19

[19] “MMR: An Integrated Massive Model Rendering System Using Geometric and Image-Based Accel-
eration,” D. Aliaga, et. al., in Proceedings of 1999 ACM Symposium on Interactive 3D Graphics.

[20] http://www.vrml.org/

9.0 Appendix A - Visapult Internal Architecture

In this Appendix, we provide technical details about the internals of both the Visapult back end and viewer
relevant to interpreting the plots of NetLogger profile data.

We begin with a flowchart-like depiction of the Visapult viewer and back end. The flowchart highlights
coarse-grained tasks for both the viewer and back end, as well network communication between the coop-
erative processes.

FIGURE 18. Visapult Architecture

Initialize || |Exchange Multiple Initialize Single
Config pataI/0 Render
Data Threads Thread

I/0 Service

4-@ Thread @

@ Yes
2
P Toad End of Data
. Volume
Data @ No Yes

Y

Compute Receive

MetaData / MetaData
Y ol Y - @
es
Send Build/Update N
MetaData Data Structure ° 0

+ '__
Software - Yes w No
Render Receive

/Textures

Yes

End of Data?

v > Update Apply
v Scene, Transform
Send ! Render Render
Textures Thread 0 r
Signals r
v Render Thread \ /

Barrier v @

f Barrier

Visapult back end Visapult viewer

LBNL-45365 20

The following two tables provide additional detail about each of the tags present in the profile graphs gen-
erated by NetLogger. These tags are used in Figures 10, 12, 13, 14 and 15.

TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures

Tag Remarks

V_FRAME_START Top of loop inside each thread that services an 1/0O connection with the back
end. In the current implementation, the number of time steps, or loops, is set
before each of these threads is launched at initialization time.

V_LIGHTPAYLOAD_ START Beginning of receipt of visualization metadata. Visualization metadata con-
sists of texture size, bytes per pixel, and geometric information used to place
the texture in a 3D scene. Visualization metadata is on the order of 256
bytes, hence the name “light payload.”

V_LIGHTPAYLOAD_END Visualization metadata received.

V_HEAVYPAYLOAD_START Beginning of receipt of visualization data. This data consists of raw pixel
data, as well as any geometric data, such as triangles, boxes, and so forth. In
our tests thus far, the size of this data is also relatively small compared to the
size of the source volume. In this implementation, each thread receives a sin-
gle texture, and while the size of the texture is a function of the resolution of
the source volume, a typical size is on the order of 0.25 to 1.0 megabytes per
texture. Geometric data is typically tens of kilobytes for the AMR grid data
per timestep.

V_HEAVYPAYLOAD_END All visualization data received.
V_FRAME_END End of processing of this time step’s worth of data.

TABLE 2. Visapult Back End NetLogger Tags in NLV Figure$

Tag Remarks

BE_LOAD_START Each back end PE is about to load it's subset of volume data.

BE_LOAD_END Volume data load and format conversion completed. In our examples, this
step includes loading of AMR species and grid data.

BE_LIGHT_SEND Start transmitting visualization metadata to the viewer.

BE_LIGHT_END Metadata transmission complete.

BE_RENDER_START Start of parallel volume rendering process.

BE_RENDER_END All rendering complete.

BE_HEAVY_SEND Start transmitting visualization data. In this implementation, the visualiza-

tion data consists of a single texture per back end PE, and optional geometric
data representing the grid, and an optional elevation/offset map which the
viewer will use to create a quadmesh.

BE_HEAVY_END End of visualization data transmission.

a. There are many more NetLogger tags present in the Visapult back end. Many were omitted from this table,
and from the figures, for brevity. These additional tags are useful for more detailed analysis of execution
profiles within each large-grained task (e.g., “load data”).

LBNL-45365 21

10.0 Appendix B - Overlapped Visapult Back End Implementation Details

The Visapult back end is implemented using MPI as the multiprocessing and IPC framework. Each PE of
the back end is responsible for reading a subset of the volume data, for rendering its subset of data, and for
transmitting the rendering results to the Visapult viewer.

To implement overlapped data loading and rendering in each back end PE, the base MPI code was
extended to launch a detached execution thread. We chosepthriesdsas the threading API due to its
portability and wide availability. In the discussion that follows, we refer to the combination of a single MPI
process and its associated detached, reader threapraseas grougor the sake of clarity. Theeader

threadis the detached, freely-running pthread, andr¢heer processs the MPI process. A flowchart of

these cooperative processes is shown in Figure 19.

Upon entry, each MPI PE launches a detached, freely-running execution thread (reader thread). This thread
logically executes concurrently with the MPI proceSencurrent logical executiomeans that we yield
scheduling control to the host system. On distributed memory systems, such as Linux clusters, both reader
thread and render process share a single CPU, thereby inviting contention. On SMP systems with a suffi-
cient number of CPUs, in our experience, CPU contention appears to be minimized, if not eliminated.

In our implementation, the reader thread is a worker, and controlled by the render process. Each back end
render process creates a pair of SystemV shared memory semaphores prior to launching the reader thread.
Each of the semaphore pairs is shared by each render/reader process group, with one such pair for all MPI
PEs. One of the semaphores, which we’ll sathaphore Ais considered as an execution barrier from the
perspective of the reader thread, while the oemaphore Bis considered as an execution barrier from

the perspective of the render process.

Upon entry to the reader thread, after some internal initialization occurs, the reader thread blocks waiting
to gain access teemaphore AThe render process will request that either data from a specific time step
will be read, or will request reader thread termination due to completion of all time steps. Once the reader
thread gains access semaphore Ait will examine the control variable (in shared memory) and take the
appropriate course of action, either reading more data or exiting. Upon completion of the requested activ-
ity, the reader thread will post semaphore Bthen block awaiting accessgemaphore A.

On the render process side, data from time step zero is first requested from the reader thread. Once that
data has been loaded and is available, data from time step one is requested, and the render process begins
to render data from time step zero. Once rendering is complete, results are transmitted to the viewer, then
the render process will block while attempting to gain accessntaphore BUpon gaining access to
semaphore Bthe render process requests the next time step’s worth of data, and pestaphore A

This process continues until all the time varying data has been read, rendered and results transmitted to the
viewer.

In addition to the control semaphores, a large block of memory is shared between reader thread and render
process. The reader thread will load the raw scientific data into this large memory block during reading.
This memory is considered to deuble-bufferedits size is twice that of a single time step’s worth of data,

and the reader thread will use one half of the buffer for writing into, while the render process reads from
the other half. Access control is implicit as a function of the time step using an even-odd decomposition.
Due to the control architecture of the reader thread and render process, we are guaranteed that reader and
render threads will not access the same odd/even data buffer at the same time.

We chose to extend the MPI base using pthreads in order to take advantage of the shared-memory model
employed by threaded code. An alternative would be to use MPI-only constructs. For example, even-num-

LBNL-45365 22

bered processes would render, while odd-numbered processes would read data. The synchronization
between the two would be similar, but using MPI constructs rather than SystemV semaphores. Of greater
concern would be the need to transmit large amounts of scientific data between reader and render pro-
cesses. We consciously chose to avoid incurring this additional cost by using a threaded model. In doing
so, we may have incurred a penalty in the form of increased contention on distributed memory architec-

tures with single-CPU nodes.

FIGURE 19. Architecture of Overlapped Visapult Back End

Back End Render Process Back End Data Reader Thread
Initialize
v Initialize
Set t=0
Sem_postA&A — — — — r

Sem_wait f i Yes
|
| No
| E) =Y

F — + — — — —{Sem_wait A
|
J

Nov

Settm+1
Sem_postA — — — —|
v No Read data
ommand
Send >
MetaData e
v Read
Data att
Software
Render v
v Sem_post B
Send |»
Textures
Sem_wait Bj
Barrier
Double-buffered memory shared between - — — — — SystemV IPC semaphore,"read-only”
reader thread and render process. to reader thread.
. Communication between the Visapult SystemV IPC semaphore, “read only”
back end and viewer. to render process.

LBNL-45365 23

	Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization
	Wes Bethel, Brian Tierney, Jason Lee2, Dan Gunter2, Stephen Lau1
	Lawrence Berkeley National Laboratory
	University of California, Berkeley
	Berkeley, CA 94720
	1.0 Abstract
	2.0 Introduction
	FIGURE 1. Visualization and Rendering Pipeline

	3.0 Visapult: A Remote, Distributed Visualization Application Prototype
	FIGURE 2. Visapult Architecture

	3.1 Visualization and Rendering Pipeline Architecture
	FIGURE 3. Visapult Rendering of Combustion Data and Adaptive, Hierarchical Grids

	3.2 Parallel Volume Rendering Algorithm Taxonomy
	FIGURE 4. Slab, Shaft and Block Decomposition

	3.3 Image Based Rendering Assisted Volume Rendering
	FIGURE 5. IBR Assisted Volume Rendering
	FIGURE 6. IBRAVR Artifacts

	3.4 Visapult: Parallel and Remote IBRAVR
	3.5 Visapult’s Use of the LBL DPSS as a Data Cache
	FIGURE 7. DPSS Architecture

	3.6 Profiling and Performance Analysis - NetLogger
	4.0 Visapult Field Testing and Evolution
	4.1 SC99 Research Exhibit
	FIGURE 8. Visapult SC99 Configuration
	FIGURE 9. Visualization of Hydrodynamic Cosmology Simulation Results at SC99

	4.2 Combustion Corridor First Light Campaign
	FIGURE 10. NetLogger Instrumentation/Profiling of Visapult

	4.3 Overlapped I/O and Rendering
	FIGURE 11. Overlapped I/O and Rendering Timing Diagram
	FIGURE 12. Execution Profile of Non-Overlapped I/O and Rendering
	FIGURE 13. Execution Profile for Overlapped I/O and Rendering

	4.4 Further Combustion Corridor Testing
	4.4.1 LBL to CPlant over NTON
	FIGURE 14. Serial L+R on Eight CPlant Nodes
	FIGURE 15. Overlapped L+R on Eight CPlant Nodes

	4.4.2 LBL to ANL over ESnet
	FIGURE 16. Serial L+R on an SMP
	FIGURE 17. Overlapped L+R on an SMP

	5.0 Future Work
	6.0 Conclusion
	7.0 Acknowledgement
	8.0 References
	9.0 Appendix A - Visapult Internal Architecture
	FIGURE 18. Visapult Architecture
	TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures
	TABLE 2. Visapult Back End NetLogger Tags in NLV Figures

	10.0 Appendix B - Overlapped Visapult Back End Implementation Details
	FIGURE 19. Architecture of Overlapped Visapult Back End

