PV-WAVE 7.5°

Reference V1, V2, and V3

Heping CusTOMERS SOLVE CoMpLEX PROBLEMS

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.

2500 Wilcrest Drive Tour Europe Suite 1

Suite 200 33 place des Corolles Centennial Court

Houston, Texas 77042-2579 Cedex 07 East Hampstead Road

United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire

713-784-3131 FRANCE RG 121YQ

800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM

(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700

http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748

e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.

7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor

Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho

Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102

+886-2-727-2255 +49-711-13287-0 JAPAN

(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760

e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769
e-mail: vda-sprt@vnij.co.jp

Visual Numerics S.A. de C.V. Visual Numerics, Inc., Korea

Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.

Col. Juarez 136-1, Mapo-dong, Mapo-gu

Mexico, D.F. C.P. 06600 Seoul 121-050

Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.
Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compag Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

The Visualizaton Toolkit
Copyright (c) 1993-1995 Ken Martin, Will Schroeder, Bill Lorensen.

This software is copyrighted by Ken Martin, Will Schroeder and Bill Lorensen. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files. This copyright specifically does not apply to the related textbook "The Visualiza-
tion Toolkit" ISBN 013199837-4 published by Prentice Hall which is covered by its own copyright.

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any purpose, provided that
existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. Additionally, the authors
grant permission to modify this software and its documentation for any purpose, provided that such modifications are not distributed
without the explicit consent of the authors and that existing copyright notices are retained in all copies. Some of the algorithms imple-
mented by this software are patented, observe all applicable patent law.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS
SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface i

What'’s in this Manual i
Conventions Used in this Manual iii
Technical Support iv

Chapter 1: Functional Summary of Routines 1

3D Visualization Toolkit (VTK) Routines 4
Array Creation Routines 5

Array Manipulation Routines 6
Color Table Manipulation Routines 8
Concurrent Processing Routines 9
Coordinate Conversion Routines 9
Data Connection Routines 9

Data Conversion Routines 10

Data Extraction Routines 11
Date/Time Functions 11

File Manipulation Routines 12
General Graphics Routines 13
General Mathematical Functions 14
Gridding Routines 16

HDF Routines 17

Help and Information Routines 18
Hypertext Markup Language (HTML) Routines 18
Image Display Routines 19

Image 10 Routines 20

Image Processing Routines 20

Input and Output Routines 22
Interpolation Routines 23

Table of Contents i

Mapping Routines 24

Operating System Access Routines 24
Optimization and Regression Routines 25
Plotting Routines 26

Polygon Generation Routines 27

Polygon Manipulation Routines 28
Polygon Rendering Routines 28
Programming Routines 28

Ray Tracing Routines 30

Session Routines 30

Special Mathematical Functions 30

String Processing Routines 30

Table Manipulation Functions 31
Transcendental Mathematical Functions 32
VDA Tools Routines 32

VDA Tools Manager Routines 33

VDA Tools Manager Graphical Element Routines 35
VDA Utilities Routines 36

View Setup Routines 38

Virtual Reality Modeling Language (VRML) Routines 39
Volume Manipulation Routines 39

Volume Rendering Routines 40

WAVE Widgets Routines 40

WAVE Widget Utilities 42

Widget Toolbox Routines 42

Window Routines 44

Chapter 2: Procedure and Function Reference 45

ABS Function 46

ACOS Function 47

ADD_EXEC_ON_SELECT Procedure (UNIX) 48
ADDVAR Procedure 49

PV-WAVE Reference

AFFINE Function 50

ALOG Function 51

ALOG10 Function 52
ASARR Function 53

ASIN Function 55

ASKEYS Function 56
ASSOC Function 58

ATAN Function 60

AVG Function 61

AXIS Procedure 63

BAR2D Procedure 73
BAR3D Procedure 75
BESELI Function 77
BESELJ Function 78
BESELY Function 80
BILINEAR Function 82
BINDGEN Function 85
BLOB Function 86
BLOBCOUNT Function 87
BOUNDARY Function 88
BREAKPOINT Procedure 89
BUILDRESOURCEFILENAME Function 90
BUILD_TABLE Function 93
BYTARR Function 96

BYTE Function 97
BYTEORDER Procedure 100
BYTSCL Function 102

CD Procedure 107

C_EDIT Procedure 109
CENTER_VIEW Procedure 113
CHEBYSHEYV Function 115
CHECKEFILE Function 116

Table of Contents

CHECK_MATH Function 118
CINDGEN Function 121

CLOSE Procedure 122
COLOR_CONVERT Procedure 123
COLOR_EDIT Procedure 124
COLOR_PALETTE Procedure 129
COMPILE Procedure 131
COMPLEX Function 135
COMPLEXARR Function 138
CONE Function 139

CONGRID Function 140

CONJ Function 142

CONTOUR Procedure 144
CONTOUR2 Procedure 147
CONTOURFILL Procedure 151
CONVERT_COORD Function 156
CONV_FROM_RECT Function 158
CONVOL Function 160
CONV_TO_RECT Function 163
CORRELATE Function 166

COS Function 168

COSH Function 169

COSINES Function 170

CPROD Function 171

CREATE _ HOLIDAYS Procedure 171
CREATE_WEEKENDS Procedure 172
CROSSP Function 174

CURSOR Procedure 175
CURVEFIT Function 179
CYLINDER Function 181
DAY_OF_WEEK Function 184
DAY_OF_YEAR Function 185

PV-WAVE Reference

DBLARR Function 186

DCINDGEN Function 187

DCOMPLEX Function 188
DCOMPLEXARR Function 190
DC_ERROR_MSG Function 191
DC_OPTIONS Function 193
DC_READ_8_BIT Function 194
DC_READ_24_BIT Function 196
DC_READ_CONTAINER Function 199
DC_READ_DIB Function (Windows) 201
DC_READ_FIXED Function 203
DC_READ_FREE Function 218
DC_READ_TIFF Function 231
DC_SCAN_CONTAINER Function 235
DC_WRITE_8_BIT Function 237
DC_WRITE_24_BIT Function 238
DC_WRITE_DIB Function (Windows) 240
DC_WRITE_FIXED Function 242
DC_WRITE_FREE Function 250
DC_WRITE_TIFF Function 256
DEFINE_KEY Procedure 259

DEFROI Function 266

DEFSYSV Procedure 269
DELETE_SYMBOL Procedure (OpenVMS) 271
DEL_FILE Procedure 272

DELFUNC Procedure 273

DELLOG Procedure (OpenVMS) 274
DELPROC Procedure 275
DELSTRUCT Procedure 276

DELVAR Procedure 277

DERIV Function 279

DERIVN Function 281

Table of Contents V

DETERM Function 282

DEVICE Procedure 283

DIAG Function 284

DICM_TAG_INFO Function 285
DIGITAL_FILTER Function 286

DILATE Function 289

DINDGEN Function 293

DIST Function 294

DOC_LIBRARY Procedure (UNIX/OpenVMS) 297
DOUBLE Function 300
DROP_EXEC_ON_SELECT Procedure (UNIX) 302
DT_ADD Function 303

DT_COMPRESS Function 304
DT_DURATION Function 308

DTGEN Function 309

DT_PRINT Procedure 311
DT_SUBTRACT Function 312
DT_TO_SEC Function 314

DT_TO_STR Procedure 316

DT_TO_VAR Procedure 319
ENVIRONMENT Function (UNIX/Windows) 322
EOF Function 323

ERASE Procedure 324

ERODE Function 326

ERRORF Function 330

ERRPLOT Procedure 331

EUCLIDEAN Function 333
EXEC_ON_SELECT Procedure (UNIX) 334
EXECUTE Function 337

EXIT Procedure 340

EXP Function 341

EXPAND Function 342

Vi

PV-WAVE Reference

EXPON Function 343
EXTREMA Function 344
FAST_GRID2 Function 346
FAST_GRID3 Function 348
FAST_GRID4 Function 351
FFT Function 353
FILEPATH Function 356
FINDFILE Function 358
FINDGEN Function 359
FINITE Function 360

FIX Function 362

FLOAT Function 364
FLTARR Function 366
FLUSH Procedure 367
FREE_LUN Procedure 368
FSTAT Function 369
FUNCT Procedure 372
GAUSSFIT Function 375
GAUSSINT Function 376
GCD Function 377
GETENV Function 378
GET_KBRD Function 379
GET_LUN Procedure 380
GETNCERR Function 382
GETNCOPTS Function 383
GET_SYMBOL Function (OpenVMS) 385
GREAT_INT Function 386
GRID Function 387
GRIDN Function 388
GRID_2D Function 389
GRID_3D Function 391
GRID_4D Function 393

Table of Contents Vii

GRID_SPHERE Function 396
GROUP_BY Function 399
HANNING Function 405
HDFGET24 Function 407
HDFGETANN Function 409
HDFGETFILEANN Function 410
HDFGETNT Function 412
HDFGETRS8 Function 414
HDFGETRANGE Function 416
HDFGETSDS Function 417
HDFLCT Procedure 419
HDFPUT24 Function 420
HDFPUTFILEANN Function 422
HDFPUTR8 Function 423
HDFPUTSDS Function 425
HDFSCAN Procedure 427
HDFSETNT Function 428
HDF_TEST Procedure 429
HELP Procedure 430

HILBERT Function 432
HIST_EQUAL Function 434
HIST_EQUAL_CT Procedure 437
HISTN Function 438
HISTOGRAM Function 440

HLS Procedure 448

HSV Procedure 450
HSV_TO_RGB Procedure 451
HTML_BLOCK Procedure 453
HTML_CLOSE Procedure 454
HTML_HEADING Procedure 455
HTML_HIGHLIGHT Function 456
HTML_IMAGE Function 457

viii

PV-WAVE Reference

HTML_LINK Function 459
HTML_LIST Procedure 460
HTML_OPEN Procedure 463

HTML_PARAGRAPH Procedure 464

HTML_RULE Procedure 466
HTML_SAFE Function 466

HTML_TABLE Procedure 468
HTML_TEXT Procedure 470

IMAGE_COLOR_QUANT Function 474

IMAGE_CONT Procedure 477
IMAGE_CREATE Function 479

IMAGE_DISPLAY Procedure 486
IMAGE_QUERY_FILE Function 488

IMAGE_READ Function 492
IMAGE_WRITE Function 495
IMAGINARY Function 499
IMG_TRUES Procedure 500
INDEX_AND Function 502
INDEX_CONYV Function 503
INDEX_OR Function 504
INDGEN Function 505

INFO Procedure 506
INTARR Function 509
INTERPOL Function 510
INTERPOLATE Function 513
INTRP Function 513

INVERT Function 514
ISASKEY Function 515
ISHFT Function 516
JACOBIAN Function 518
JOURNAL Procedure 518
JUL_TO_DT Function 519

Table of Contents

ix

KEYWORD_SET Function 520
LCM Function 522

LEEFILT Function 523
LEGEND Procedure 524
LINDGEN Function 526
LINKNLOAD Function 527
LIST Function 533

LISTARR Function 534

LNO3 Procedure (UNIX/OpenVMS) 535

LOADCT Procedure 535

LOADCT_CUSTOM Procedure 537

LOAD_HOLIDAYS Procedure 538
LOAD_OPTION Procedure 539

LOADRESOURCES Procedure 540

LOADSTRINGS Procedure 542

LOAD_WEEKENDS Procedure 545

LONARR Function 546

LONG Function 547

LUBKSB Procedure 549
LUDCMP Procedure 551

MAP Procedure 556
MAP_CONTOUR Procedure 565
MAP_PLOTS Procedure 567
MAP_POLYFILL Procedure 569
MAP_REVERSE Procedure 571
MAP_VELOVECT Procedure 572
MAP_XYOUTS Procedure 574
MAX Function 575

MEDIAN Function 577

MESH Function 580

MESSAGE Procedure 582

MIN Function 584

PV-WAVE Reference

MINIMIZE Function 586
MODIFYCT Procedure 587
MOLEC Function 588

MOMENT Function 589
MONTH_NAME Function 590
MOVIE Procedure 591

MPROVE Procedure 593
MSWORD_CGM_SETUP Procedure 594
NAVIGATOR Procedure 595
NEIGHBORS Function 596
N_ELEMENTS Function 597

NINT Function 598

NORMALS Function 600
N_PARAMS Function 601

N_TAGS Function 602
ON_ERROR_GOTO Procedure 613
ON_IOERROR Procedure 614
OPEN Procedures (UNIX/OpenVMS) 615
OPEN Procedures (Windows) 621
OPENURL Procedure 624

OPLOT Procedure 626
OPLOTERR Procedure 628
OPTION_IS_LOADED Function 630
ORDER_BY Function 631
PALETTE Procedure 635
PARAM_PRESENT Function 638
PARSEFILENAME Procedure 640
PIE Procedure 641

PIE_CHART Procedure 646

PLOT Procedures 651

PLOTERR Procedure 657
PLOT_FIELD Procedure 659

Table of Contents Xi

PLOT_HISTOGRAM Procedure 662
PLOTS Procedure 664

PM Procedure 667

PMF Procedure 669
POINT_LUN Procedure 670
POLY Function 672
POLY_2D Function 673
POLY_AREA Function 676
POLY_C_CONV Function 677
POLY_COUNT Function 679
POLY_DEV Function 680
POLYFILL Procedure 683
POLYFILLV Function 690
POLY_FIT Function 691
POLYFITW Function 694
POLY_MERGE Procedure 696
POLY_NORM Function 697
POLY_PLOT Procedure 699
POLYSHADE Function 702
POLY_SPHERE Procedure 705
POLY_SURF Procedure 708
POLY_TRANS Function 709
POLYWARP Procedure 710
POPD Procedure 713

PRIME Function 715

PRINT Procedures 716
PRINTD Procedure 717
PRODUCT Function 718
PROFILE Function 718
PROFILES Procedure 720
PROMPT Procedure 722
PSEUDO Procedure 723

Xii

PV-WAVE Reference

PUSHD Procedure 724
QUIT Procedure 734
RANDOMU Function 737
RDPIX Procedure 738
READ Procedures 739
READ_XBM Procedure 742
REBIN Function 743
REFORM Function 745
REGRESS Function 747
RENAME Procedure 749
RENDER Function 752
RENDER24 Function 754
REPLICATE Function 756
REPLV Function 757
RESAMP Function 758
RESTORE Procedure 759
RETALL Procedure 760
RETURN Procedure 761
REVERSE Function 762
REWIND Procedure (OpenVMS) 764
RGB_TO_HSV Procedure 764
RM Procedure 765

RMF Procedure 768
ROBERTS Function 769
ROT Function 772
ROTATE Function 775
ROT_INT Function 777
SAVE Procedure 781
SCALE3D Procedure 782
SEC_TO_DT Function 783
SELECT_READ_LUN Procedure (UNIX) 785
SETDEMO Procedure 786

Table of Contents Xiii

SETENV Procedure (UNIX/Windows) 788
SETLOG Procedure (OpenVMS) 789

SETNCOPTS Procedure 790
SET_PLOT Procedure 791
SET_SCREEN Procedure 793
SET_SHADING Procedure 795

SET_SYMBOL Procedure (OpenVMS) 798

SETUP_KEYS Procedure 798
SET_VIEW3D Procedure 800
SET_VIEWPORT Procedure 801
SET_XY Procedure 803

SGN Function 805
SHADE_SURF Procedure 806
SHADE_SURF_IRR Procedure 812
SHADE_VOLUME Procedure 815
SHIF Function 818

SHIFT Function 819

SHOWS3 Procedure 823
SHOW_OPTIONS Procedure 825
SIGMA Function 827

SIN Function 829

SINDGEN Function 830

SINH Function 831

SIZE Function 832

SKIPF Procedure (OpenVMS) 834
SLICE Function 835

SLICE_VOL Function 835
SMALL_INT Function 837
SMOOTH Function 838

SOBEL Function 841
SOCKET_ACCEPT Function 844
SOCKET_CLOSE Procedure 846

Xiv

PV-WAVE Reference

SOCKET_CONNECT Function 847
SOCKET_GETPORT Function 848
SOCKET_INIT Function 849
SOCKET_READ Function 851
SOCKET_WRITE Procedure 852
SORT Function 854

SPAWN Procedure (UNIX/OpenVMS) 855
SORTN Function 858

SPAWN Procedure (Windows) 859
SPHERE Function 860

SPLINE Function 862

SQRT Function 864

STDEV Function 865

STOP Procedure 867

STRARR Function 868
STRCOMPRESS Function 869
STRETCH Procedure 870

STRING Function 872

STRJOIN Function 875

STRLEN Function 876
STRLOOKUP Function 877
STRLOWCASE Function 879
STRMATCH Function 881
STRMESSAGE Function 884
STRMID Function 886

STRPOS Function 887

STRPUT Procedure 889
STRSPLIT Function 890
STRSUBST Function 892
STR_TO_DT Function 894
STRTRIM Function 896
STRUCTREF Function 898

Table of Contents XV

STRUPCASE Function 899
SUM Function 901
SURFACE Procedure 902
SURFACE_FIT Function 905
SURFR Procedure 907
SVBKSB Procedure 910
SVD Procedure 911

SVDFIT Function 913
SYSTIME Function 915
TAG_NAMES Function 920
TAN Function 921

TANH Function 922

TAPRD Procedure (OpenVMS) 923

TAPWRT Procedure (OpenVMS) 924

TEK_COLOR Procedure 925
TENSOR Functions 927
THREED Procedure 929
TODAY Function 930
TOTAL Function 931

TQLI Procedure 934
TRANSPOSE Function 936
TRED2 Procedure 938
TRIDAG Procedure 939
TRNLOG Function (OpenVMS) 941
TV Procedure 943

TVCRS Procedure 947
TVLCT Procedure 949
TVRD Function 951

TVSCL Procedure 952
TVSIZE Procedure 956
UNIQUE Function 960

UNIX_LISTEN Function (UNIX Only) 962

Xvi

PV-WAVE Reference

UNIX_REPLY Function (UNIX Only) 963

UNLOAD_OPTION Procedure 964
UPVAR Procedure 965
USERSYM Procedure 967
USGS_NAMES Function 969
VAR_MATCH Function 971
VAR_TO_DT Function 973
VECTOR_FIELD3 Procedure 975
VEL Procedure 978

VELOVECT Procedure 982
VIEWER Procedure 985
VOL_MARKER Procedure 993
VOL_PAD Function 995
VOL_REND Function 996
VOL_TRANS Function 999
VOLUME Function 1000
VRML_AXIS Procedure 1002
VRML_CAMERA Procedure 1004
VRML_CLOSE Procedure 1005
VRML_CONE Procedure 1006
VRML_CUBE Procedure 1009
VRML_CYLINDER Procedure 1011
VRML_LIGHT Procedure 1014
VRML_LINE Procedure 1015
VRML_OPEN Procedure 1017
VRML_POLY Procedure 1018
VRML_SPHERE Procedure 1020

VRML_SPOTLIGHT Procedure 1022

VRML_SURFACE Procedure 1024
VRML_TEXT Procedure 1025

vtkADDATTRIBUTE Procedure 1028

vtkAXES Procedure 1029

Table of Contents XVii

vtkCAMERA Procedure 1031
vtkCLOSE Procedure 1032
vitkCOLORBAR Procedure 1033
vtkCOMMAND Procedure 1034
vtkERASE Procedure 1035

vtkGRID Procedure 1036
vtkHEDGEHOG Procedure 1037
ViKINIT Procedure 1039

VvitkLIGHT Procedure 1040

vtkPLOTS Procedure 1041
vitkPOLYDATA Procedure 1043
vtkPOLYSHADE Procedure 1044
vtkPPMREAD Function 1046
vtkPPMWRITE Procedure 1047
vikRECTILINEARGRID Procedure 1048
vtkRENDERWINDOW Procedure 1049
vtkSCATTER Procedure 1050
vtkSLICEVOL Procedure 1053
vtkSTRUCTUREDGRID Procedure 1055
vtkSTRUCTUREDPOINTS Procedure 1056
vtkSURFACE Procedure 1057
vtkSURFGEN Procedure 1060
VIKTEXT Procedure 1061

vtkTVRD Function 1062
vtkUNSTRUCTUREDGRID Procedure 1063
vtkWDELETE Procedure 1064
vikWINDOW Procedure 1065
vtkWRITEVRML Procedure 1067
vtkWSET Procedure 1068

WCOPY Function (Windows) 1070
WDELETE Procedure 1072

WEOF Procedure 1073

Xviii

PV-WAVE Reference

WgAnimateTool Procedure 1073
WgCbarTool Procedure 1079
WgCeditTool Procedure 1083
WgCitTool Procedure 1092
WglsoSurfTool Procedure 1096
WgMovieTool Procedure 1102

WgOrbit Procedure 1108
WgSimageTool Procedure 1109
WgSliceTool Procedure 1113
WgStripTool Procedure 1119
WgSurfaceTool Procedure 1124
WgTextTool Procedure 1130

WHERE Function 1133

WHEREIN Function 1135
WIN32_PICK_FONT Function 1136
WIN32_PICK_PRINTER Function 1137
WINDOW Procedure 1138

WMENU Function (UNIX/OpenVMS) 1143
WPASTE Function (Windows) 1145
WPRINT Procedure (Windows) 1146
WREAD_DIB Function (Windows) 1148
WREAD_META Function (Windows) 1149
WRITEU Procedure 1151

WRITE_XBM Procedure 1152

WSET Procedure 1153

WSHOW Procedure 1155

WWRITE_DIB Function (Windows) 1156
WWRITE_META Function (Windows) 1157
WzAnimate Procedure 1159

WzBar Procedure 1160

WzBar3D Procedure 1162

WzColorEdit Procedure 1164

Table of Contents XiX

WzContour Procedure 1167
WzExport Procedure 1168
WzHistogram Procedure 1170
Wzlmage Procedure 1172
Wzlmport Procedure 1174
WzMultiView Procedure 1176
WzPie Procedure 1177
WzPlot Procedure 1179
WzPreview Procedure 1180
WzSurface Procedure 1182
WzTable Procedure 1184
WzVariable Procedure 1186
ZOOM Procedure 1192
ZROOTS Procedure 1194

Chapter 3: Graphics and Plotting Keywords 1197
Chapter 4: System Variables 1233

Chapter 5: Software Character Sets 1255
Chapter 6: Special Characters 1265

Chapter 7: Executive Commands 1267

Using Executive Commands 1267

Appendix A: The PV-WAVE HDF Interface A-1

What is the PV-WAVE HDF Interface? A-1
Example Programs Are Available A-2

Using the PV=WAVE HDF Functions A-3
PV-WAVE HDF Base Function Interface A-6

Appendix B: Output Devices and Window Systems B-1

XX

PV-WAVE Reference

Window System Features B-2
CGM Output B-4

HPGL Output B-8

PCL Output B-14

Pixel Map Output B-17
PostScript Output B-19
Regis Output B-34
Tektronix Terminals B-36
WIN32 Driver B-39

WMF Driver B-53

X Window System B-58
Z-buffer Output B-86

Reference Index 1

Table of Contents XXi

xxii PV-WAVE Reference

Preface

The PV-WAVE Reference describes the PV=WAV E functions and procedures, key-
words, system variables, fonts, special characters, executive commands, and device
drivers.

What’s in this Manual

Chapter 1, Functional Summary of Routines— A listing of PV=WAV E functions
and proceduresarranged into functional groups, such asimage processing routines,
input/output routines, programming routines, and string processing routines. The
basic syntax for each routine is also shown.

Chapter 2, Procedure and Function Reference — An alphabetically arranged
reference for all PV=WAVE procedures and functions. Most descriptionsinclude
one or more examples and cross references to related information.

Chapter 3, Graphics and Plotting Keywords — Describes the keywords that can
be used with the graphics and plotting system routines.

Chapter 4, System Variables — Describes each of the system variables.

Chapter 5, Software Character Sets — Shows the software character sets pro-
vided by PV=WAVE.

Chapter 6, Special Characters— Describes characterswith special interpretation
and their function in PV=WAVE.

Chapter 7, Executive Commands — Describes each of the PV=WAVE executive
commands.

Appendix A, The PV-WAVE HDF Interface — Discusses how to access HDF
base and convenience functions from within PV=WAVE.

Appendix B, Output Devices and Window Systems — Explains how to use the
standard graphic output devices and window systems.

Reference | ndex — A subject index with hypertext linksto information contained
in the Reference.

il Preface PV-WAVE Reference Volume 1

Conventions Used in this Manual

You will find the following conventions used throughout this manual:
* Codeexamplesappear in this typeface. For example:

PLOT, temp, s02, Title = 'Air Quality’

e Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = 'Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

e Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed casetype (! Ver-
sion). For better readability, all GUI devel opment routines are shown in mixed
case (WwMainMenu).

A $ attheend of aline of PV=WAVE code indicates that the current statement
is continued on thefollowing line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
Thismeans, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV=WAVE.

WAVE> PLOT, x, y, Title = ’'Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these linesis:

WAVE> PLOT, x, y, Title = ’'Average ' + $
"Alr Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two
; command lines.

* Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

Preface iii

Technical Support

If you have problems installing, unlocking, or running your software, contact
Visua Numerics Technical Support by calling:

Office Location Phone Number
Corporate Headqguarters

Houston, Texas 713-784-3131
Boulder, Colorado 303-939-8920
France +33-1-46-93-94-20
Germany +49-711-13287-0
Japan +81-3-5211-7760
Korea +82-2-3273-2633
Mexico +52-5-514-9730
Taiwan +886-2-727-2255
United Kingdom +44-1-344-458-700

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

* Your license number, asix-digit number that can be found on the packing slip
accompanying thisorder. (If you are eval uating the software, just mention that
you are from an evaluation site.)

* The name and version number of the product. For example, PV=WAVE 7.0.

* Thetype of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

* Theoperating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

» A detailed description of the problem.

iv Preface PV-WAVE Reference Volume 1

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

Office Location

Corporate Headquarters
Boulder, Colorado
France

Germany

Japan

Korea

Mexico

Taiwan

United Kingdom

FAX Number
713-781-9260
303-245-5301
+33-1-46-93-94-39
+49-711-13287-99
+81-3-5211-7769
+82-2-3273-2634
+52-5-514-4873
+886-2-727-6798
+44-1-344-458-748

or by sending E-mail to:

Office L ocation
Boulder, Colorado
France

Germany

Japan

Korea

Taiwan

United Kingdom

E-mail Address
support@boulder.vni.com
support@vni-paris.fr
support@visual-numerics.de
vda-sprt@vnij.co.jp
support@vni.co.kr
support@vni.com. tw

support@vniuk.co.uk

Preface V

Electronic Services

Service

General e-mail
Support e-mail
World Wide Web
Anonymous FTP
FTP Using URL

PV=-WAVE
Mailing List:

To subscribe
include:

To post messages

Address
info@boulder.vni.com
support@boulder.vni.com
http://www.vni.com
ftp.boulder.vni.com

ftp://ftp.boulder.vni.com/VNI/

Majordomo@boulder.vni.com

subscribe pv-wave YourEmailAddress

pv-wave@boulder.vni.com

Vi

Preface

PV-WAVE Reference Volume 1

Functional Summary of Routines

This chapter lists the following groups of related routines:

Arrays
Array Creation Routines on page 5
Array Manipulation Routines on page 6

Interpolation Routines on page 23

Graphics and Plotting

Coordinate Conversion Routines on page 9
General Graphics Routines on page 13
Gridding Routines on page 16

Mapping Routines on page 24

Plotting Routines on page 26

View Setup Routines on page 38

Window Routines on page 44

VDA Tools Routines on page 32

GUI Development
BUILDRESOURCEFILENAME Function
Concurrent Processing Routines on page 9
LOADRESOURCES Procedure
LOADSTRINGS Procedure

WAVE Widget Utilities on page 42 (WQ)

NOTE For more detailed information on the following routines, please refer to the PV=WAVE
Application Developer’s Guide.

VDA Tools Manager Routines on page 33 (Tm)

VDA Tools Manager Graphical Element Routines on page 35 (Tm)
VDA Utilities Routines on page 36 (Wo)

WAVE W dgets Routines on page 40 (Ww)

W dget Toolbox Routines on page 42 (Wt)

Image Processing and Color

Color Table Manipulation Routines on page 8
Image Display Routines on page 19

Image IO Routines on page 20

Image Processing Routines on page 20

Input/Output

Data Connection Routines on page 9
HDF Routines on page 17

Input and Output Routines on page 22

Internet Enabling (Wave On Web)

Hypertext Markup Language (HTML) Routines on page 18
OPENURL Procedure on page 624

Virtual Reality Modeling Language (VRML) Routines on page 39

2 Chapter 1: Functional Summary of Routines PV-WAVE Reference Volume 1

Mathematics

General Mathematical Functions on page 14
Optimization and Regression Routines on page 25
Special Mathematical Functions on page 30
Transcendental Mathematical Functions on page 32

Programming

Data Conversion Routines on page 10

Data Extraction Routines on page 11
Date/Time Functions on page 11

File Manipulation Routines on page 12

Help and Information Routines on page 18
Operating System Access Routines on page 24
Programming Routines on page 28

Session Routines on page 30

Sring Processing Routines on page 30

Table Manipulation Functions on page 31

Rendering Techniques

3D Visualization Toolkit (VTK) Routines on page 4
Polygon Generation Routines on page 27

Polygon Manipulation Routines on page 28
Polygon Rendering Routines on page 28

Ray Tracing Routines on page 30

Volume Manipulation Routines on page 39

\Volume Rendering Routines on page 40

3D Visualization Toolkit
(VTK) Routines

vtkADDATTRIBUTE, attributes

Collects point attributes for VTK datasets.

VtKAXES

Creates a set of axes.
vtkCAMERA

Changes the camera’s parameters.

vtkCOLORBAR

Adds a color bar legend to a VTK scene
using the current PV-WAVE color table.

vtk CLOSE
Closes the VTK process.
vtk COMMAND, command

Sends Tcl and VTK commands to the Tcl
process.

VtKERASE [, background_color]

Erases the contents of the current VTK
window.

VtkGRID [, Number=n]

Adds 3D grid lines to a VTK scene.
VtkHEDGEHOG, points, vectors, scalars

Creates a HedgeHog (vector) plot.
VtkINIT

Initializes the VTK system.
VtKLIGHT

Adds a light to a VTK window.
VtkPLOTS, points

Adds a polyline.
vtkPOLY DATA, points

Passes vertex/polygon lists, lines, points,
and triangles to VTK.

vtkPOLY SHADE, vertices, polygons
Renders a polygon object.

VvtkPPMREAD (filename)
Reads a PPM file.

VtkPPMWRITE [, window_index]
Writes the contents of a VTK window to a
PPM file.

vtkRECTILINEARGRID, Dimensions
Passes data describing a Rectiliniar Grid to
VTK.

VtkRENDERWINDOW [, window_index]
Renders a VTK window.

VtkSCATTER, points
Renders 3D points.
VIKSLICEVOL, v, [SX=5X, Sy=sy, Sz=%2,
XC=XC, YC=YC, zC=2(]
Creates a sliced 3D volume at specific x, y, z
locations.

VtkSTRUCTUREDGRID, Dimensions,
Points

Passes data describing a structured grid to
VTK.

VtkSTRUCTUREDPOINTS, Dimensions
Passes data describing structured points to
VTK.

VtkSURFACE, z [X] [,y]
Renders a surface.

VtkSURFGEN, points

Generates a 3D surface from sampled points
assumed to lie on a surface.

VtKTEXT, string
Adds a text string.

VvtkTVRD ([window_index])
Returns the contents of a VTK window as a
bitmapped image.
VtkUNSTRUCTUREDGRID, Points, Cells,
Cell_types
Passes data describing an unstructured grid
to VTK.
VtkWDELETE [, window_index]

Closes a VTK window, however it does not
shut down the Tcl process.

4 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

VtKWINDOW [, window_index]
Creates a VTK window.

VIKWRITEVRML, filename [,
WindowlID=id, Speed=s]
Creates a Virtual Reality Modeling Language
file (VRML .wrl file) from a scene in a VTK
window.
VtKWSET [, window_index]
Sets the active VTK window.

Array Creation Routines

ASARR(key,, value,, ... key, , value,)
ASARR(keys arr, values list)

Creates an associative array containing
specified variables and expressions.
BINDGEN (dim, [, dim,, ..., dim,])

Returns a byte array with the specified
dimensions, setting the contents of the result
to increasing numbers starting at 0.

BYTARR (dim, [, dim,, ..., dim,])

Returns a byte vector or array.

CINDGEN (dimy [, dim,, ..., dim,])

Returns a complex single-precision floating-
point array.

COMPLEXARR (dim, [, dim,, ..., dim.])
Returns a complex single-precision floating-
point vector or array.

DBLARR (dim,, ..., dim,)

Returns a double-precision floating-point
vector or array.

DCINDGEN(dim1 [, dim2, ..., dimn])
Returns a double-precision floating-point
complex array.

DCOMPLEXARR (dim, [, dim,, ..., dim.])

Returns a double-precision floating-point
complex vector or array.

DIAG(a)

Makes a diagonal array or extracts the
diagonal of an array.

DINDGEN (dimy, ..., dim,)

Returns a double-precision floating-point
array with the specified dimensions.

FINDGEN (dim,, ..., dim,)

Returns a single-precision floating-point
array with the specified dimensions.

FLTARR (dim,, ..., dim,)

Returns a single-precision floating-point
vector or array.

INDGEN (dim,, ... , dim,)

Returns an integer array with the specified
dimensions.

INTARR (dim, ..., dim,)
Returns an integer vector or array.
LINDGEN (dimy, ..., dim,)
Returns a longword integer array with the
specified dimensions.
LIST(expr, , ... xpr,)
Creates a list array.
LISTARR(number_elements,[value])
Returns a list.

LONARR (dimy, ..., dim,)
Returns a longword integer vector or array.
MAKE_ARRAY ([dim,,...,dim,])
Returns an array of specified type,
dimensions, and initialization. It provides the
ability to create an array dynamically whose
characteristics are not known until run time.
REPLICATE (value, dimy, ..., dim,)
Forms an array with the given dimensions,
filled with the specified scalar value.
SINDGEN (dim, ..., dim,)

Returns a string array with the specified
dimensions.

STRARR (dimy, ... , dim,)
Returns a string array.

Array Creation Routines 5

Array Manipulation
Routines

AFFINE(a, b, [c])
Applies an affine transformation to an array.

ASKEY S(asarr)

Obtains the key names for a given
associative array.

AVG (array [, dim])
Standard Library function that returns the
average value of an array. Optionally, it can
return the average value of one dimension of
an array.

BILINEAR (array, X, Y)

Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the
input array.

BLOB (a, i, b)
Isolates a homogeneous region in an array.

BLOBCOUNT (a, b)

Counts homogeneous regions in an array.

BOUNDARY (a,r)
Computes the boundary of a region in an
array.

CORRELATE (X,)

Standard Library function that calculates a
simple correlation coefficient for two arrays.

CPROD(a)

Returns the Cartesian product of some
arrays.

CURVATURES ()

Standard Library function that computes
curvatures on a parametrically defined
surface.

DICM_TAG_INFO (filename, image)
Extracts Digital Imaging and

Communications in Medicine (DICOM) tags
information from an image associative array.

DETERM (array)
Standard Library function that calculates the
determinant of a square, two-dimensional
input variable.

DERIVN(a, n)

Differentiates a function represented by an
array.

EUCLIDEAN (j)

Standard Library function that transforms the
Euclidean metric for a Jacobian | = Jacobian(

f)
EXPAND(a, d, i)

Expands an array into higher dimensions.
EXTREMA (array)

Finds the local extrema in an array.

HISTN(d [, axes])
Computes an n dimensional histogram.

HISTOGRAM (array)
Returns the density function of an array.

INDEX_AND(array,, array,)
Computes the logical AND for two vectors of
positive integers.

INDEX_CONV(a, i)
Converts one-dimensional indices to n-
dimensional indices, or n-dimensional
indices to 1D indices.

INDEX_OR(array;, array,)
Computes the logical OR for two vectors of
positive integers.

INTRP(a, n, X)
Interpolates an array along one of its
dimensions.

ISASKEY (asarr, key)

Matches a key name in a given associative
array.

JACOBIAN (f)

Standard Library function that computes the
Jacobian of a function represented by n m-
dimensional arrays

6 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

MAX (array [, max_subscript])

Returns the value of the largest element in
an input array.

MEDIAN (array [, width])
Finds the median value of an array, or applies
a one- or two- dimensional median filter of a
specified width to an array.

MIN (array [, min_subscript])
Returns the value of the smallest element in
array.

MOMENT(a, i)
Computes moments of an array.

NEIGHBORS(a, i)

Finds the neighbors of specified array
elements.

NORMALS (j)
Standard Library function that computes unit

normals on a parametrically defined surface.

PADIT(&, [0])
Pads an array with variable thickness.

PRODUCT (array)
Returns the product of all elements in an
array.

REBIN (array, dim,, ..., dim,))

Returns a vector or array resized to the given
dimensions.

REFORM (array, dimy, ..., dim)

Reformats an array without changing its
values numerically.

REPLV (vector, dim_vector, dim)
Replicates a vector into an array.

RESAMP(array, dim, ..., dim,)
Resamples an array to new dimensions.

REVERSE (array, dimension)

Standard Library function that reverses a
vector or array for a given dimension.

ROTATE (array, direction)

Returns a rotated and/or transposed copy of
the input array.

SAME(X, Y)

Tests if two variables are the same.
SHIF(array, dimension, shift_amount)

Shifts an array along one of its dimensions.
SHIFT (array, shifty, ... , shift,)

Shifts the elements of a vector or array along
any dimension by any number of elements.

SIGMA (array [, npar, dim])
Standard Library function that calculates the
standard deviation value of an array.
SLICE(array, dimension, indices)

Subsets an array along one of its
dimensions.

SMOOTH (array, width)

Smooths an array with a boxcar average of a
specified width.

SORT (array)

Sorts the contents of an array.
SORTN(a)

Sorts an array of n-tuples.

STDEV (array [, mean])

Standard Library function that computes the
standard deviation and (optionally) the mean
of the input array.

TENSOR_* Functions

Compute the generalized tensor product of
two arrays.

TOTAL (array)

Sums the elements of an input array.

TRANSPOSE (array)
Transposes the input array.

UNIQN(a)
Finds the unique n-tuples from a set of n-
tuples.

WHERE (array_expr [, count])

Returns a longword vector containing the
one-dimensional subscripts of the nonzero
elements of the input array.

Array Manipulation Routines 7

WHEREIN(a b[,c])

Find the indices into an array where the
values occur in a second array; keywords
yield intersection, union, and complement.

Color Table Manipulation
Routines

C _EDIT [, colors_out]

Standard Library procedure that lets you
interactively create a new color table based
on the HLS or HSV color system.

COLOR_EDIT [, colors_out]

Standard Library procedure that lets you
interactively create color tables based on the
HLS or HSV color system.

COLOR_PALETTE

Standard Library procedure that displays the
current color table colors and their
associated color table indices.

HLS, Itlo, Ithi, stlo, sthi, hue, Ip [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HLS color system. The
resulting color table is loaded into the display
system.

HSV, vlo, vhi, stlo, sthi, hue, Ip [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HSV color system. The
final color table is loaded into the display
device.

LOADCT [, table_number]
Standard Library procedure that loads a
predefined color table.

MODIFY CT, table, name, red, green, blue

Standard Library procedure that lets you
replace one of the PV-WAVE color tables
(defined in the colors.tbl file) with a new color
table.

PALETTE], colors_out]
Standard Library procedure that lets you
interactively create a new color table based
on the RGB color system.

8 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

PSEUDO, Itlo, Ithi, stlo, sthi, hue, Ip [, rgb]

Standard Library procedure that creates a
pseudo color table based on the Hue,
Lightness, Saturation (HLS) color system.

STRETCH, low, high

Standard Library procedure that linearly
expands the range of the color table currently
loaded to cover an arbitrary range of pixel
values.

TVLCT, v1,v2, v3], start]
Loads the display color translation tables
from the specified variables.
WgCbarTool [, parent [, shell [, windowid
[, movedCallback], [, rang€]]]]
Creates a simple color bar that can be used
to view and interactively shift a color table.
WgCeditTool [, parent [, shell 1]

Creates a full-featured set of menus and
widgets enclosed in a window; this window
allows you to edit the values in PV=WAVE
color tables in many different ways.

WgCtTool [, parent [, shell]]

Creates a simple widget that can be used
interactively to modify a PV=WAVE color
table.

Coordinate Conversion
Routines

CONVERT_COORD (points) OR (x [, V, 2])
Converts coordinates from one coordinate
system to another.

CONV_FROM_RECT (vecl, vec2, vec3)
Converts rectangular coordinates (points) to
polar, cylindrical, or spherical coordinates.

CONV_TO_RECT (vecl, vec2, vec3d)
Converts polar, cylindrical, or spherical
coordinates to rectangular coordinates
(points).

POLY_DEV (points, winx, winy)

Returns a list of 3D points converted from
normal coordinates to device coordinates.

POLY_NORM (points)

Returns a list of 3D points converted from
data coordinates to normal coordinates.

POLY_TRANS (points, trans)

Returns a list of 3D points transformed by a
4-by-4 transformation matrix.

Concurrent Processing
Routines

ADD_EXEC_ON_SELECT, lun, command

Adds a single new item to the
EXEC_ON_SELECT list.

DROP_EXEC_ON_SELECT, lun

Drops a single item from the
EXEC_ON_SELECT list.

EXEC_ON_SELECT, luns, commands

Registers callback procedures on input for a
vector of logical unit numbers (LUNS).

SELECT_READ_LUN, luns

Waits for input on any list of logical unit
numbers.

Data Connection Routines

DC_ERROR_MSG (status)

Returns the text string associated with the
negative status code generated by a “DC”
data import/export function that does not
complete successfully.

DC_OPTIONS (msg_level)

Sets the error message reporting level for all
“DC” import/export functions.

DC_READ_8 BIT (filename, imgarr)
Reads an 8-bit image file.

DC_READ_24 BIT (filename, imgarr)
Reads a 24-bit image file.

Concurrent Processing Routines 9

DC_READ_CONTAINER (filename,
var_name)

Reads a single variable from an HP VEE
Container file.

DC_READ_DIB(filename, imgarr)

Reads data from a Device Independent
Bitmap (DIB) format file into a variable.

DC_READ_FIXED (filename, var_list)
Reads fixed-formatted ASCII data using a
PV-WAVE format that you specify.

DC_READ_FREE (filename, var_list)
Reads freely-formatted ASCII files.

DC_READ_TIFF (filename, imgarr)

Reads a Tag Image File Format (TIFF) file.

DC_SCAN_CONTAINER (filename,

num_variables, start_records,
end_records)

Scans an HP VEE Container file to
determine the number and location of
defined variables.

DC_WRITE_8_ BIT (filename, imgarr)
Writes 8-bit image data to a file.

DC_WRITE_24 BIT (filename, imgarr)
Writes 24-bit image data to a file.

DC_WRITE_DIB(filename, imgarr)

Writes image data from a variable to a
Device Independent Bitmap (DIB) format file.

DC_WRITE_FIXED (filename, var_list,
format)
Writes the contents of one or more
PV-WAVE variables (in ASCII fixed format)
to a file using a format that you specify.

DC_WRITE_FREE (filename, var_list)

Writes the contents of one or more
PV-WAVE variables to a file in ASCII free
format.

DC _WRITE_TIFF (filename, imgarr)

Writes image data to a file using the Tag
Image File Format (TIFF) format.

Data Conversion Routines
BYTE (expr)

Converts an expression to byte data type.
BYTSCL (array)
Scales and converts an array to byte data
type.
COMPLEX (red [, imaginary])
Converts an expression to complex data
type.
DCOMPLEX (expr, offset, diml1[, dim2, ...
,dimn])

Converts an expression to double-precision
complex data type.

DOUBLE (expr)
Converts an expression to double-precision
floating-point data type.
FIX (expr)
Converts an expression to integer data type.
FLOAT (expr)

Converts an expression to single-precision
floating-point data type.

LONG (expr)

Converts an expression to longword integer
data type.

NINT (x)
Converts input to the nearest integer.
STRING (expry, ... , €Xpr,)

Converts the input parameters to characters
and returns a string expression.

10 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

Data Extraction Routines
BYTE (expr, offset [, diml, ..., dimn])

Extracts data from an expression and places
it in a byte scalar or array.

COMPLEX (expr, offset, diml

[,dim2,..,dimn])
Extracts data from an expression and places
it in a complex scalar or array.

DCOMPLEX (expr, offset, diml

[,dim2,..,dimn])
Extracts data from an expression and places
it in a complex scalar or array.

DOUBLE (expr, offset, diml], ..., dimn])
Extracts data from an expression and places
it in a double- precision floating-point scalar
or array.

FIX (expr, offset, diml[, ..., dimn])
Extracts data from an expression and places
it in a integer scalar or array.

FLOAT (expr, offset, diml1[, ...,dimn])

Extracts data from an expression and places
itin a single- precision floating-point scalar or
array.

LONG (expr, offset, diml], ..., dimn])

Extracts data from an expression and places
it in a longword integer scalar or array.

Date/Time Functions

CREATE_HOLIDAYS, dt_list
Creates the system variable !Holiday_List.

CREATE_WEEKENDS, day_names
Creates the system variable !Weekend_List.

DAY _NAME (dt_var)
Returns a string array containing the name of
the day of the week for each day in a Date/
Time variable.

DAY_OF WEEK (dt_var)
Returns an array of integers containing the
day of the week for each date in a Date/Time
variable.

DAY_OF_YEAR (dt_var)
Returns an array of integers containing the

day of the year for each date in a Date/Time
variable.

DT_ADD (dt_value)
Increment the values in a Date/Time variable
by a specified amount.
DT_COMPRESS (dt_array)
Removes holidays and weekends from the
Julian day portion of Date/Time variables.
DT_DURATION (dt_value 1, dt value 2)
Determines the elapsed time between two
Date/Time variables.
DT _PRINT, dt_var
Prints the values of PV-WAVE Date/Time
variables in a readable manner.
DT_SUBTRACT (dt_value)

Decrements the values in a Date/Time
variable by a specified amount.

DT_TO_SEC (dt_value)
Converts PV-WAVE Date/Time variables to
double-precision variables containing the

number of seconds elapsed from a base
date.

Data Extraction Routines 11

DT _TO_STR, dt var, [, dates] [, timeg]
Converts PV-WAVE Date/Time variables
into string data.

DT _TO VAR, dt_value
Converts a PV-WAVE Date/Time variable to
regular numerical data.

DTGEN (dt_start, dimension)

Returns an array of PV-WAVE Date/Time
variables beginning from a specified date
and incremented by a specified amount.

JUL_TO DT (julian_day)

Converts a Julian day number to a
PV-WAVE Date/Time variable.

LOAD_HOLIDAY S

Passes the value of the !Holiday_List system
variable to the Date/Time routines.

LOAD_WEEKENDS

Passes the value of the Weekend_List
system variable to the Date/Time routines.

MONTH_NAME (dt_var)
Returns a string or array of strings containing
the names of the months contained in a
Date/Time variable.

SEC_TO DT (num_of_seconds)
Converts any number of seconds into
PV-WAVE Date/Time variables.

STR _TO DT (date strings|[, time_strings])
Converts date and time string data to
PV-WAVE Date/Time variables.

TODAY ()

Returns a Date/Time variable containing the
current system date and time.

VAR _TO DT (yyyy, mm, dd, hh, mn, ss)
Converts scalars or arrays of scalars
representing dates and times into PV-WAVE
Date/Time variables.

File Manipulation Routines
CLOSE [, unity, ..., unit,]

Closes the specified file units.
EOF (unit)

Tests the specified file unit for the end-of-file
condition.

FINDFILE (file_specification)
Returns a string array containing the names
of all files matching a specified file
description.

FLUSH, unit,, ..., unit,

Causes all buffered output on the specified
file units to be written.

FREE_LUN, unit,, ..., unit,

Deallocates file units previously allocated
with GET_LUN.

FSTAT (unit)

Returns an expression containing status
information about a specified file unit.

GET_LUN, unit

Allocates a file unit from a pool of free units.

OPENR, unit, filename [, record length]
OPENR (OPEN Read) opens an existing file
for input only.

OPENU, unit, filename [, record_length]
OPENU (OPEN Update) opens an existing
file for input and output.

OPENURL, url
Opens a file on the internet to be accessed
using PV=WAVE. 1

OPENW, unit, filename [, record_length]
OPENW (OPEN Write) opens a new file for
input and output.

POINT_LUN, unit, position

Allows the current position of the specified
file to be set to any arbitrary point in the file.

12 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

General Graphics Routines
CPROD(a)

Returns the Cartesian product of some
arrays.
CURSOR, X, y [, wait]
Reads the position of the interactive graphics
cursor from the current graphics device.
DERIVN(a, n)
Differentiates a function represented by an
array.
DEVICE
Provides device-dependent control over the
current graphics device (as specified by the
SET_PLOT procedure).
EMPTY
Causes all buffered output for the current
graphics device to be written.
ERASE [, background_color]
Erases the display surface of the currently
active window.
EXPON(a, b)
Performs general exponentiation.
FACTOR())
Returns the prime factorization of an integer
greater than 1.
GCD(i)
Returns the greatest common divisor of
some integers greater than O.
GREAT_INT(values)

Greatest Integer Function. Standard Library
function that returns the greatest integer less
than or equal to the passed value. Also
known as the Floor Function.

IMAGE_CONT, array
Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

LCM(i)
Returns the least common multiple of some
integers greater than 1.

MOVIE, images |, rate]

Standard Library procedure that shows a
cyclic sequence of images stored in a three-
dimensional array.

PLOTS, x[, Y[, 7]

Plots vectors or points on the current
graphics device in either two or three
dimensions.

PRIME(value)

Returns all positive primes less than or equal
to a scalar input.

PRODUCT (array)

Returns the product of all elements in an
array.

PROFILE (image)

Standard Library function that extracts a
profile from an image.

PROFILES, image

Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

RDPIX, image[, x0, y0]
Standard Library procedure that displays the
X, Y, and pixel values at the location of the
cursor in the image displayed in the currently
active window.

SCALE3D
Standard Library procedure that scales a
three-dimensional unit cube into the viewing
area.

SET _PLOQOT, device
Specifies the device type used by PV-WAVE
graphics procedures.

SGN(X)
Returns the sign of passed values.

General Graphics Routines 13

SHOWS, array

Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SMALL_INT(X)

Smallest Integer Function. Standard Library
function that returns the smallest integer
greater than or equal to the passed value.
Also known as Ceiling Function.

T3D

Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or
oblique transformations and stores the result
in the system variable !P.T.

THREED, array [, space]

Standard Library procedure that plots a two-
dimensional array as a pseudo three-
dimensional plot on the currently selected
graphics device.

TVCRS[, on_off]

Manipulates the cursor within a displayed
image, allowing it to be enabled and
disabled, as well as positioned.

XYOUTS, x, Y, string

Draws text on the currently selected graphics
device starting at the designated data
coordinate.

ZOOM
Expands and displays part of an image (or
graphic plot) from the current window in a
second window.

General Mathematical
Functions

ABS (X)
Returns the absolute value of x.

AVG (array [, dim])

Standard Library function that returns the
average value of an array. Optionally, it can
return the average value of one dimension of
an array.

BILINEAR (array, X, Y)

Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the

input array.
CHECK_MATH ([print_flag,
message _inhibit])

Returns and clears the accumulated math
error status.

CONJ (X)

Returns the complex conjugate of the input
variable.

CONVOL (array, kernel [, scale factor])
Convolves an array with a kernel (or another
array).

CORRELATE (%, y)

Standard Library function that calculates a
simple correlation coefficient for two arrays.

CROSSP (v4, V)

Standard Library function that returns the
cross product of two three-element vectors.

CURVATURES (s)
Standard Library function that computes

curvatures on a parametrically defined
surface.

CURVEFIT (x, y, wt, parms, [sigma])

Standard Library function that performs a
nonlinear least-squares fit to a function of an
arbitrary number of parameters.

14 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

DERIV ([x,]Y)

Standard Library function that calculates the
first derivative of a function in x and y.

DERIVN (a, n)
Differentiates a function represented by an
array.

DETERM (array)

Standard Library function that calculates the
determinant of a square, two-dimensional
input variable.

EUCLIDEAN (j)
Standard Library function that transforms the
]ICE)ucIidean metric for a Jacobian] = Jacobian(
EXPON (a, b)
Performs general exponentiation.
FFT (array, direction)

Returns the Fast Fourier Transform for the
input variable.

FINITE (x)

Returns a value indicating if the input
variable is finite or not.

GAUSSFIT (x, y [, coefficients])

Standard Library function that fits a
Gaussian curve through a data set.

HILBERT (x [, d])

Standard Library function that constructs a
Hilbert transformation matrix.

IMAGINARY (complex_expr)

Returns the imaginary part of a complex
number.

INVERT (array [, status])
Returns an inverted copy of a square array.

ISHFT (py, p,)

Performs the bit shift operation on bytes,
integers, and longwords.

JACOBIAN (f)

Standard Library function that computes the
Jacobian of a function represented by n m-
dimensional arrays

LUBKSB, a, index, b
Solves the set of n linear equations Ax =b.
(LUBKSB must be used with the procedure
LUDCMP to do this.)

LUDCMP, a, index, d

Replaces an n-by-n matrix, a, with the LU
decomposition of a row-wise permutation of
itself.

MPROVE, a dud, index, b, x
Iteratively improves the solution vector, x, of
a linear set of equations, Ax =b. (You must
call the LUDCMP procedure before calling
MPROVE.)
NORMALS (j)
Standard Library function that computes unit
normals on a parametrically defined surface.
POLY (x, coefficients)
Standard Library function that evaluates a
polynomial function of a variable.
POLY_AREA (X,Y)

Standard Library function that returns the
area of an n-sided polygon, given the
vertices of the polygon.

POLY_FIT (x, Y, deg [, yft, ybd, sig, mat])

Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

POLYFITW (x, y, wt, deg [, yft, ybd, sig,
mat])

Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

RANDOMN (seed [, dimy, ..., dim,])

Returns one or more normally distributed
floating-point pseudo-random numbers with
a mean of zero and a standard deviation of 1.

RANDOMU (seed [, dimy, ..., dim,])

Returns one or more uniformly distributed
floating-point pseudo-random numbers over
therange 0 <Y < 1.0.

General Mathematical Functions 15

REGRESS (x, y, wt [, yf, a0, sig, ft, r,
rm, c])

Standard Library function that fits a curve to
data using the multiple linear regression
method.

SIGMA (array [, npar, dim])

Standard Library function that calculates the
standard deviation value of an array.
(Optionally, it can also calculate the standard
deviation over one dimension of an array as
a function of the other dimensions.)

SOBEL (image)
Performs a Sobel edge enhancement of an
image.

SPLINE (X, y, t[, tension])
Standard Library function that performs a
cubic spline interpolation.

STDEV (array [, mean])

Standard Library function that computes the
standard deviation and (optionally) the mean
of the input array.

SUM (array, dim)

Sums an array of n dimensions over one of
its dimensions.

SURFACE_FIT (array, degree)

Standard Library function that determines
the polynomial fit to a surface.

SVBKSB, u, w, v, b, x
Uses “back substitution” to solve the set of
simultaneous linear equations Ax = b, given
the u, w, and v arrays created by the SVD
procedure from the matrix a.

SVD,a, W[, u[,vl]

Performs a singular value decomposition on
a matrix.

SVDHIT (x,y, m)

Standard Library function that uses the
singular value decomposition method of
least-squares curve fitting to fit a polynomial
function to data.

TOTAL (array)
Sums the elements of an input array.
TQLI, d, e z
Uses the QL algorithm with implicit shifts to
determine the eigenvalues and eigenvectors
of a real, symmetric, tridiagonal matrix.

TRED2, a[, d[, €]
Reduces a real, symmetric matrix to
tridiagonal form, using Householder’s
method.

TRIDAG, a,b, ¢, r,u
Solves tridiagonal systems of linear
equations.

ZROQTS, a, roots [, polish]

Finds the roots of the m-degree complex
polynomial, using Laguerre’s method.

Gridding Routines

FAST_GRID2 (points, grid x)
Returns a gridded, 1D array containing Y
values, given random X,Y coordinates (this
function works best with dense data points).

FAST_GRID3 (points, grid_x, grid_y)

Returns a gridded, 2D array containing Z
values, given random X, Y, Z coordinates
(this function works best with dense data
points).

FAST_GRID4 (points, grid x, grid_y,

grid_2)

Returns a gridded, 3D array containing
intensity values, given random 4D
coordinates (this function works best with
dense data points).

GRID_2D (points, grid_x)
Returns a gridded, 1D array containing Y

values, given random X,Y coordinates (this
function works best with sparse data points).

16 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

GRID_3D (points, grid_x, grid_y)

Returns a gridded, 2D array containing Z
values, given random X, Y, Z coordinates
(this function works best with sparse data
points).

GRID_4D (points, grid_x, grid_y, grid_z)
Returns a gridded, 3D array containing
intensity values, given random 4D
coordinates (this function works best with
sparse data points).

GRIDN(d, i)
Grids n dimensional data.
GRID_SPHERE (points, grid_x, grid_y)

Returns a gridded, 2D array containing radii,
given random longitude, latitude, and radius
values.

INTERPOLATE(d, X)

Interpolates scattered data at scattered
locations.

HDF Routines

GETNCERR ([errstr,])

Retrieves the current value of the “ncerr”
variable as discussed in the error section of
the NetCDF User’s Guide.

GETNCOPTS ()
Retrieves the current value of the Ncopts
variable as discussed in the error section of
the NetCDF User’s Guide.

HDFGET24 (filename, image)
Obtains an HDF Raster 24 image.

HDFGETANN (filename, tag, ref)
Obtains HDF object (e.g., an SDS, Raster 8
image, etc.) annotations, either a label or a
description.

HDFGETFILEANN (filename)

Obtains an HDF file annotation, either label
or description.

HDFGETNT (type)
Obtains the HDF number type (i.e., data
type) and descriptive number type string for
the current HDF Scientific Data Set.
HDFGETRS (filename, image, palette)

Obtains an HDF Raster 8 image and
associated palette.

HDFGETRANGE (maxvalue, minvalue)

Gets the maximum and minimum range for
the current HDF Scientific Data Set.

HDFGETSDS (filename, data)
Gets an HDF Scientific Data Set.

HDFLCT, palette
Loads an HDF palette as a PV=WAVE color
table.

HDFPUT?24 (filename, image)
Puts an HDF Raster 24 image into an HDF
file.

HDFPUTFILEANN (filename)
Inserts HDF file labels and file descriptions
(annotations) into a file.

HDFPUTRS (filename, image)
Writes an 8 bit image to an HDF file.

HDFPUTSDS (filename, data)
Writes a Scientific Data Set to an HDF file.

HDFSCAN, filename
Scans an HDF file and prints a simple list of
file contents by HDF object type.

HDFSETNT (data)
Computes and sets the HDF number type
(i.e., data type) and descriptive number type
string for the specified data array.

HDF _STARTUP
A batch file used to initialize the HDF
interface. See PV-WAVE Reference
Appendix A, “The PV-WAVE HDF Interface”
for more information.

HDF TEST
Runs the PV=WAVE HDF test suite.

HDF Routines 17

SETNCOPTS, new_ncopts

Sets the value of the NCOPLS variable and
defines the level of error reporting for the
netCDF functions as discussed in the error
section of the NetCDF User’s Guide.

Help and Information
Routines
DOC_LIBRARY [, name]

Standard Library procedure that extracts
header documentation for user-written
PV-WAVE procedures and functions.

HELP
Starts the online help system.
INFO, expry, ... , expr,

Displays information on many aspects of the
current PV-WAVE session.

Hypertext Markup Lan-
guage (HTML) Routines

HTML_BLOCK, text

Writes out a specifically formatted “block” of
HTML text.

HTML_CLOSE
Closes an HTML file, after end-tagging major
elements.

HTML_HEADING, text
Creates a heading, with a level specification.

HTML_HIGHLIGHT([Str,, Str, ... , str,],

[tagli tagZ’ T tagn])
Allows for all the basic textual highlighting
elements in HTML.
HTML | MAGE(urI)
Returns a string or an array of strings
containing a reference or references to
image URL(s)
HTML_LINK (url, text)
Sets up links to Uniform Resource Locations
(URLs).
HTML_LIST, [list_item, _ list_item,]
Generates HTML code for all types of lists.
HTML_OPEN
Opens the output HTML file, writes out the
basic HTML information and sets an HTML
output file information variable, hinfo.
HTML_PARAGRAPH, text

Defines an HTML paragraph.
HTML_RULE

Inserts a horizontal-line separator.

HTML_SAFE(str)

Escapes special characters so that the
HTML displays them as intended, rather than
using them for format tagging. The escapes
codes are for: <, >, &, and ".

HTML_TABLE, table text
Writes out an HTML table.

18 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

Image Display Routines

C _EDIT [, colors_ouit]

Standard Library procedure that lets you
interactively create a new color table based
on the HLS or HSV color system.

COLOR_CONVERT, i, iy, iy, 0y, 04, Oy,
keyword

Converts colors to and from the RGB color

system and either the HLS or HSV systems.

COLOR_EDIT [, colors_out]

Standard Library procedure that lets you
interactively create color tables based on the
HLS or HSV color system.

COLOR_PALETTE

Standard Library procedure that displays the
current color table colors and their
associated color table indices.

HIST_EQUAL_CT [, image]
Standard Library procedure that uses an
input image parameter, or the region of the
display you mark, to obtain a pixel
distribution histogram. The cumulative

integral is taken and scaled, and the result is
applied to the current color table.

HLS, Itlo, Ithi, stlo, sthi, hue, Ip [, rgb]

Standard Library procedure that generates
and loads color tables into an image display
device based on the HLS color system. The
resulting color table is loaded into the display
system.

HSV, vlo, vhi, stlo, sthi, hue, Ip [, rgb]

Standard Library procedure that generates
and loads color tables into an image display
device based on the HSV color system. The
final color table is loaded into the display
device.

LOADCT [, table_number]

Standard Library procedure that loads a
predefined PV-WAVE color table.

LOADCT_CUSTOM [, table_number]
Loads a predefined custom color table.

MODIFY CT, table, name, red, green, blue

Standard Library procedure that lets you
replace one of the PV-WAVE color tables
(defined in the colors.tbl file) with a new color
table.

PALETTE [, colors_out]

Standard Library procedure that lets you
interactively create a new color table based
on the RGB color system.

PSEUDO, Itlo, Ithi, stlo, sthi, hue, Ip [, rgb]

Standard Library procedure that creates a
pseudo color table based on the Hue,
Lightness, Saturation (HLS) color system.

STRETCH, low, high
Standard Library procedure that linearly
expands the range of the color table currently
loaded to cover an arbitrary range of pixel
values.

TV, image [, position]
Displays images without scaling the intensity.

TVCRS|, on_off]

Manipulates the cursor within a displayed
image, allowing it to be enabled and
disabled, as well as positioned.

TVLCT, vy, V,, V5 [, start]
Loads the display color translation tables
from the specified variables.
TVRD (Xo, Yo, Ny, Ny [, channel])
Returns the contents of the specified
rectangular portion of a displayed image.
TVSCL, image[, X, y [, channel]]

TVSCL, image [, position]
Scales the intensity values of an inputimage
into the range of the image display, usually
from 0 to 255, and outputs the data to the
image display at the specified location.

TVSIZE, image[, X, y [, channel]]
TVSIZE, image [, position]

D isplays images at the current or specified
size and device resolution.

Image Display Routines 19

Image 10 Routines

DICM_TAG_INFO (filename, image)
Extracts Digital Imaging and

Communications in Medicine (DICOM) tags
information from an image associative array.

IMAGE_CHECK (image)
Determines that the input variable is an
associative array in image format. The
function also checks to make sure that all

fields in the image associative array are
present.

IMAGE_COLOR_QUANT(image
[, n_colorg])

Quantizes a 24-bit image to 8-bit pseudo
color.

IMAGE_CREATE(pixel_array)
Creates an associative array in image
format. See the DiScussion section for
detailed information on the image format.
IMAGE_DISPLAY, image
Displays an image.
IMAGE_QUERY _FILE, filename
Return the type of a specified image file.

IMAGE_READ(filename)

Reads image files and returns an associative
array in image format.

IMAGE_WRITE(filename, image)
Writes PV=WAVE graphics to a specified file
type.

READ_XBM, file, image

Reads the contents of an X-bitmap (XBM) file
into a PV=WAVE variable.

WRITE_XBM, file, image
Writes an image to an X-bitmap (XBM) file.

Image Processing Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.
BLOB(a, i, b)
Isolates a homogeneous region in an array.

BLOBCOUNT(a, b)

Counts homogeneous regions in an array.

BOUNDARY (a,r)

Computes the boundary of a region in an
array.

CONGRID (image, col, row)

Standard Library function that shrinks or
expands an image or array.

CONVOL (array, kernel [, scale factor])
Convolves an array with a kernel (or another
array).

DEFROI (sizex, sizey [, xverts, yverts])

Standard Library function that defines an
irregular region of interest within an image by
using the image display system and the
mouse.

DERIVN(a, n)
Differentiates a function represented by an
array.
DIGITAL_FILTER (flow, fhigh, gibbs,
nterm)

Standard Library function that constructs
finite impulse response digital filters for
signal processing.

DILATE (image, structure[, x0, yQ])
Implements the morphologic dilation
operator for shape processing.

DIST (n)

Standard Library function that generates a
square array in which each element equals

the euclidean distance from the nearest
corner.

20 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

ERODE (image, structure [, x0, y0])
Implements the morphologic erosion
operator for shape processing.

FFT (array, direction)

Returns the Fast Fourier Transform for the
input variable.

HANNING (col [, row])

Standard Library function that implements a
window function for Fast Fourier Transform
signal or image filtering.
HIST EQUAL (image)
Standard Library function that returns a
histogram-equalized image or vector.
HISTOGRAM (array)

Returns the density function of an array.

IMAGE_CONT, array
Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

LEEFILT (image[, n, sigma))

Standard Library function that performs
image smoothing by applying the Lee Filter
algorithm.

MEDIAN (array [, width])

Finds the median value of an array, or applies
a one- or two- dimensional median filter of a
specified width to an array.

MOMENT (a, i)
Computes moments of an array.
MOVIE, images [, rate]
Standard Library procedure that shows a
cyclic sequence of images stored in a three-
dimensional array.
NEIGHBORS(a, i)
Finds the neighbors of specified array
elements.
POLY _2D (array, coeff,, coeff, [, interp
[, dim, ..., dim]])

Performs polynomial warping of images.

POLYFILLV (x,Y, sX, sy [, run_length])
Returns a vector containing the subscripts of
the array elements contained inside a
specified polygon.

POLYWARRP, xd, yd, xin, yin, deg, xm, ym
Standard Library procedure that calculates
the coefficients needed for a polynomial
image warping transformation.

PROFILE (image)

Standard Library function that extracts a
profile from an image.

PROFILES, image

Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

RDPIX, image [, X0, y0]

Standard Library procedure that displays the
X, Y, and pixel values at the location of the
cursor in the image displayed in the currently
active window.

REBIN (array, dim,, ..., dim,))

Returns a vector or array resized to the given
dimensions.

REFORM (array, dimy, ..., dim,)

Reformats an array without changing its
values numerically.

RESAMP (array, dim, ..., dim,)

Resamples an array to new dimensions.

ROBERTS (image)

Performs a Roberts edge enhancement of an
image.

ROT (image, ang [, mag, Xctr, yctr])
Standard Library function that rotates and
magnifies (or demagnifies) a two-
dimensional array.

Image Processing Routines 21

ROT_INT (image, ang [, mag, Xctr, yctr])
Standard Library function that rotates and
magnifies (or demagnifies) an image on the
display screen.

ROTATE (array, direction)

Returns a rotated and/or transposed copy of
the input array.

SHIFT (array, shift,, ..., shift,)

Shifts the elements of a vector or array along
any dimension by any number of elements.

SHOWS, array

Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SMOOTH (array, width)
Smooths an array with a boxcar average of a
specified width.

SOBEL (image)
Performs a Sobel edge enhancement of an
image.

TRANSPOSE (array)

Transposes the input array.

ZOOM

Standard Library procedure that expands
and displays part of an image (or graphic
plot) from the current window in a second
window.

Input and Output Routines

ASSOC (unit, array_structure [, offset])
Associates an array structure with a file,
allowing random access input and output.

BYTEORDER, variable,, ... , variable,
Converts integers between host and network
byte ordering. Can also be used to swap the
order of bytes within both short and long
integers.

GET_KBRD (wait)

Returns the next character available from
standard input (PV-WAVE file unit 0).
LNO3 [, filename]

Standard Library procedure that opens or
closes an output file for LNO3 graphics
output. The file can then be printed on an
LNOS printer.

PRINT, expry, ... , €xpr,
PRINT performs output to the standard
output stream (PV-WAVE file unit —1).

PRINTF, unit, expry, ..., expr,
PRINTF requires the output file unit to be
specified.

READ, vary, ..., var,
Read input from the standard input stream
into PV-WAVE variables.

READF, unit, vary, ..., var,
Read input from a file into PV-WAVE
variables.

READU, unit, vary, ..., var,
READU reads binary (unformatted) input
from a specified file. (No processing of any
kind is done to the data.)

REWIND, unit
(OpenVMS Only) Rewinds the tape on the
designated PV-WAVE tape unit.

SKIPF, unit, files

(OpenVMS Only) Skips files on the
designated magnetic tape unit.

22 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

SKIPF, unit, records, r
(OpenVMS Only) Skips records on the
designated magnetic tape unit.

TAPRD, array, unit [, byte reverse]
(OpenVMS Only) Reads the next record on
the selected tape unit into the specified array.

TAPWRT, array, unit [, byte_reverse]
(OpenVMS Only) Writes data from the input
array to the selected tape unit.

WPRINT [, window_index]

(Microsoft Windows Only) Prints the
contents of a specified window.

WREAD_DIB ([window_index])

(Microsoft Windows Only) Loads a Device
Independent Bitmap (DIB) from a file into a
graphics window.

WREAD_META ([window_index])
(Microsoft Windows Only) Loads a Windows
metafile (WMF) into a graphics window.

WRITEU, unit, expry, ..., xpry,

Writes binary (unformatted) data from an
expression into a file.

WWRITE_DIB ([window_index])

(Microsoft Windows Only) Saves the
contents of a graphics window to a file as a
Device Independent Bitmap (DIB).

WWRITE_META ([window_index])

(Microsoft Windows Only) Saves the
contents of a graphics window to a file as a
Windows metafile (WMF).

Interpolation Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.

BILINEAR (array, X, Y)

Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the
input array.
GRIDN(d, i)
Grids n dimensional data.
INTERPOLATE(d, X)

Interpolates scattered data at scattered
locations.

INTERPOL (v, n)
Performs a linear interpolation of a vector
using a regular grid.

INTERPOL (v, X, U)

Performs a linear interpolation of a vector
using an irregular grid.

INTRP(a, n, X)

Interpolates an array along one of its
dimensions.

REBIN (array, dim,, ..., dim,))

Returns a vector or array resized to the given
dimensions.

RESAMP(array, dimy, ..., dim,)
Resamples an array to new dimensions.
SPLINE (X, y, t[, tension])

Standard Library function that performs a
cubic spline interpolation.

Interpolation Routines 23

Mapping Routines

MAP
Plots a map.

MAP_CONTOUR, z[, X, Y]
Draws a contour plot from longitude/latitude
data stored in a 2D array.

MAP_PLOTS, X,y

Plots vectors or points (specified as
longitude/latitude data) on the current map
projection.

MAP_POLYFILL, x,y
Fills the interior of a region of the display
enclosed by an arbitrary 2D polygon.
MAP_REVERSE, x, y, lon, lat

Converts output from routines like CURSOR
and WitPointer from device, normal, or data
coordinates to longitude and latitude
coordinates.

MAP_VELOVECT, u, Vv, [, X, Y]

Draws a two-dimensional velocity field plot
on a map, with each directed arrow indicating
the magnitude and direction of the field.

MAP_XYOUTS, x, Y, string

Draws text on the currently selected graphics
device starting at the designated map
coordinate.

USGS NAMES ([name])

Queries a database containing names, FIPS
codes, and longitude/latitude values for cities
and towns in the United States.

Plots a map.

Operating System Access
Routines

CALL_UNIX (py [, Py, -, Paol)
(UNIX Only) Lets a PV-WAVE procedure
communicate with an external routine written
in C.

CD [, directory]
Changes the current working directory.

DELETE_SYMBOL, name
(OpenVMS Only) Deletes a DCL (Digital
Command Language) interpreter symbol
from the current process.

DEL_FILE, filename

Deletes a specified file on your system.

DELLOG, logname
(OpenVMS Only) Deletes a logical name.

ENVIRONMENT ()
(UNIX Only) Returns a string array
containing all the UNIX environment strings
for the PV-WAVE process.

GETENV (name)

Returns the specified equivalence string
from the environment of the PV-WAVE
process.

GET_SYMBOL (name)

(OpenVMS Only) Returns the value of an
OpenVMS DCL interpreter symbol as a
scalar string.

LINKNLOAD (object, symboal [, param,, ...,
paramy])

Provides simplified access to external
routines in shareable images.

POPD

Standard Library procedure that pops a
directory from the top of a last-in, first-out
directory stack.

24 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

PRINTD
Standard Library procedure that lists the
directories located in the directory stack, and
the current working directory.

PUSHD [, directory]

Standard Library procedure that pushes a
directory onto the top of a last-in, first-out
directory stack.

SETENV, environment_expr
(UNIX Only) Adds or changes an
environment string in the process
environment.

SETLOG, loghame, value
(OpenVMS Only) Defines a logical name.

SET_SYMBOL, name, value
(OpenVMS Only) Defines a DCL interpreter
symbol for the current process.

SPAWN [, command [, result]]
(UNIX/OpenVMS) Spawns a child process to
execute a given command.

SPAWN [, command [, result]]

(Windows) Spawns a child process to
execute a given command.

SYSTIME (param)

Returns the current system time as either a
string or as the number of seconds elapsed
since January 1, 1970.

TRNLOG (logname, value)

(OpenVMS Only) Searches the OpenVMS
name tables for a specified logical name and
returns the equivalence string (s) in a
PV-WAVE variable.

WEOF, unit
(OpenVMS Only) Writes an end-of-file mark

on the designated unit at the current position.

printer_name = WIN32_PICK_PRINTER()
Displays a Windows printer dialog.

font_name = WIN32_PICK_FONT()
Displays a Wndows common font dialog.

Optimization and
Regression Routines

CURVEFIT (x, y, wt, parms, [sigma])
Standard Library function that performs a
nonlinear least-squares fit to a function of an
arbitrary number of parameters.

GAUSSHIT (x, y [, coefficients])

Standard Library function that fits a
Gaussian curve through a data set.

MINIMIZE(f, 1, u, g,i,y)

Minimizes a real valued function of n real
variables.

POLY_FIT (x, Y, deg [, yft, ybd, sig, mat])
Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

POLYFITW (x,y, wt, deg [, yft, ybd, sig,

mat])

Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

REGRESS (x, y, wt [, yf, a0, sig, ft, r,
rm, c])
Standard Library function that fits a curve to
data using the multiple linear regression
method.
SVDFIT (X, y, m)

Standard Library function that uses the
singular value decomposition method of
least-squares curve fitting to fit a polynomial
function to data.

Optimization and Regression Routines 25

Plotting Routines
AXIS[[[, X1, y], 2]

Draws an axis of the specified type and scale
at a given position.
BAR, x [.y]

Plots a 2D bar graph that can include stacked
and grouped bars, as well as various
color and fill pattern options.

BAR2D, x [,y]
Creates a two-dimensional bar plot.

BARS3D, z
Creates a three-dimensional bar plot.

CONTOUR, z[, X, y]

Draws a contour plot from data stored in a
rectangular array.

CONTOUR2, [, X, Y]

Draws a contour plot from data stored in a
rectangular array.

CONTOURFILL, filename, z [, X, Y]
Standard Library procedure that fills both
open and closed contours with specified
colors or patterns.

CURSOR, X, y [, wait]

Reads the position of the interactive graphics
cursor from the current graphics device.

ERRPLQOT [, points], low, high
Standard Library procedure that overplots
error bars over a previously-drawn plot.

GRID (xtmp, ytmp, ztmp)

Standard Library function that generates a
uniform grid from irregularly-spaced data.

IMAGE_CONT, array

Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

OPLOT, x[,V]

Plots vector data over a previously drawn
plot.

OPLOTERR, X, y, error [, psym]
Standard Library procedure that overplots
symmetrical error bars on any plot already
output to the display device.

PIE, data[, labels]

Displays data as a pie chart.

PIE_CHART, data, [xcenter, ycenter, radius]
Creates a pie chart with colors, text labels,
exploded slices and/or shadows.

PLOT, x [, V]

PLOT produces a simple XY plot.

PLOT_HISTOGRAM, variable
Plots a histogram.
PLOT_IO, x[,¥]
PLOT_IO produces an XY plot with
logarithmic scaling on the Y axis.
PLOT_OI, x[,¥]
PLOT_OI produces an XY plot with
logarithmic scaling on the X axis.
PLOT_OO, x [, y]
PLOT_OO produces an XY plot with
logarithmic scaling on both the X and Y axes.
PLOTERR, [x,] v, error

Standard Library procedure that plots data
points with accompanying symmetrical error
bars.

PLOT_FIELD, u, v
Standard Library procedure that plots a two-
dimensional velocity field.

PLOTS, x [,y [, 2]

Plots vectors or points on the current
graphics device in either two or three
dimensions.

POLYFILL, x [,y [, Z]]

Fills the interior of a region of the display
enclosed by an arbitrary two- or three-
dimensional polygon.

POLY SHADE (vertices, polygons)

Constructs a shaded surface representation
of one or more solids described by a set of
polygons.

26 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

PROFILE (image)
Standard Library function that extracts a
profile from an image.

PROFILES, image

Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

SCALE3D

Standard Library procedure that scales a
three-dimensional unit cube into the viewing
area.

SET_SHADING

Modifies the light source shading parameters
affecting the output of SHADE_SURF and
POLYSHADE.

SHADE_SUREF, z[, X, Y]

Standard Library procedure that creates a
shaded surface representation of a regular or
nearly regular gridded surface, with shading
from either a light source model or from a
specified array of intensities.

SHADE_SURF _IRR, z, X,y

Creates a shaded-surface representation of
a semiregularly gridded surface, with
shading from either a light source model or
from a specified array of intensities.

SHOWS, array

Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SURFACE, z[, X, Y]

Draws the surface of a two-dimensional array
projected into two dimensions, with hidden
lines removed.

T3D

Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or

oblique transformations and stores the result
in the system variable !P.T.

THREED, array [, space]

Standard Library procedure that plots a two-
dimensional array as a pseudo three-
dimensional plot on the currently selected
graphics device.

USERSYM, x [, ¥]

Lets you create a custom symbol for marking
plotted points.

VEL, u,v
Standard Library procedure that draws a
graph of a velocity field with arrows pointing
in the direction of the field. The length of an
arrow is proportional to the strength of the
field at that point.

VELOVECT, u, v [, X, Y]

Standard Library procedure that draws a
two-dimensional velocity field plot, with each
directed arrow indicating the magnitude and
direction of the field.

Polygon Generation

Routines
POLY _SPHERE, radius, pXx, py, vertex_list,
polygon_list

Generates the vertex list and polygon list that
represent a sphere.
POLY _SURF, surf_dat, vertex_list,
polygon_list, pg_num
Generates a 3D vertex list and a polygon list,
given a 2D array containing Z values.
SHADE _VOLUME, volume, value, vertex,

poly
Given a 3D volume and a contour value,
produces a list of vertices and polygons
describing the contour surface (also known
as an iso-surface).

Polygon Generation Routines 27

Polygon Manipulation
Routines

POLY_C _CONV (polygon_list, colors)
Returns a list of colors for each polygon,
given a polygon list and a list of colors for
each vertex.

POLY_COUNT (polygon_list)

Returns the total number of polygons
contained in a polygon list.

POLY_MERGE, vertex_listl, vertex_list2,

polygon_listl, polygon_list2, vert,
poly, pg_num
Merges two vertex lists and two polygon lists

together so that they can be rendered in a
single pass.

Polygon Rendering
Routines

MOLEC(filename)

Creates an image of a ball and stick
molecular model.

POLY_PLOT, vertex_list, polygon_list,
pg_num, winx, winy, fill_colors,
edge _colors, poly_opaque

Renders a given list of polygons.

POLY SHADE (vertices, polygons)

POLY SHADE (X, v, z, polygons)
Constructs a shaded surface representation
of one or more solids described by a set of
polygons.

RENDER (objectl, ..., objectn)

Generates a ray-traced rendered image from
one or more predefined objects.

RENDER24(b)

Generates a ray-traced rendered 24-bit
image of m objects.

Programming Routines

ADDVAR, name, local

Creates a variable on the $MAIN$ program
level and binds a local variable to it.

BREAKPOINT, file, line
Lets you insert and remove breakpoints in
programs for debugging.

CHECKFILE(filename)

Determines if a file can be read from or
written to.

CHECK_MATH ([print_flag,
message_inhibit])

Returns and clears the accumulated math
error status.

DEFINE_KEY, key [, value]

Programs a keyboard function key with a
string value, or with a specified action.

DEFSY SV, name, value [, read_only]

Creates a new system variable initialized to
the specified value.

DELFUNC, function; ,..., function,

Deletes one or more compiled functions from
memory.

DELPROC, procedurs, ,..., procedure,

Deletes one or more compiled procedures
from memory.

DELSTRUCT, structure, ,..., structure,

Deletes one or more named structure
definitions from memory.

DELVAR, vy, ... \V,

Deletes variables from the main program
level.

EXIT
Exits PV-WAVE and returns you to the
operating system.

FINITE (x)

Returns a value indicating if the input
variable is finite or not.

28 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

HAK
Standard Library procedure that lets you
implement a “hit any key to continue”
function.

KEYWORD_SET (expr)
Tests if an input expression has a nonzero
value.

MESSAGE, text

Issues error and informational messages
using the same mechanism employed by
built-in PV-WAVE routines.
N_ELEMENTS (expr)
Returns the number of elements contained in
any expression or variable.
N_PARAMS ()

Returns the number of non-keyword
parameters used in calling a PV-WAVE
procedure or function.

N_TAGS (expr)
Returns the number of structure tags
contained in any expression.

ON_ERROR, n
Determines the action taken when an error is
detected inside a PV-WAVE user-written
procedure or function.

ON_ERROR_GOTO, label

Specifies a statement to jump to if an error
occurs in the current procedure.

ON_IOERROR, label

Specifies a statement to jump to if an I/O
error occurs in the current procedure.

PARAM_PRESENT (parameter)

Tests if a parameter was actually present in
the call to a procedure or function.

PARSEFILENAME (pathname)

Extracts specified parts of a full file
pathname.

RENAME, variable, new_name
Renames a PV=WAVE variable.

RETALL

Issues RETURNSs from nested routines.
Used primarily to recover from errors in user-
written procedures and functions.

RETURN [, expr]

Returns control to the caller of a user-written
procedure or function.

SAME(X, y)
Tests if two variables are the same.
SIZE (expr)
Returns a vector containing size and type
information for the given expression.
STOP[, expry,... , €xpr,]
Stops the execution of a running program or

batch file, and returns control to the
interactive mode.

STRMESSAGE (errno)

Returns the text of the error message
specified by the input error number.

STRUCTREF ({ structure})

Returns a list of all existing references to a
structure.

TAG_NAMES (expr)

Returns a string array containing the names
of the tags in a structure expression.

UPVAR, name, loca

Accesses a variable that is not on the current
program level.

VAR _MATCH()
Standard Library function that scans for
PV=WAVE variables that match the given
criteria.

WAIT, seconds

Suspends execution of a PV-WAVE program
for a specified period.

Programming Routines 29

Ray Tracing Routines
CONE ()

Defines a conic object that can be used by
the RENDER function.

CYLINDER ()
Defines a cylindrical object that can be used
by the RENDER function.

MESH (vertex_list, polygon_list)
Defines a polygonal mesh object that can be
used by the RENDER function.

RENDER (objectl, ..., objectn)

Generates a ray-traced rendered image from
one or more predefined objects.

RENDER24(b)
Generates a ray-traced rendered 24-bit
image of m objects.

SPHERE ()
Defines a spherical object that can be used
by the RENDER function.

VOLUME (voxels)

Defines the volumetric data that can be used
by the RENDER function.

Special Mathematical
Functions

BESELI (x [, n])

Calculates the Bessel | function for the input
parameter.

BESELJ(x [, n])

Calculates the Bessel J function for the input
parameter.

BESELY (x [, n])

Calculates the Bessel Y function for the input
parameter.

ERRORF (x)

Calculates the standard error function of the
input variable.

GAMMA (x)

Calculates the gamma function of the input
variable.

GAUSSINT (x)

Evaluates the integral of the Gaussian
probability function.

Session Routines

INFO, expry, ... , expr,
Displays information on many aspects of the
current PV-WAVE session.

JOURNAL [, param]
Provides a record of an interactive session
by saving in a file all text entered from the
terminal in response to a prompt.

RESTORE [, filename]
Restores the PV-WAVE objects saved in a
file by the SAVE procedure.

SAVE [, vary, ..., var,]

Saves variables in a file for later recovery by
RESTORE.

String Processing Routines

STRCOMPRESS (string)
Compresses the white space in an input
string.
STRJIOIN(expr [, sep]
Concatenates all of the elements of a string
array into a single scalar string.
STRLEN (expr)
Returns the length of the input parameter.
STRLOOKUP([name])

Queries, creates, saves, or modifies a string
server database.
STRLOWCASE (string)

Converts a copy of the input string to
lowercase letters.

30 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

STRMATCH(string, expr [, registers])

Matches a specified string to an existing
regular expression.

STRMID (expr, first_character, length)

Extracts a substring from a string expression.

STRPOS (object, search_string [, position])
Searches for the occurrence of a substring
within an object string, and returns its
position.

STRPUT, destination, source [, position]
Inserts the contents of one string into
another.

STRSPLIT(expr, pattern)

Splits a string into an array of tokens
(substrings).

STRSUBST (expr, pattern, repl)

Performs string substitution (search and
replace).

STRTRIM (string [, flag])

Removes extra blank spaces from an input
string.

STRUPCASE (string)

Converts a copy of the input string to
uppercase letters.

Table Manipulation
Functions

BUILD_TABLE('var;[diag], ..., var, [aliag]
")

Creates a table from one or more vectors
(one-dimensional arrays).

GROUP _BY (in_table, ‘sum_column [aliag]
[ASC | DESC]’)

Performs summary (aggregate) functions to
groups of rows in a PV-WAVE table
variable.

ORDER_BY (in_table, ‘col_1[ASC|DESC]
[, col_2[ASC|DESC]] ...

[, col_n[ASC | DESC]]’)
Sorts the rows in a PV-WAVE table variable
to create a new table.

QUERY_TABLE (table, ' [Distinct] * | col;
[diag] [, ..., cal,, [alias]] [Where cond]
[Group By colg; [,... colg,]] | [Order
By colo; [direction][,..,colo,
[direction]]] ")

Subsets a table created with the
BUILD_TABLE function.

UNIQUE (vec)

Returns a vector (one-dimensional array)

containing the unique elements from another
vector variable.

Table Manipulation Functions 31

Transcendental
Mathematical Functions

ACOS (x)
Returns the arc-cosine of x.
ALOG (X)
Returns the natural logarithm of x.
ALOG10 (X)
Returns the logarithm to the base 10 of x.
ASIN (x)
Returns the arcsine of x.
ATAN (X[, y])
Calculates the arctangent of the input
variable (s).
COS (x)
Calculates the cosine of the input variable.
COSH (x)
Calculates the hyperbolic cosine of the input
variable.
EXP (x)
Raises e to the power of the value of the input
variable.
SIN (X)
Returns the sine of the input variable.
SINH ()

Returns the hyperbolic sine of the input
variable.

SQRT (x)
Calculates the square root of the input
variable.

TAN (X)
Returns the tangent of the input variable.
TANH (X)

Returns the hyperbolic tangent of the input
variable.

VDA Tools Routines

Navigator
Starts the Navigator.

WzAnimate, var
Starts a VDA Tool used for animating a
sequence of images.
WzColorEdit [, varl[, var2, var3]]
Starts a VDA Tool used for editing the image
and plot color tables used in other VDA Tools.
WzContour, var
Starts a VDA Tool used for plotting contours.

WzExport, var
Starts a VDA Tool used for exporting a
PV=WAVE variable to an external file in a
specified format.

WzHistogram, var
Starts a VDA Tool used for plotting a
histogram.

Wzlmage, var
Starts a VDA Tool used for displaying image
data.

Wzlmport [, vary, var,, ..., var,]
Starts a VDA Tool used for importing data
into PV=WAVE.

WzMultiView
Starts a VDA Tool used to display multiple
plots.

WzPlat, var, [, var,, ..., var,]
Starts a VDA Tool used for 2D plotting.

WzPreview [, filename]
Starts a VDA Tool used to view an ASCII file’s
contents and select which parts of the file are
to be read in as PV=WAVE variables.
WzSurface, z [, X, Y]
Starts a VDA Tool used for surface plots.

32 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

WzTable, var

Starts a VDA Tool used for creating an
editable 2D array of cells containing string
data.

WzVariable

Starts a VDA Tool used for viewing and
exporting variables.

VDA Tools Manager
Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

TmAddSelectedVars, tool_name, var_name
Adds selected variables from a VDA Tool to
the list of selected variables in the Tools
Manager.

TmAddVar, tool_name, var_name
Adds a variable to a VDA Tool.

TmAXis, tool_name
Adds axes to a VDA Tool.

TmCodeGen, string
Writes a specified string to the code
generation file.

TmCopy, tool_name
Copies the selected graphical elements from
the specified VDA Tool to the clipboard.

TmCut, tool _name
Cuts the selected graphical elements from
the specified VDA Tool and moves them to
the clipboard.

TmDelVar, tool_name [, var_names]
Removes variables from a VDA Tool.

TmDelete, tool_name

Permanently deletes the selected graphical
elements from the specified VDA Tool.

TmDeselectVars

Clears the current list of selected variables.
TmDynamicDisplay, indices

Displays selected data in all active VDA

Tools, provided that the VDA Tools can
display the related variable(s).

TmEndCodeGen
Closes the file in which generated code is
written.

TmEnumerateAttributes(tool_name, item)
Obtains the attributes for a specified
graphical element, variable, or otheritemin a
VDA Tool.

TmEnumeratel tems(tool _name)
Obtains the items defined for a specified
VDA Tool.

TmEnumerateM ethods(tool_name)

Obtains the methods that were set for a VDA
Tool.

TmEnumerateSel ectedVars()
Returns the names of variables on the
selected variables list.
TmEnumerateToolNames()
Returns all the registered VDA Tool names.

TmEnumerateVars(tool _name)
Returns all the variables associated with an
instance of a VDA Tool.
TmExecuteM ethod, tool _name,
method _name
Executes a method that was set by
TmSetMethod.
TmExport, variable_names,
destination_tool names

Exports $MAINS$-level variables to specified
VDA Tools or to all currently active VDA
Tools.

TmEXxportSelection, destination_tool _names

Exports the contents of the variable selection
list to specified VDA Tools.

VDA Tools Manager Routines 33

TmGetAttribute(tool_name, item, attr_name)

Returns the value that was set for an attribute
in a VDA Tool instance.

TmGetM essage([message fil€],
message_code)
Loads a string resource file into the resource

database and extracts a message string from
the database.

TmGetMethod(tool_name, method_name)

Returns the data structure of the specified
method.

TmGetTop(tool_name)
Gets the top-level widget ID for a VDA Tool.

TmGetUniqueToolName(tool_name)

Returns a unique name for a particular
instance of a specified VDA Tool.

TmGetVarMainName(tool _name,
local_variable)

Returns the $MAIN$ level name of a
variable.

Tminit

Initializes the VDA Tools Manager layer.
TmList(tool_name)

Creates a list item.
TmListAppend, tool _name, list_name, item

Adds a new item at the end of the specified
list.

TmListClear, tool_name, list_name

Resets a specified list to its initial state,
clearing all previously defined items.

TmListDelete, tool_name, list_ name [, pos]
Deletes an item in the specified list.

TmListDestroy, tool_name, list_name
Clears all items and destroys the list.

TmListExtend, tool_name, list_name

Extends the specified list by adding empty
items.

TmListGetMethod(tool _name, list_name,
method _name)
Returns the procedure name associated with
the specified list method name.
TmListinsert, tool_name, list_name, item,
pos
Inserts a new item into the specified list.
TmListReplace, tool_name, list_name, item,
pos
Replaces an item in a list with a new item.
TmListRetrieve(tool _name, list_name)
Gets the items currently set in the specified
list.
TmListSetMethod, tool_name, list_name,
method_name, method
Sets the method procedure name for a
specific list method.
TmPaste, tool_name
Pastes the graphical elements from the
clipboard to the specified VDA Tool.
TmRegister, unique_name, topShell
Registers a VDA Tool with the Tools
Manager.
TmRestoreTemplate(tool _name, filename)
Restores a saved VDA Tool template.

TmRestoreTool s(filename)

Restores the VDA Tools that were saved with
the TmSaveTools procedure.

TmSaveToals, filename [, tool_names)
Saves the specified VDA Tools in a file.
TmSetAttribute(tool_name, item, attr_name,

attr_value)

Set an attribute for an item in the given VDA
Tool.

TmSetMethod, tool _name, method_name,
method_call

Sets a method for a given VDA Tool.

34 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

TmStartCodegen, filename
Opens a file into which PV=WAVE code is
written.

TmUnregister, tool_name

Removes the specified VDA Tool from the
Tools Manager registry.

VDA Tools Manager
Graphical Element Routines

NOTE For detailed information on the
following routines, please refer to the
PV=WAVE Application Developer’s Guide.

TmAddGrael, tool_name, grael_name
Adds a graphical element to the graphical
element list for the specified instance of a
VDA Tool.

TmAddSelectedGrael, tool _name,

grael_name
Adds a graphical element to the graphical
element selection list.

TmAXis, tool_name
Adds axes to a VDA Tool.

TmBitmap, tool _name, bitmap_name
Adds a bitmap (2D array) to a VDA Tool.

TmBottomGrael, tool_name, grael_name
Sets the specified graphical element to be on
the bottom of the display list (displayed
behind the other graphical elements).

TmDelGradl, tool_name, grael_name
Removes a specified graphical element from
the list of graphical elements associated with
a VDA Tool instance.

TmDel SelectedGraels, tool_name,

grael_name

Deletes a graphical element from the list of
selected graphical elements.

TmEnumerateGrael M ethods(tool _name,
grael_name)
Obtain a list of all the methods set for a
graphical element in a specified VDA Tool.
TmEnumerateGraels(tool_name)
Returns all the graphical elements that were
set for a given VDA Tool.
TmEnumerateSel ectedGrael s(tool _name)
Obtains a list of graphical elements or other
items currently on the graphical items
selection list.
TmExecuteGrael M ethod, tool_name,
grael_name, method_name
Executes a method for a graphical method
based on the method name.
TmGetGrael Method(tool _name, grael_name,
method_name)
Obtains the data structure for the specified
method.
TmGetGrael Rectangl e(tool_name,
grael_name)
Returns the rectangular boundary of a
graphical element.
TmGetUniqueGrael Name(tool_name,
grael_name)
Obtains a unique name based on the name
of the specified graphical element.
TmGroupGraels(tool_name, grael_names)

Groups a number of selected graphical
elements as one graphical element with a
unique name.

TmLegend, tool_name

Adds a legend to a VDA Tool. The exact size
and position of the legend is determined
interactively by the user.

TmLine, tool_name

Adds a line to a VDA Tool. The exact length
and position of the line is determined
interactively by the user.

VDA Tools Manager Graphical Element Routines 35

TmRect, tool_name
Adds a rectangle to a VDA Tool. The exact
size and position of the rectangle is
determined interactively by the user.
TmSetGrael Method, tool_name, grael_name,
method_name,
method_value
Sets the name of the method procedure for a
given method name and graphical element.
TmSetGrael Rectangle, tool_name,
grael_name, rectangle
Sets the selection rectangle for a graphical
element, or a set of graphical elements.
TmText, tool_name
Adds text to a VDA Tool. The position of the
text and the text itself are determined
interactively by the user.
TmTopGradl, tool_name, grael_name
Sets the specified graphical element to be at
the top of the display list (displayed in front of
other graphical elements).
TmUngroupGragls, tool_name, group_name
Ungroups a group of graphical elements.

VDA Utilities Routines

NOTE For detailed information on the
following routines, please refer to the
PV=WAVE Application Developer’s Guide.

WoA ddButtons, toolname, buttons
Adds a bank of buttons to a button bar.

WoA ddM essage, toolname, message key
Adds a message to a message area created
by WoMessage.

WOoAddStatus, toolname, status _key

Display a message in the status bar of a VDA
Tool.

WoBLuildResourceFilename(file)

Returns the full path name for a specified
resource file.

WoButtonBar(parent, toolname, [buttons])
Creates a predefined, two-row button bar
that can be included in a VDA Tool.

WoButtonBarSet, toolname, descriptor,

setting
Changes the setting of a button in a button
bar.

WoButtonBarSetSensitivity, toolname,

descriptor, sensitivity
Sets the sensitivity of one or more buttons on
a button bar.

WoCheckFile(file)

Confirms if a file is readable or writable.

WoCol orButton(parent)

Creates a button that brings up a color table
dialog box used to set colors in a VDA Tool.
The button has an associated color pixmap
that reflects the currently selected color.

WoColorButtonGetValue(wid)

Gets the currently selected color index from
a color button created by WoColorButton.

36 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

WoColorButtonSetValue(wid, color)
Sets the current color index for a color button
created by WoColorButton, and updates the
color button’s color pixmap.
WoColorConvert(color)
Convert from a long RGB value to an index
into the current color table, or from an index
in the current color table to an RGB value.
WoColorGrid(parent)

Creates a grid of color squares from the
current color table.

WoColorGridGetValue(wid, index,
num_values)
Gets the color indices for a range of colors in
a color grid.

WoColorGridSetValue, wid, index, color
Sets the color indices for a range of colors in
the color grid.

WoColorWheel (tool _name, color_index,

value_changed ch)
Creates a color wheel that can be used to
modify a single color in the current color
table.

WoConfirmClose, wid, tool_name
Displays a dialog box requiring the user to
confirm a window close action.

WoDial ogStatus, toolname, status
Saves or restores the status of a dialog box
by saving or restoring the state of its widgets
as stored in the Tools Manager.

WoFontOptionM enu(parent, toolname)
Creates an option menu with the standard list
of software (vector-drawn) fonts found in
PV=WAVE.

WoFontOptionM enuGetVal ue(wid)

Gets the software font command for the
currently selected font.

WoFontOptionMenuSetValue, wid, font

Sets the current font and updates the font
option menu.

WoGenericDialog(parent, topLayout
[,callback])

Creates a generic dialog box for use in VDA
Tools.

WoGetTool NameFromTitle(window _title)

Gets the unique name of a VDA tool given
the unique window title of the VDA Tool.

WoGetUniqueWindowTitle(primary,
secondary)

Given a window title, adds a numeric suffix to
make the title unique.

WolL abeledText(parent, label_names,
verify callback)
Creates a group of aligned text widgets
(widgets with a label and a text field).
WoL inestyleOptionM enu(parent, toolname)

Creates an option menu for selecting
linestyles.

WoL.inestyleOptionM enuGetVal ue(wid)
Gets the currently selected linestyle.
WoL ineStyleOptionMenuSetValue, wid,
linestyle
Sets the option menu to a specified linestyle.
WoL oadResources, file

Loads resources and strings from a file for
VDA tools.

WoL oadStrings, file
Loads strings from a resource file for use by
the VDA tools.
WoMenuBar(parent, toolname [,menus])
Create a menu bar for a VDA Tool.
WoM enuBar SetSensitivity, toolname,
pane_index, item_index, sensitivity
Sets the sensitivity of one or more items in a
menu.
WoMenuBarSetToggle, tool_name,
pane_index, item_index, value
Sets the status of a menu toggle button.

VDA Utilities Routines 37

WoM essage(parent, toolname)
Creates a message area for a VDA Tool

WoSaveAsPixmap, tool_name, varname
Saves graphics from a specified VDA Tool as
a pixmap.

WoSetCursor, tool_name
Changes the cursor for a VDA Tool.

WoSetToollcon, tool_name, icon
Assigns a pixmap to be the icon for a VDA
Tool.
WoSetWindowTitle, tool _name,
window _title
Specifies a unique title for a VDA Tool
window.
WoStatus(parent, toolname)
Create a status bar for a VDA Tool.

WoVariableOptionM enu(parent, toolname)

Creates an option menu containing the
names of all of the variables associated with
the current tool.

WoVariableOptionM enuGetValue(wid)

Gets the currently selected variable name
from an option menu that was created with
the WoVariableOptionMenu function.

WoVariableOptionM enuSetValue, wid, value

Sets the current selection in the variable
option menu.

View Setup Routines
CENTER_VIEW

Sets system viewing parameters to display
data in the center of the current window (a
convenient way to set up a 3D view).

SET_VIEWS3D, viewpoint, viewvector,
perspective, izoom, viewup,
viewcenter, winx, winy, xr, yr, zr

Generates a 3D view, given a view position
and a view direction.

T3D

Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or
oblique transformation and stores the results
in the system variable !P.T.

VIEWER, win_num, Xsize, ysize, size fac,
XpOos, Ypos, colors, retain, xdim, ydim,
zdim

Lets users interactively define a 3D view, a
slicing plane, and multiple cut-away volumes
for volume rendering. (Creates a View

Control and a View Orientation window in
which to make these definitions.)

38 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

Virtual Reality Modeling
Language (VRML) Routines

VRML_AXIS, origin [, length, range]
Adds an axis to a VRML world.
VRML_CAMERA, position

Positions a VRML camera for rendering the
VRML view.

VRML_CLOSE

Closes the VRML file.
VRML_CONE

Creates a VRML cone.
VRML_CUBE

Positions a VRML cube in the world.
VRML_CYLINDER

Positions a VRML cylinder in the world.
VRML_LIGHT, position

Sets up the light source for a VRML world.
VRML_LINE, x,vy, z

Creates a VRML line object.

VRML_OPEN
Opens a VRML file and writes out header
information consistent with VRML
formatting.

VRML_POLY, vlist, plist
Creates a VRML polyline node, based on PV-
WAVE'’s variables for vertex list and polygon
list.

VRML_SPHERE
Creates a sphere in a VRML world.

VRML_SPOTLIGHT, position
Creates a VRML spotlight.

VRML_SURFACE, z [, X, Y]

Creates a VRML surface node based on
PV-WAVE—type variables.

VRML_TEXT, text

Creates a VRML text object in an open
VRML file.

Volume Manipulation
Routines

AFFINE(a, b, [c])

Applies an affine transformation to an array.
BLOB(a, i, b)

Isolates a homogeneous region in an array.

BLOBCOUNT(a, b)
Counts homogeneous regions in an array.

BOUNDARY (a,r)
Computes the boundary of a region in an
array.
DERIVN(a, n)
Differentiates a function represented by an
array.
MOMENT(a, i)
Computes moments of an array.
NEIGHBORS(a, i)
Finds the neighbors of specified array
elements.
RESAMP(array, dimy, ..., dim,)
Resamples an array to new dimensions.
SLICE_VOL (volume, dim, cut_plane)
Returns a 2D array containing a slice from a
3D volumetric array.
VOL_PAD (volume, pad_width)
Returns a 3D volume of data padded on all
six sides with zeroes.
VOL_TRANS (volume, dim, trans)

Returns a 3D volume of data transformed by
a 4-by-4 matrix.

Virtual Reality Modeling Language (VRML) Routines 39

Volume Rendering Routines
RENDER (objectl, ..., objectn)

Generates a ray-traced rendered image from
one or more predefined objects.

VECTOR_FIELD3, vx, vy, vz, n_points
Plots a 3D vector field from three arrays.

VOL_MARKER, val, n_points
Displays colored markers scattered
throughout a volume.

VOL_REND (volume, imgx, imgy)

Renders volumetric data in a translucent
manner.

WAVE Widgets Routines

NOTE For detailed information on the
following routines, please refer to the
PV=WAVE Application Developer’s Guide.

WwAlert(parent, label [, answers])

Creates a modal (blocking) or modeless
(non-blocking) popup alert box containing a
message and optional control buttons.

WwAIlertPopdown, wid
Destroys an alert box.

WwBLuttonBox (parent, labels, callback)

Creates a horizontally or vertically oriented
box containing push buttons.

WwCallback(wid, callback, reason,
client_data)
Adds or removes a WAVE Widgets callback.
WwCommand (parent, enteredCallback,
doneCallback)

Creates a command window.

WwControlsBox (parent, labels, range,
changedCallback)

Creates a box containing sliders.

WwnDialog (parent, label, OK Callback,
Cancel Callback, Hel pCallback)
Creates a blocking or nonblocking dialog
box.
WwDrawing (parent, windowid,
drawCallback, wsize, dsize)
Creates a drawing area, which allows users
to display graphics generated by PV-WAVE.
WwFileSelection (parent, OK Callback,
Cancel Callback, Hel pCallback)

Creates a file selection widget, which lets the
user display the contents of directories and
select files.
WwGenericDial og(parent, layout [, labels]
[, callback])
Creates a generic dialog box that can be
filled with custom widgets.
WwGetButton(event)
Obtains the index of a pressed or released
button passed as an event structure by a
WAVE Widgets event handler.
WwGetK ey (event)
Obtains the ASCII value of a pressed or
released key passed as an event structure by
a WAVE Widgets event handler.
WwGetPosition(event)

Obtains the coordinates of a selected point

inside a widget. The selected point

coordinates are passed in an event structure

by a WAVE Widgets event handler.
WwGetValue (widget)

Returns a specific value for a given widget.

WwHandler(wid, handler [, mask
[, userdatal])

Adds or removes a WAVE Widgets event
handler from a widget.

40 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

Wwinit (app_name, appclass_name,
workarea [, destroyCallback])

Initializes the WAVE Widgets environment,
opens the display, creates the first top-level
shell, and creates a layout widget.
WwlL ayout (parent)
Creates a layout widget that is used to
control the arrangement of other widgets.
WwList (parent, items, selectedCallback,
defaultCallback)

Creates a scrolling list widget.
WwListUtils(wid [, paraml[, param2]])

Manages the contents of a list widget.
WwL oop

Handles the dispatching of events and calling

of PV-WAVE callbacks.

WwMainWindow (parent, workarea,
[destroyCallback])
Creates a top-level window and a layout
widget.
WwMenuBar (parent, items)
Creates a menu bar.

WwMenultem (parent, item, value
[, callback])

Adds, modifies, or deletes specified menu
items.

WwMessage (parent, label, OK Callback,
Cancel Callback, HelpCallback)

Creates a blocking or nonblocking message
box.

WwMultiClickHandler(wid, handler
[, userdata])
Adds or removes a multi-click event handler.
WwOptionMenu (parent, label, items)
Creates an option menu.
WwPickFile(parent [, HelpCallback])

Creates a modal file selection dialog that
blocks until a file name has been selected.

WwPopupMenu (parent, items)
Creates a popup menu.
WwPreview, parent, confirmCallback,
clearCallback
Creates an ASCII data preview widget.
WwPreviewUtils(wid [, paraml, param2,
param3])

Manages the contents of a preview widget.

WwRadioBox (parent, labels, callback)

Creates a box containing radio buttons.

WwResource([resvar])

Queries, creates, saves, or modifies the
widget resource database.

WwSeparator(parent)

Creates a horizontal or vertical line that
separates components in a graphical user
interface.

WwSetCursor(wid, cursor)
Sets the cursor for a widget.

WwSetValue (widget, [value])

Sets the specified value for a given widget.

WwTable (parent, callback [, variable])

Creates an editable 2D array of cells
containing string data, similar to a
spreadsheet.

WwTableUtils(wid [, paraml, ..., param9])
Manages the contents of a table widget.

WwText (parent, verifyCallback)
Creates a text widget that can be used for
both single-line text entry or as a full text
editor. In addition, this function can create a
static text label.

WwTimer(time, timer_proc [, userdata))
Registers a WAVE Widgets timer procedure.

WwToolBox (parent, |abels, callback)
Creates an array of graphic buttons (icons).

WAVE Widgets Routines 41

WAVE Widget Utilities

WgAnimateTool, image data [, parent
[, shell]]

Creates a window for animating a sequence
of images.

WgCharTool [, parent [, shell [, windowid
[, movedCallback], [, range]]]]]
Creates a simple color bar that can be used

to view and interactively shift a PV-WAVE
color table.

WgCeditTool [, parent [, shell]]

Creates a full-featured set of menus and
widgets enclosed in a window; this window
allows you to edit the values in PV-WAVE
color tables in many different ways.

WgCtTool [, parent [, shell]]

Creates a simple widget that can be used
interactively to modify a PV-WAVE color
table.

WglsoSurfTool, surface data[, parent
[, shell]]

Creates a window with a built-in set of
controls; these controls allow you to easily
view and modify an iso-surface taken from a
three-dimensional block of data.

WgOrhit, vertices, polygons, parent, shell
Creates an interactive window for viewing
objects.

WgMovieTool, image_data[, parent [, shell

[, windowid [, rate]]]]
Creates a window that cycles through a
sequence of images.

WgSimageTool, image_data[, parent

[, shell 1]

Creates two windows: 1) a scrolling image
window and 2) an optional smaller window
that shows a reduced view of the entire
image.

WgSliceTool, block_data[, parent
[, last_dlice[, shell]1]

Creates a window with a built-in set of
controls; these controls allow you to easily
select and view “slices” from a three-
dimensional block of data.

WgStripTool [, X, y1,¥2, ...
[, shell]

Creates a window that displays data in a
style that simulates a real-time, moving strip
chart.

WgSurfaceTool, surface_data [, parent
[, shell]

Creates a surface window with a built-in set
of controls: these controls allow you to
interactively modify surface parameters and
view the result of those modifications.

WgTextTool [, parent [, shell]]

Creates a scrolling window for viewing text
from a file or character string.

, Y10, parent

Widget Toolbox Routines

NOTE For detailed information on the
following routines, please refer to the
PV=WAVE Application Developer’s Guide.

WtAddCallback (widget, reason, callback
[, client_datal)
Registers a PV-WAVE callback routine for a
given widget.
WtAddHandler (widget, eventmask, handler
[, client_datal)
Registers the X event handler function for a
given widget.
WtClose (widget)
Closes the current Xt (Motif) session, and
destroys all children of the top-level widget

created in Wtlnit. This routine can also be
used to destroy additional widget trees.

42 Chapter 1: Functional Summary of Routines

PV-WAVE Reference

WitCreate (name, class, parent [, argv])

Creates a widget or shell instance specified by widget class.
WitCursor (function, widget [, index])

Sets or changes the cursor.
WitGet (widget [, resource])

Retrieves widget resources.

Wiinit (app_name, appclass name|[, Xserverargs...])

Initializes the Widget Toolbox and the Xt toolkit, opens the display, and creates the first top-level
shell.

Witinput (function [, parameters])

Registers a PV-WAVE input source handler procedure.
WiList (function, widget [, parameters])

Controls the characteristics of scrolling list widgets.

WitL ookupString(event)

Maps a KeyPress or KeyRelease event to its KeyEvent structure (and optionally, to its Keysym) when
a user presses a key.

WitLoop
Handles the dispatching of events and calling of PV-WAVE callback routines.

WtMainLoop

Handles the dispatching of events.
WtPointer (function, widget [, parameters])

The pointer utility function.
WitPreview(action, widget)

Handles utility functions for the preview widget (XvnPreview).
WtProcessEvent()

Handles the dispatching of a Widget Toolbox event.
WtResource([resvar])

Queries, creates, saves, or modifies the widget resource database.
WitSet (widget, argv)

Sets widget resources.
WiTable (function, widget [, parameters])

Modifies an xbaeMatrix class widget.
WitTimer (function, params, [client_data])

Registers a callback function for a given timer.
WitWorkProc (function, parameters)

Registers a PV-WAVE work procedure for background processing.

Widget Toolbox Routines 43

Window Routines

WCOPY ([window_index])
(Microsoft Windows Only) Copies the contents of a graphics window onto the Clipboard.

WDELETE [, window_index]

Deletes the specified window.
WINDOW [, window_index]

Creates a window for the display of graphics or text.
WMENU (strings)

Displays a menu inside the current window whose choices are given by the elements of a string array
and which returns the index of the user’s response.

WPASTE ([window_index])
(Microsoft Windows Only) Pastes the contents of the Clipboard into a graphics window.

WPRINT [, window_index]
(Microsoft Windows Only) Prints the contents of a specified window.

WREAD_DIB ([window_index])
(Microsoft Windows Only) Loads a Device Independent Bitmap (DIB) from a file into a graphics
window.

WREAD_META ([window_index])
(Microsoft Windows Only) Loads a Windows metafile (WMF) into a graphics window.

WSET [, window_index]
Used to select the current window to be used by the graphics and imaging routines.

WSHOW [, window_index [, show]]
Exposes or hides the designated window. It does not automatically make the designated window the
active window.

WWRITE_DIB ([window_index])
(Microsoft Windows Only) Saves the contents of a graphics window to a file as a Device Independent
Bitmap (DIB).

WWRITE_META ([window_index])

(Microsoft Windows Only) Saves the contents of a graphics window to a file as a Windows metafile
(WMF).

44 Chapter 1: Functional Summary of Routines PV-WAVE Reference Volume 1

Procedure and Function Reference

This chapter contains detailed descriptions of the procedures and functions distrib-
uted with PV=WAVE. Most of these system procedures and functions are
proprietary. However, you have access to the source code for some routines—such
routines are called Standard Library procedures and functions.

Standard Library Routines

Standard Library procedures and functions are designated as such in their descrip-
tions. The code for these routines can be found in:

(UNIX) <wavedirs>/lib/std

(OpenVMS) <wavedirs>: [LIB.STD]

(Windows) <wavedirs\1lib\std

Where <wavedir> isthe main PV=WAVE directory.

Users’ Library Routines

Additional routines that have been contributed by PV=WAVE users comprise the
Users' Library. For the names of these routines, list the Users' Library in:

(UNIX) <wavedirs>/lib/user
(OpenVMS) <wavedirs>: [LIB.USER]
(Windows) <wavedirs>\lib\user

Where <wavedir> isthe main PV=WAVE directory.

Users' Library routines are not covered in the PV=WAVE Reference; use the docu-
mentation availablein the . pro source file for each routine.

For more information, see the PV=WAVE Programmer’s Guide

45

ABS Function

Returns the absolute value of x.

Usage
result = ABS(x)

Input Parameters
X — Thevauethat is evaluated. May be of any dimension.

Returned Value
result — The absolute value of x.

Keywords
None.

Discussion
ABS s defined by:
f(x) = |x]

If xisan array, the result has the same dimension. Each element of the returned
array contains the absolute value of the corresponding element in the input array.

When x is a complex number, the result is the magnitude of the complex number:

result; = JRealf + Imagi naryi2

When x has a data type of complex, the result is double-precision floating-point.
All other data types produce a result with the same datatype as x.

Example
x = [-1, 2, 3, -4, 5]
PRINT, ABS(x)

1 2 3 4 5
x = COMPLEX (4, 3)
PRINT, ABS(x)

5.0000000

See Also
See General Mathematical Functions on page 14.

46 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ACOS Function

Returns the arc-cosine of x.

Usage
result = ACOS(x)

Input Parameters

X — The cosine of the desired angle. Cannot be of a complex data type and must
beintherange-1<x< 1.

Returned Value

result — Arc-cosine of x.

Keywords

None.

Discussion

The inverse cosine function, or arc-cosine, denoted by cos 1, is defined by:

y = cosIx
if and only if
COSy = X

where
-1<x<1land 0<y<m

The parameter x can be an array, with the result having the same data type where
each element contains the arc-cosine of the corresponding element from x.

When x is of double-precision floating-point data type, the result is of the same
type. All other datatypes are converted to single-precision floating-point and yield
afloating-point result. Theresult isan angle, expressed in radians, whose cosineis
X.

Values generated by ACOS range between 0 and m.

ACOS Function 47

Example
x = ACOS (1)
PRINT, x

0

See Also
COS

For alist of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ADD EXEC_ON_SELECT Procedure (UNIX)
Adds asingle new item to the EXEC_ON_SELECT list.

Usage
ADD_EXEC ON_SELECT, lun, command

Input Parameters
lun — Logical unit number.

command — Procedure name.

Description

A new logical unit number and associated command is added to the
EXEC ON_SELECT list. This procedure is designed to be called from an
EXEC_ON_SELECT callback procedure.

See Also
DROP_EXEC_ON_SELECT, EXEC_ON_SELECT, SELECT READ LUN

48 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ADDVAR Procedure
Creates a variable on the SMAINS$ program level and binds alocal variable to it.

Usage
ADDVAR, name, local

Input Parameters

name — A string containing the name of a variable to create on the SMAINS pro-
gram level.

Output Parameters

local — The name of the local variable that you want to bind to the variable name
on the SMAIN$ program level.

Keywords

None.

Example

This example shows how ADDVAR is used to pass a variable from inside a proce-
dure to the SMAIN$ program level.

PRO test_addvar

; Create a scalar variable inside a procedure, then use ADDVAR to pass it to
; the top-level procedure $MAINS.

ADDVAR, ’'sclvar’, 1local
local = 1.2345
local = local + 1.
PRINT, local

END

Now, at the WAVE > prompt, do the following:
test advar
INFO, /Traceback
% At SMAINS.
; Verify that you are now on the $MAIN$ program level.

ADDVAR Procedure 49

INFO, /Variables

; This INFO command verifies that the scalar created inside the
; procedure now exists on the $MAINS$ program level.

SCLVAR FLOAT = 2.23450

See Also
DELVAR, UPVAR

AFFINE Function
Standard Library function that applies an affine transformation to an array.

Usage
result = AFFINE(a, b, [c])

Input Parameters
a— Ann-dimensional array.
b — Aninvertible (n,n) array.

¢ — An n-element vector (optional).

Returned Value

result — An array representing a (and of the same dimensions as a) under the
coordinate transformation y = b#x + c, wherey and x are coordinates for the
result and for a, respectively, which differ from array index coordinatesby asimple
trangdlation to the array centroid.

Keywords

None.

Example

Seewave/lib/user/examples/affine ex.

See Also
ROT, ROTATE, ROT_INT

50 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ALOG Function

Returns the natural logarithm of x.

Usage
result = ALOG(X)

Input Parameters
X — The expression that is> 0 which is evaluated. This expression can be an array.

Returned Value
result — The natural logarithm of x.

Keywords

None.

Discussion
ALOG isdefined as:

y = logx
Double-precision floating-point and complex values return aresult with the same
datatype. All other datatypes are converted to single-precision floating-point and
yield afloating-point result.

ALOG handles complex numbersin the following way:

Alog(x) = Complex(log.(|x|, arctan(x)))

Examples

x = ALOG(10)
PRINT, x
2.30259
x = ALOG(1)
PRINT, x
0

See Also

ALOG10

For alist of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ALOG Function 51

ALOG10 Function
Returns the logarithm to the base 10 of x.

Usage
result = ALOG10(x)

Input Parameters

X — The expression that is> 0 which is evaluated. This expression can be an array.

Returned Value

result — The base 10 logarithm for x.

Keywords

None.

Discussion
ALOGI10 is defined by:

y = logeX

Double-precision floating-point and complex values return aresult with the same
datatype. All other datatypes are converted to single-precision floating-point and
yield afloating-point result.

ALOG10 handles complex numbers in the following way:

Alog10(x) = Complex(log,o(|X|, arctan(x)))

Examples

X = ALOG10(10)
PRINT, x
1

x = ALOG10(100)
PRINT, x

52 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

2

x = ALOG10 (50)
PRINT, x
1.69897

See Also
ALOG

For alist of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ASARR Function

Creates an associative array containing specified variables and expressions.

Usage
result = ASARR(key;, value,, ... key, , value,)
result = ASARR(keys _arr, values list)

Input Parameters

key; — One or more strings, each containing the key name for an element of the
associétive array.

value, — Expressions or variables used to set the values of the associative array
elements.

keys arr — A Fstring array containing one or more key namesfor elements of the
associative array.

values list— A variable of typelist containing expressions or variables used to set
thevalues of the associative array elements. The LIST functionisused to createlist
variables.

Returned Value

result — A new associative array containing the specified elements and their asso-
ciated names.

ASARR Function 53

Keywords

None.

Discussion

An associative array isan array of elements (variables or expressions), each with a
unigue name. The names act like array subscripts; they let you access the elements
of the associative array. An associative array is adistinct datatypein PV=WAVE.
You can use amethod similar to array subscripting to reference the elements of an
associétive array.

Example
This example demonstrates how to create an associative array. The INFO and
PRINT commands are used to show the contents of the array.

asarl = ASARR(’'byte’, 1B, ’'float’, 2.2, ’string’, '3.3’, S
"struct’, {,a:1, b:lindgen(2)})
; Create the associative array by specifying the array elements (key names
; and values) as separate parameters. Note that each element is of a
; different data type.

asar2 = ASARR([’'byte’, 'float’, ’'string’, ’‘struct’], $
LIST(1B, 2.2, ‘3.3’, {,a:1, b:lindgen(2)}))
; Create an associative array that is equivalent to the previous one, only
; this time the input parameters consist of a string array of key names
; and a list array of values.

INFO, asarl, /Full
; Show information on the associative array asar1.

ASAR1 AS. ARR = Agsociative Array(4)

byte BYTE = 1

struct STRUCT = ** Structure $1, 2 tags, 12 length:
A INT 1
B LONG Array (2)

float FLOAT = 2.20000

string STRING = ‘3.3’

PRINT, asarl
; Print the contents of the associative array asar1.

{"byte’ 1 'struct’{ 1 0 1} 'float’ 2.20000 ’'string’3.3 }

PRINT, asar2
; Print the contents of the associative array asar2.

54 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

{'byte’ 1 ’struct’{1 0 1} 'float’ 2.20000 ’‘string’3.3 }
; The contents of the second associative array are the same as the first.

See Also
ASKEYS, ISASKEY, LIST

ASIN Function

Returns the arcsine of x.

Usage
result = ASIN(X)

Input Parameters

X — The sine of the desired angle. Cannot be a complex data type and must bein
therangeof (—1<x<1).

Returned Value

result — The arcsine of x.

Keywords

None.

Discussion

The inverse sine function, or arcsine, denoted by sin— 1, is defined by:

y=sin 1x
if and only if
siny=x

where

-1<x<1 and /2<y< /2

ASIN Function 55

The parameter x can be an array, with the result having the same datatype as x,
where each element contains the arcsine of the corresponding element from x.

When x is of double-precision floating-point data type, the result is of the same
type. All other datatypes are converted to single-precision floating-point and yield
afloating-point result. Theresult isan angle, expressed in radians, whose sineisx.

Values generated by ASIN range between —rt/2 and /2.

Example
X = ASIN(0)
PRINT, x

0

See Also
SIN

For alist of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ASKEYS Function

Obtains the key names for a given associative array.

Usage
result = ASKEY S(asarr)

Input Parameters

asarr — The name of an associative array.

Returned Value
result — A string containing the key names in the given associative array. If the
array isempty, an empty string is returned.

Keywords

None.

56 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

A key name is the name associated with an element in an associative array.
ASKEY Sreturnsthe key names of the elementsin an associative array. If the asso-
ciative array is empty, an empty string is returned. To create an associative array,
use the ASARR function.

Example

ASKEY Sisused to obtain the key namesin an associative array. The names are
used to reference the values of the array to replace the original values with new
integer values. The INFO command is then used to show the modified contents of
the associative array.

asar = ASARR(’byte’, 1B, ’'float’, 2.2, ’'string’, ’'3.3’, $
"struct’, {,a:1, b:lindgen(2)})

keys = ASKEYS (asar)

PRINT, keys
byte struct float string
; These key names appear later in the output of the INFO command.

FOR I = O, N_ELEMENTS(asarl) - 1 DO $
asarl(keys(i)) = 1 + 10

INFO, asarl, /Full
; Show the replaced values.

ASARIAS. ARR = Associative Array(4)
byte INT = 10
struct INT = 11
float INT = 12

string INT = 13

See Also
ASARR, ISASKEY, LIST

ASKEYS Function 57

ASSOC Function

Associates an array definition with afile, allowing random accessinput and output.

Usage
result = ASSOC(unit, array_definition [, offset])

Input Parameters
unit — Thefile unit to associate with array_definition.

array_definition — An expression that defines the datatype and dimensions of the
associated data.

offset — The offset in thefile to the start of the dataiin thefile. For stream filesand
RMS block modefiles, this offset is given in bytes. For RM S record-oriented files,
this offset is specified in records.

TIP The offset parameter is useful for skipping past descriptive header blocksin
files.

Returned Value

result — A variable that associates the array definition with the file.

Keywords

None.

Discussion

ASSOC provides a basic method of random access input/output. The associated
variable (the one storing the association) is created by assigning the result of
ASSOC to avariable. This variable provides a means for mapping afileinto vec-
tors or arrays of a specified type and size.

UNIX USERS ASSOC does not work with UNIX FORTRAN binary files.

58 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example 1

Assume you have abinary file, image file.img, with five 512-by-512 byte
images and a 1024-byte header:

OPENR 1, ’image file.img’

; Open the file.
aimage = ASSOC(1, BYTARR (512, 512), 1024)
imagel = aimage (0)

; Read the first image.
image5 = aimage (4)

; Read the fifth image.

TVSCL, aimage(2)

; Display the third image.
fft image = FFT(aimage (1), -1)

; Do an FFT function on the second image.
arow = ASSOC(1l, BYTARR(512), 1024)
rowl00 = arow(99)

; Read the 100th row.

PLOT, arow(512)
; Plot the first row in the second image.

Example 2

For another example showing how to transfer data into an associated variable, see
the PV-WAVE Programmer’s Guide

See Also
OPEN (UNIX/OpenVMS), OPEN (Windows)

ASSOC Function 59

ATAN Function

Returns the arctangent of the inpuit.

Usage
result = ATAN(Y [, X])

Input Parameters
y — The tangent of the desired angle.

x — If the second argument is supplied, ATAN returns the angle whose tangent is
equal toy /x. If both arguments are zero, the result is undefined.

Returned Value

result — The angle, in radians, whose tangent isy (or, optionally y /x).

Discussion

If two parameters are supplied, the angle whose tangent is equal to y /x isreturned.
The range of ATAN isbetween —rt / 2 and =t / 2 for the single argument case and
between —t and &t if two arguments are given. If y or X are doubl e-precision float-
ing, the result of ATAN is also double precision. Arguments are not alowed to be
complex. All other types are converted to single-precision floating point and yield
floating-point results.

Example

PRINT, !radeg*atan(2,3)
33.6901

; This result is the angle (in degrees) whose tangent is 2/3.

See Also
ACOS, ASIN, COS, SIN, TAN

For alist of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

60 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

AVG Function

Standard Library function that returns the average value of an array. Optionally, it
can return the average value of one dimension of an array.

Usage
result = AVG(array [, dim])

Input Parameters
array — The array that is averaged. Thisarray may be any data type except string.

dim — (optional) The specific dimension of array that will be averaged. Must be
anumber that isin the range 0 < dim< n, where n is the number of dimensionsin
array.

Returned Value

result — The average value of array. If dimis not specified, result will be of float-
ing-point type; otherwise, it will be of the same datatype as array.

If dimisspecified, result isan array containing the average valuesfor all elements
of the specified dimension.

Keywords

None.

Discussion
AVG isdefined as:

n

>

f(x) = X:;

The optional parameter dim allows you to find the average values for one dimen-
sion of array rather than thewholearray. Thefirst dimensioninthearray isdenoted
by 0, the second dimension by 1, and so on.

AVG Function 61

If the dimension you specify isnot valid for array, theinput array isreturned asthe

resullt.
Example 1
array = INTARR (3, 4)
array(*, 0) = [5, 7, 9]
array(*, 1) = [2, 8, 5]
array(*, 2) = [3, 4, 8]
array(*, 3) = [3, 3, 3]
PRINT, AVG(array)
5.00000
PRINT, AVG(array, 0)
7 5 5 3
PRINT, AVG(array, 1)
3 5 6
Example 2

When AVG is called with the dimension parameter, the result is an array with the
dimensions of theinput array, except for the dimension specified. In this case, each
element of the result is the average of the corresponding vector in the input array.
For example, if Array hasdimensionsof (3,4, 5), then the command

avg dim = AVG(array, 1)
is equivalent to these commands:

avg_dim = FLTARR(3, 5)

FOR j = 0,4 DO BEGIN
FOR 1 = 0,2 DO BEGIN
avg dim(i,j) = TOTAL(array(i,*,j)) / 4.
ENDFOR

ENDFOR

See Also
MAX, MEDIAN, MIN, SQRT, STDEV

62 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

AXIS Procedure

Draws an axis of the specified type and scale at a given position.

Usage
AXISII[. X, y1. Z

Input Parameters
X, Y, and z— (optional) Scalars giving the coordinates of the new AXIS.,

Keywords

XAXxis — Specifies how the x-axisis to be drawn:

0 Draws an axis under the plot window, with the tick marks
pointing up.

1 Drawsan axis over the window, with tick marks pointing
down.

YAXis — Specifies how the y-axisisto be drawn:

0 Drawsay-axis at the left of the plot window, with tick
marks pointing to the right.

1 Drawsay-axisat the right of the plot window, with tick
marks pointing to the |eft.

ZAxis— Specifies how the z-axis isto be drawn:

1 Lower-right
2 Lower-left
3 Upper-left
4 Upper-right

Additional keywords let you control many aspects of the plot’s appearance. Addi-
tional plotting keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Channel Position [XYZ]Range

AXIS Procedure 63

Charsize Save [XYZ]Style

Charthick Subtitle [XYZ]Tickformat
Clip T3d [XYZ]Ticklen
Color Thick [XYZ]Tickname
Data Tickformat [XYZ]Ticks
Device Ticklen [XYZ]Tickv
Font Title [XYZ]Title
Gridstyle [XY]Axis [XYZ]Type
Noclip [XYZ]Charsize Y Label Center
Nodata [XYZ]Gridstyle YNozero
Noerase [XYZ]Margin ZAXis

Normal [XYZ]Minor ZVaue

Save — Indicates that the scaling to and from data coordinates established by the
call to AXISisto be saved in the appropriate axis system variable, ! X, 1Y, or | Z. If
not present, the scaling is not changed.

Discussion

If no coordinates are specified, the axisis drawn inits default position as given by
the XAxis, YAXis or ZAxis keyword. When drawing an x-axis, the x-coordinate is
ignored. Similarly, they and z parameters are ignored when drawing their respec-
tive axes.

The new scaleis saved for use by subsequent overplotsif the Save keyword is
present.

Example

The following example shows how the AXI1S procedure can be used with normal
or polar plotsto draw axes through the origin dividing the plot window into four
quadrants:

theta = FINDGEN(361) * I[Dtor

PLOT, /Polar, XStyle=4, YStyle=4, Title='Nine-Leaved Rose',6 $
5 * (COS(9 * theta), theta

64 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Make a polar plot, suppressing the x- and y-axes with the
; XStyle and YStyle keywords.

WAIT, 2

AXIS, 0, 0, XAxis=0, /Data

; Draw an x-axis through data y-coordinate of 0. Because the
; XAxis keyword has a value of 0, the tick marks point down.

WAIT, 2

AXIS, 0, 0, 0, YAxis=0, /Data
; Similarly, draw the y-axis through data x-coordinate of 0.

See Also
PLOT

For more information and an illustration, see the PV=WAVE User’s Guide.

AXIS Procedure 65

BAR Procedure

Plotsa 2D bar graph that can include stacked and grouped bars, aswell as various
color and fill pattern options.

Usage
BAR,[X,]y

Input Parameters

x — (optional) An array of valuesto plot along the x-axis. The values y(i) are
plotted from x(i) to x(i+1).

y — An array of valuesto plot along the y-axis (or the x-axis if /Horizontal is
specified).

If yisa2D array and the Stack keyword is not set, then the first dimension
is construed as a group and the second dimension as a bar value.

If yisa 2D array and the Stack keyword is set, then the first dimension is
construed as a stack and the second dimension as a bar value.

If yisa3D array, then thefirst dimension is construed as a group, the sec-
ond as the stack, and the third as a bar in a stack in agroup. The Stack
keyword is not relevant.

NOTE Each of these plotting optionsis discussed in the Examples section.

Keywords
Barmin — Sets the value to draw the bars down to. (Default: 0)

DrawlLegendBox — If nonzero, a box is drawn around the legend. (Default: no
box)

Endpoints— If set, yisa 2D array containing endpoints (minimum and maximum
values) and Grouped and Stacked keywords are not availab.e.

FillColors— Specifiesa 1D array of color index values. These values specify the
colorswith which the barsarefilled. By default, the bars are filled with solid color.
If either FillSpacing or FillOrientation are used, the bars are filled with lines

66 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

instead of solid color. Inthis case, FillColors specifies the line colors. (Default: no
fill color)

FillLinestyle— An integer or integer array specifying the style of fill lines. If set
to ascalar, all barsarefilled with the same linestyle. If set to an array, the linestyle
of each bar is mapped, sequentially, to the value of each array index. (Default:
IPLinestyle)

NOTE Thiskeyword hasno effect unless either Fill Spacing or FillOrientation are
used.

Valid linestyle indices are shown in the following table:

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot L ong-short-short dashes
5 Long dashes Long dashes

FillOrientation — A floating point scalar or array specifying the orientation of fill
lines, in degrees, counterclockwise from the horizontal. If set to a scalar, the
orientation of fill linesin all barsisthe same. If set to an array, the orientation of
each bar is mapped, sequentialy, to the value of each array index. (Default:
Horizonta lines)

FillSpacing— A floating point scalar or array specifying the space, in centimeters,
betweenfill lines. If set to ascalar, the spacing between linesin al barsisthe same.
If set to an array, the spacing for each bar is mapped, sequentially, to the value of
each array index. (Default: five timesthe value of the Fill Thick keyword, converted
to centimeters.)

FillThick — A floating point scalar or array specifying the thickness of fill lines.
If settoascalar, al barsarefilled with lines of the samethickness. If setto an array,
the thicknesses are mapped, sequentialy, to the value of each array index. A
thickness of 1 isnormal, two is double-wide, and so on. (Default: !P.Thick)

BAR Procedure 67

NOTE Thiskeyword hasno effect unless either Fill Spacing or FillOrientation are
used.

Horizontal — If nonzero, they values are shown on the x-axis. If zero, the x values
are shown on the y-axis.

LegendBoxColor — Aninteger specifying the color of the legend box.

LegendCharSize — A floating-point scalar specifying the size of text in the
legend. (Default: 1.0).

LegendLabels— An array of strings used to label individual bars. The number of
strings in the array must correspond to the number of individual bars.

LegendPosition — A four-element floating point array specifying the position of
the legend in normal coordinates.

LegendTextColor — Aninteger specifying the color of the text in the legend.
LineColors — Specifiesa 1D array of color indices.

OutlineColor — An integer specifying the color index to use for the color of the
outline for the bars (Default: black)

Stacked — If theinput array isa 2D array and the Stacked keyword is set, then the
first dimension of the input array is construed as a stack and the second dimension
as abar value. See the Examples section for examples of stacked and grouped bar
charts.

Width — Sets the width of each bar. When set to 1, bars touch each other. When
set to 0.5, bars are separated by the width of abar. (Default: 0.8)

XTickName — An array of strings specifying the names of tick marks. If the bar
chart represents simplebars or stacked bars, thetick name correspondsto each one.
If the bar chart represents groups of bars or stacked bars, the XTickName
correspond to each group.

YTickName — An array of strings, for the y-axis (or x-axisif the Horizontal
keyword is specified), which specifies both the number of major tick marks (with
no minor tick mark) and their labeling.

Additional BAR keywords are listed below. For adescription of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

[XY]Range Noerase [XY]Title
Position Title Y Label Center

68 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

The x and y variables must be simple numeric types. The dependent axis only
shows mgjor tick marks. Tick marks are placed in the center, to the left, and to the
right of individual bars or groups of bars. Only the center tick is labeled.

Either the FillLineStyle or FillOrientation keyword (or both) must be specified to
fill the barswith lines.

A stacked bar isabar that depicts more than one value, where each value is shown
on top of the previousvalue. A group isaset of two or more related bars appearing
next to one another on the chart. It is possible to create grouped bars that are also
stacked. Refer to thefollowing examplesfor information on producing stacked and
grouped bar charts.

The BAR2D procedure also draws bar graphs; however, it does not permit stacked
and grouped bars.

Examples

This section includes three example plots. First, datais defined for the examples.
Then the following bar plots are created:

» A horizontal bar chart with alegend. The bars are filled with colors and
patterns.

» A chart of grouped bars with alegend. The bars are filled with colors and
patterns.

» A chart of stacked and grouped bars. This plot includes alegend and pattern-
filled bars.

Define Data for the Examples
; The following expressions create an array of data to plot (the

; bar values) and tick names for the x and y-axes.

simple = [10, 20, 10, 40]
XTickNames=["Quarter 1”, "Quarter 2”, ”“"Quarter 3”, "Quarter 4"]
YTickNames=[”$ 0000”, ”$ 1000”7, ”$ 2000”, "$ 3000”]

; The following expression creates a 2D array specifying data for

; four groups of bars containing three sets of bars per group.

groupl = [[100, 200, 100], [200, 150, 100], [400, 200, 100], $

BAR Procedure 69

[100, 110, 120]]

; The following expression creates a 3D array specifying data for
; two groups of bars containing three stacks with two values per
; stack.
group2 = [[[10, 20], [30, 40], [100, 60]1, S

[[30, 10], [50, 50], [e0, 40]]]

Example 1: Horizontal Bars

Note that the patterns inside the bars are created by filling the bars with lines of
various styles and thicknesses.

BAR, simple, XTickName=XTickNames, YTickName=YTickNames, $
FillOrientation=[30, 10, 0, 90], LineCol=[1,3,5,7], Outline=4, $
Fillcolors=[4, 5, 7, 1], Filllinestyle=[1,2,3,4], $
Fillthick=1[1,2,3,4], $
LegendLabel=["EAST”, ”NORTH”, "WEST”, ”SOUTH"], $
LegendTextColor=5, LegendCharSize=2, $
LegendPosition=[0.00, 0.3, 0.22, 0.6], $
Position=[0.3, 0.1, 0.95, 0.95], $
/Horizontal, Title="Patterned Horizontal Bar”

70 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FPatterned Harizantal Bar
-

Quarter 4

Quarter 3

_|-
RTH
) Cuarter 2 —
H

Quarter 1 —

T
_|

1000 4 2000 $ 3000

Figure 2-1 A horizontal bar chart with a legend. The bars are filled with colors and lines.

Example 2: Grouped Bars

In thisexample, a2D array is used to create a chart of grouped bars.

BAR, groupl, XTickName=XTickNames, YTickName=YTickNames, $
FillOrientation=[30, 0, 90], LineCol=[1,5,7], Outline=8, $
Fillcolors=[4, 7, 1], FillLinestyle=[1,3,4], $
fillthick=[1,3,4], $
LegendLabel=["EAST”, ”NORTH”, "“SOUTH”], LegendTextColor=3, $
LegendCharSize=2, /DrawLegendBox, $
LegendPosition=[0.79, 0.7, 0.99, 0.9]1, $
Position=[0.1, 0.1, 0.8, 0.95], $

Title="Grouped Bars”

BAR Procedure 71

§ 1000

Guarter 1 Quarter 2 Quarter 3 Quarter 4

Figure 2-2 A bar chart with grouped bars and a legend. The bars are filled with colors and
line.

Example 3: Stacked Bars
In this example, a3D array is used to create a chart of grouped and stacked bars.

BAR, groupl, XTickName=XTickNames, $
FillOrientation=[30, 0, 90], LineCol=[1,5,7], Outline=8, $
filllinestyle=1[1,3,4] , $
LegendLabel=["EAST”, "”"NORTH”, "“SOUTH”], LegendTextColor=1, $
LegendCharSize=2.0, /DrawLegendBox, $
LegendPosition=[0.79, 0.7, 0.99, 0.9], $
Position=[0.2, 0.1, 0.8, 0.95],3
/Stacked, Title="Stacked Bars”

72 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Stocked Bars

GQuarter 3 Guarter 4

Figure 2-3 A bar chart with grouped and stacked bars. This plot includes a legend and line
filled bars.

See Also
BAR2D, BAR3D

BAR2D Procedure
Creates a 2D bar graph.

Usage
BAR2D, [x,]y

Input Parameters

x — (optional) Specifiesa 1D array of x values. (Default: the index number in the
y array)

BAR2D Procedure 73

y — Specifiesa 1D array of y values.

Keywords

ColumnColors— An array of color indices specifying the colors to use for the
column bars.

Outline — If nonzero, each bar is outlined. (Default: no outlining)

Additional BAR keywords are listed below. For adescription of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Background Normal [XY]Minor
Charsize Position [XY]Range
Charthick Subtitle [XY]Style
Color Thick [XY]Ticklen
Data Ticklen [XY]Tickname
Device Title [XY]Ticks
Font [XY]Charsize [XY]Title
Gridstyle [XY]Gridstyle Y LabelCenter
Linestyle [XY]Margin

Discussion

This procedure creates a simple bar chart. To create more complex bar charts that
include grouped and stacked bars, legends, and pattern-filled bars, see the BAR
procedure.

Examples
y = FINDGEN (5)
TEK_COLOR

BAR2D, vy, Title= ’Buffalo Securities Demo’, Xtitle = ‘X Axis’, $
Ytitle = 'Y Axis’

74 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Buffole Securiti

Figure 2-4 A simple 2D bar chart.

See Also
BAR, BAR3D

BAR3D Procedure
Creates a 3D bar graph.

Usage
BAR3D, z

Input Parameters
z— A 2D array of zvalues.

BARS3D Procedure 75

Keywords

ColumnColors— Anarray of color indices specifying the colorsto usefor column
bars.

Noshade— If nonzero, turns off the shading of each bar. (Default: bars are shaded)
Outline — If nonzero, each bar is outlined. (Default: no outlining)
RowColors— An array of color indices specifying the colors to use for row bars.

Other BAR3D keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

AX Font Ticklen [XYZ]Ticklen
Az Gridstyle Title [XY Z]Tickname
Background Horizontal [XYZ]Charsize [XYZ]Ticks
Charsize Linestyle [XYZ]Gridstyle [XYZ]Title
Charthick Normal [XYZ]Margin Y Label Center
Color Position [XYZ]Minor ZAXis

Data Subtitle [XYZ]Range ZVaue

Device Thick [XYZ]Style

Discussion

The z parameter isa 2D array of elevation values. The 3D effect is established by
modifying the colortable to create darker color values for use on the top and left
sides of the bars. By default, the bars are displayed vertically (upward).

Examples
xx = DIST(5)
TEK_COLOR

BAR3D, xx, Title= ’'Buffalo Securities Demo’, Xtitle = ’'X Axis’, $
Ytitle = 'Y Axis’, Ztitle = 'Z Axis’

See Also
BAR, BAR2D

76 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BESELI Function
Calculates the Bessel | function for the input parameter.

Usage
result = BESELI(x [, n])

Input Parameters
X — The expression that is evaluated.
n — (optional) An integer > 0. (Default: 0)

Returned Value

result — The Bessdl | function for x, having the same dimensions as x.

Keywords

None.

Discussion

The Bessdl | function is one of amathematical series that arise in solving
differential equationsfor systemswith cylindrical symmetry. The Bessel seriescan
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

The Bessdl | function issimilar to the Bessal Jfunction, except that it is evaluated
for imaginary parameters.

BESELI isanumerical approximation to the solution of the differential equation
for an imaginary x:

XEY' +X*Yy —(%+n?)*y=0n>0

The BESELI function is a solution of the first kind of (modified) Bessel functions
of order n. The general solution of the above differential equation using the
BESEL I function can be shown in thefollowing waysfor arbitrary constants A and
B:
y = A * BESELI(x, n) + B * BESELI(x, -n)

; Solutionforn=#0,1,2, ...

BESELI Function 77

y = A * BESELI(x, n) + B * BESELK(x, n)
; Solution for all n.

or

dx
x - (BESELI (x, n))*

y = A- BESELI(x, n)+ B - BESELI (x, n)-j

; Solution for all n.

Note that BESELK may be generated from the BESELI function.

See Also
BESELJ, BESELY

For asynopsisof all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sample usage of the Bessel functionsin physics, see Boundary Value Problems,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELJ Function
Calculates the Bessel Jfunction for the input parameter.

Usage
result = BESELJ(x [, n])

Input Parameters
X — The expression that is evaluated.
n — (optional) An integer. (Default: 0)

Returned Value

result — The Bessel Jfunction for x. It isafloating-point data type, with the same
dimensions as x.

78 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

The Bessdl Jfunction is one of a mathematical seriesthat arisein solving
differential equationsfor systemswith cylindrical symmetry. The Bessel seriescan
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

Bessel JisaBessel function of thefirst order, and has afinite limit as x approaches
zero.

BESELJis anumerical approximation to the solution of the differential equation
for areal x:

XEY' +x*y +(x-n?)*y=0n>0

The BESEL Jfunction isasolution of thefirst kind of Bessel functions of order n.
The general solution of the above differential equation using the BESEL Jfunction
can be shown in the following ways for arbitrary constants A and B:

y = A * BESELJ(x, n) + B * BESELJ(x, -n)
; Solutionforn#0,1,2, ...

vy = A * BESELJ(x, n) + B * BESELY(x, n)
; Solution for all n.

or

dx
x - (BESELJ(x, n))*

y = A- BESELJ(x, n) + B- BESELJ(x, n) j

; Solution for all n.

UNIX USERS Under UNIX, BESELJusesthej0 (3M),j1 (3M),and jn (3M)
functions from the UNIX math library. For details about any of these functions,
refer to its UNIX man page.

See Also
BESELI, BESELY

BESELJ Function 79

For asynopsisof all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sampl e usage of the Bessel functionsin physics, see Boundary Value Problens,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELY Function
Calculatesthe Bessdl Y function for the input parameter.

Usage
result = BESELY (x [, n])

Input Parameters
X — The expression that is evaluated. This expression must be > 0.
n — (optional) An integer. (Default: 0)

Returned Value

result — The Bessdl Y function for x, having the same dimensions as x.

Keywords

None.

Discussion

The Bessdl Y function is one of a mathematical seriesthat arisein solving
differential equationsfor systemswith cylindrical symmetry. The Bessel seriescan
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

Bessel Y isaBessal function of the second order. Unlike the Bessel Jfunction, it
has no finite limit as x approaches zero.

BESELY isanumerica approximation to the solution of the differential equation
for areal x:

XXy '+ x*y+ (x-n?)*y=0n=0

80 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The BESELY function isasolution of the second kind of Bessel functions of order
n. The general solution of the above differential equation using the BESEL J
function is as follows:

BESELJ(X, n)cos(nn) —BESELJ(X, —n)

BESELY(x,n) = sn(nm)

whenn=0,1,2,...

and

BESELJ(X, p)cos(pr) —BESELJ(X, —p)

BESELY(x,n) = lim(p—n) Sn(pm)

whenn=0,1,2,...

UNIX USERS Under UNIX, BESELY usesthej0 (3M),j1(3M),andjn (3M)
functions from the UNIX math library. For details about any of these functions,
refer to its UNIX man page.

See Also
BESELI, BESELJ

For asynopsisof all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sample usage of the Bessel functionsin physics, see Boundary Value Problems,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELY Function 81

BILINEAR Function

Standard Library function that creates an array containing values calculated using
abilinear interpolation to solve for requested pointsinterior to an input grid spec-
ified by the input array.

Usage
result = BILINEAR(array, X, Y)

Input Parameters

array — The array that isinterpolated. The array must be a two-dimensional
floating-point array with dimensions (n, m).

x — A floating-point array containing the x subscripts of array (see Discussion).
Must satisfy the following conditions:

0<min(X)<n
O<max(x)<n

y — A floating-point array containing the y subscripts of array (see Discussion).
Must satisfy the following conditions:

0<min(y)<m

0< max(y)<m

Returned Value

result— A two-dimensional floating-point array (n, m) containing theresults of the
bilinear interpolation for the requested points.

If xisof dimensioni andyisof dimensionj, theresult hasdimensions (i, j). In other
words, both x and y will be converted to (i, j) dimensions. If you want the result to
havedimensions (i, j), then x can be either FLTARR(i) or FLTARR(i, j). Thisisalso
truefory.

Keywords

None.

82 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

Given atwo-dimensional input array, BILINEAR uses the specified set of
reference points to compute each element of an output array with abilinear
interpolation algorithm.

Thearray x/y containsthe X/Y subscripts of the elementsin array that are used for

the interpolation:

If xisaone-dimensional array, the same subscripts are used in each row of the

output array.

If xisatwo-dimensional array, different X subscripts may be used on each row
of the output array.

If yisaone-dimensional array, the same subscripts are used in each column of

the output array.

If yisatwo-dimensional array, different Y subscripts may be used on each col-
umn of the output array.

Notethat specifying x and y astwo-dimensional arraysallowsyouto independently
definethe X and Y location of each point to beinterpolated from the original array.

TIP Using two-dimensional arraysfor x and y with BILINEAR in-creases the
speed of the algorithm. If x and y are one-dimensional, they are converted to two-
dimensional arrays before they are returned by the function. This permits them to
be reused in subsequent callsto BILINEAR, thereby saving time.

Conversely, BILINEAR can be time consuming for large, one-dimensional arrays.

Example 1
array = FLTARR(3,3)

array (1, 1) =

X
y =

; Create an array that is all zeros except for a center value of 1.

[.1, .2]
[.1, .4,

.91

; Find the values where x = .1, .2 andy = .1, .4, .7, .9, knowing that
;when x=1andy =1, the value in the array is 1, but at all other

; points it is zero.

PRINT, BILINEAR (array, X, VY)

0

0
0
0

.0100000
.0400000
.0700000
.0900000

0.
0.0800000
0.
0.180000

0200000

140000

BILINEAR Function 83

Example 2

a = DIST(100)

original = SHIFT(SIN(a/5)/EXP(a/50),50,50)
; Create original data.

LOADCT, 5
; Load color table 5.

TVSCL, original

; Display data.
b = FINDGEN(100)

; Make an array of linear values from 0 to 99.
PLOT, b

; Look at b.
x = b"2 / 100.0

; Create exponentially "warped" arrays to be used for spacing on the x-axis.
OPLOT, x

; Look at x; it is non-linear.
y = x

; Set 'y equal to x.

result = BILINEAR (original, x, vy)

; Perform bilinear interpolation from "original” to "result" based
; on the (non-linear) spacing characteristics of the indices in x and y.

ERASE
TVSCL, result

; Note that the original data has been interpolated in the upper right
; corner of "result" due to the non-linearity of the x- and y-axis arrays.

See Also
CONGRID, INTERPOL, SPLINE

84 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BINDGEN Function

Returnsabyte array with the specified dimensions, setting the contents of theresult
to increasing numbers starting at O.

Usage
result = BINDGEN(dim, [, dim, ..., dim.])

Input Parameters

dim; — The dimensions of the result array. May be any scalar expression. Up to
eight dimensions can be specified.

Returned Value

result — An initialized byte array. If the resulting array is treated as a one-
dimensional array, then itsinitialization is given by the following:

array (i) = BYTE (i MOD 256)

n
for i =0, 1,...,(HDj—1] :

i=1

Keywords

None.

Discussion

Each element of theresult array is set to the value of its one-dimensional subscript.

Example
a = BINDGEN (4, 2)
; Create a byte array.
INFO, a
A BYTE = Array (4, 2)

PRINT, a
0 1
4 5

BINDGEN Function 85

See Also

BYTARR, BYTE, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN

BLOB Function

Standard Library function that isolates a homogeneous region in an array.

Usage
result = BLOB(a, i, b)

Input Parameters
a— Anarray of ndimensions.
i — A vector of nintegers giving a seed element for the region.

b — A two-element vector giving bounds for values in the region.

Returned Value

result — An (m,n) array of m n-dimensional indicesinto a. result defines the
region containing i whose valuesliein the range [b(0),b(1)]. If no such region
exists then result is returned as -1.

Keywords

k — A positive integer (Iessthan or equal to n) controlling connectivity: two cells
are connected if they share acommon boundary point, and if their centroids are
within the square root of k of each other. k =1 by default, which implies connected
cells share acommon face.

Example

Seewave/lib/user/examples/blob grow.pro

See Also
BLOBCOUNT, BOUNDARY, NEIGHBORS

86 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BLOBCOUNT Function

Standard Library function that counts homogeneous regions in an array.

Usage
result = BLOBCOUNT(a, b)

Input Parameters
a— Anarray of ndimensions.

b — A two-element vector of bounds for valuesin aregion.

Returned Value

result — A list in which each element defines adistinct region whose valuesliein
therange [b(0),b(1)]. result(j) isa(m(j),n) array of m(j) n-dimensional indicesinto
a. If no such regions exist, then result is returned as - 1.

Keywords

k — A positive integer (Iessthan or equal to n) controlling connectivity: two cells
are connected if they share a common boundary point, and if their centroids are
within the square root of k of each other. k = 1 by default, which implies that
connected cells share a common face.

Example 1
a = (image read(!data_dir+'vni small.tif')) ('pixels')
a = bytscl(resamp(a,500,500)) & tv, a

r = blobcount (a, [255,255])

for i = 0, n_elements(r)-1 do a(index conv(a,r(i))) = 50 & ¢tv, a

Example 2

Seewave/lib/user/examples/blobcount ex.pro

See Also
BLOB, BOUNDARY, NEIGHBORS

BLOBCOUNT Function 87

BOUNDARY Function

Standard Library function that computes the boundary of aregion in an array.

Usage
result = BOUNDARY (a,r)

Input Parameters
a— An array of ndimensions.

r — A vector of indices defining the region of a.

Returned Value

result — A vector of indices defining the boundary of r.

Keywords

k — A positive integer (Iess than or equal to n) defining connectivity. A boundary
element of r isan element of r with neighborsnotinr; two array cellsare neighbors
if they share acommon boundary point and their centroids are within the square
root of k of each other. k = 1 by default, which implies neighbors share a common
face.

Examples
a = indgen(5, 4) & pm, a
print, fix(boundary(a,[1,2,3,6,7,8,12,13]1))

(
print, fix(boundary(a,[1,2,3,6,7,8,12,13],k=2))
(

a = bytscl(dist(500)) & r = where(150 le a and a le 200)
a(boundary(a,r)) = 0 & tv, a
See Also

BLOB, BLOBCOUNT, NEIGHBORS

88 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BREAKPOINT Procedure

Lets you insert and remove breakpoints in programs for debugging.

Usage
BREAKPOINT, file, line

Input Parameters
file— The name of the source file in which to insert the breakpoint.

line — Specify either aline number (integer) or a procedure/function name
(string). If you specify aline number, the breakpoint is set at that line. If you
specify a procedure or function name, the breakpoint is set at the beginning of the
procedure or function.

Keywords
Allclear — Removes all currently set breakpoints.

Clear — Removes the breakpoint specified by itsindex, or by thefile and line
parameters. If only one input parameter is specified, it isinterpreted as an index
identifying the currently set breakpoint. If two input parameters are specified, they
areinterpreted as the file and line of the currently set breakpoint.

Set — Sets abreakpoint in the specified file at the specified line number.

Discussion

A breakpoint causes program execution to stop after the designated statement is
executed. Breakpoints are specified using the source file name and line number.
You can insert breakpoints in programs without editing the source file.

Once a breakpoint has stopped execution, use .CON to continue execution.

Use INFO, /Breakpoint to display the breakpoint table, which givesthe
index, module, line number, and file location of each breakpoint.

Examples
To clear abreakpoint:

BREAKPOINT, /Clear, 3

BREAKPOINT Procedure 89

; Clear the breakpoint with index 3.

BREAKPOINT, /Clear, ’'test.pro’, 8

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8.

To set abreakpoint at line 23, in the sourcefile xyz . pro:
BREAKPOINT, ’'xyz.pro’, 23
or

BREAKPOINT, /Set, ’'xyz.pro’, 23

See Also
CHECK_MATH, INFO, ON_ERROR, STOP

BUILDRESOURCEFILENAME Function

Standard library routine that returnsthe full pathname for a specified resourcefile.

Usage
resource _file = BUILDRESOURCEFILENAME(file)

Input Parameter

file— The name of the resource file.

Returned Value

resource_file— A string containing the resource file path.

Keywords

Appdir — A string that specifies the application directory name. Thisisthe
directory in which the application searches for resource files, string resourcefiles,
and iconfiles. (Default: ' vdatools”’)

Subdir — A string specifying aresource file subdirectory. (Default:! Lang, whose
default string is * american’)

90 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

By default, the function looks for file first in directories specified by the
environment variable WAVE RESPATH.

UNIX USERS TheWAVE RESPATH environment variableisacolon-separated
list of directories, similar to theWAVE PATH environment variablein PV=WAVE.
If not found inaWAVE RESPATH directory, the directory <wavedirs>/xres/
|Lang/vdatools issearched, where <wavedirs isthe main PV=WAVE direc-
tory and !Lang represents the value of the ILang system variable (!Lang default is
"american’).

OpenVMS USERS TheWAVE RESPATH logical isacomma-separated list of

directories and text libraries, similar to the WwAVE PATH logical in PV=-WAVE. If

not found in aWAVE RESPATH directory, the directory

<wavedirs: [XRES. !|Lang.VDATOOLS] issearched, where <wavedirs isthe
main PV=WAVE directory and ! Lang representsthe value of the!Lang system vari-
able (Lang default is ' american’).

Windows USERS TheWAVE RESPATH environment variable is asemicolon-
separated list of directories, similar to the WAVE_ PATH environment variable in
PV=WAVE. If not found in aWAVE_RESPATH directory, the directory
<wavedirs\xres\ !Lang\vdatools issearched, where <wavedirs isthe
main PV=WAVE directory and ! Lang representsthe value of the !Lang system vari-
able ('Lang default is * american’).

If Subdir aloneis specified, thefile is searched for in:
(UNIX) <wavedirs/xres/subdir/vdatools
(OpenVMS) <wavedirs>: [XRES.SUBDIR.VDATOOLS]
(Windows) <wavedirs>\xres\subdir\vdatools

Where <wavedirs> isthe main PV=WAVE directory.

If only Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedirs>/xres/!Lang/appdir
(OpenVMS) <wavedirs: [XRES. !Lang.APPDIR]
(Windows) <wavedirs\xres\!Lang\appdir
Where <wavedir> isthe main PV=WAVE directory.

BUILDRESOURCEFILENAME Function 91

If both Subdir and Appdir are specified, the application searches for resourcesin
the following directory:

(UNIX) <wavedir>/xres/subdir/appdir
(OpenVMS) <wavedirs: [XRES.SUBDIR.APPDIR]
(Windows) <wavedirs>\xres\subdir\appdir
Where <wavedir> isthe main PV=WAVE directory.

If thefileis not aready in the resource database, the full pathname is returned.

Example

The following commands are taken from the code for a VDA Tool called
WzMyVDA. Thefull pathname of theresourcefilefor WzMyV DA isreturned and
is passed to the Resource keyword of Wwinit.

resource file = BUILDRESOURCEFILENAME (’'wzmyvda.ad’)

top = WwInit (‘WzMyVDA’, ’'VDATools’, layout, $
'DestroyCB’, Shell name = 'WzMyVDA’', $
Layout name = 'toolArea’, $

Title = unique name, /Form, $
ConfirmClose = ’'ConfirmClose’, $
Resource = resource file, $

Userdata = unique name)

See Also
LOADRESOURCES, LOADSTRINGS

For information on environment variables and logicals used with PV=WAVE, see
the PV-WAVE Programmer’s Guide

92 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BUILD_TABLE Function

Creates a table from one or more vectors (one-dimensional arrays).

Usage
result = BUILD_TABLE(' var, [aliad], ..., var, [aliag] ')

Input Paramters

var; — A vector (one-dimensional array) variable. If additional vectors are
specified, they must contain the same number of elements as var;. The input
variable(s) can be of any datatype.

alias— (optional) Specifiesanew namefor the table column. By default, theinput
variable’'snameis used.

Returned Value

result — A table containing n columns, where nis equal to the number of input
variables.

Input Keywords

In_Structure— A scalar string expression that specifies the name of aPV=WAVE
structure to use to create the result table. This structure can either be defined by
the user, or obtained from the Out_Structure keyword from a previous
BUILD_TABLE call. If user-defined, the tag definitions of this structure must
meet the requirements for PV=WAVE table variables. If no value is specified by
In_Structure, PV=WAVE creates a new hamed structure, based on the types of the
column variables specified in the parameter string. The purpose of thiskeyword is
to allow you to append new rows to an existing table variable.

Output Keywords

Out_Structure — A string variable which receives the name of the PV=WAVE
structure that was used to create the result table. The purpose of this keyword isto
allow you to append rows to the result table with subsequent callsto
BUILD_TABLE. In this scenario, Out_Structureis used to save the name of the
structure created during the first BUILD_TABLE call. This same structure name
isused (with the In_Structure keyword) to append rows to the result table.

BUILD_TABLE Function 93

Discussion

Once created, you can subset the table using the QUERY _TABLE function. Each
vector must have the same number of elements. If not, an error message is
displayed and the table is not created.

A tableisbuilt from vector (one-dimensional array) variables only. You cannot
include expressions in the BUILD_TABLE function. For example, The following
BUILD_TABLE cal is not allowed:

result = BUILD TABLE('EXT(0:5), COST(0:5)")

However, you can achieve the desired results by performing the array subsetting
operations first, then using the resulting variablesin BUILD_TABLE. For
example:

EXT = EXT(0:5)

COST = COST(0:5)

result = BUILD TABLE(’EXT, COST’)

In addition, you cannot include scalars or multidimensional-array variablesin
BUILD_TABLE.

NOTE ASC and DESC are reserved words (used by QUERY _TABLE for direc-
tion) and thus are not alowed to be used as variable names or aliases.

Example 1

The following command creates a table consisting of eight columns of data. The
columns are created from data read into PV=WAVE and placed into vector
variables.

phone data = BUILD TABLE ('DATE, TIME, ' + $
'DUR, INIT, EXT, COST, AREA, NUMBER’)

Here is a portion of the resulting table:

DATE TIME DUR INIT EXT COSsT AREA NUMBER
901002 093200 21.40 TAC 311 5.78 215 2155554242
901002 094700 1.05 BWD 358 0 303 5553869
901002 094700 17.44 EBH 320 4.71 214 2145559893
901002 094800 16.23 TDW 289 0 303 5555836
901002 094800 1.31 RLD 248 .35 617 6175551999

94 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DATE TIME DUR INIT EXT COST AREA NUMBER
901003 091500 2.53 DLH 332 .68 614 6145555553
901003 091600 2.33 JAT 000 0 303 555344
901003 091600 .35 CCw 418 .27 303 5555190
901003 091600 1.53 SRB 379 .41 212 2125556618

You can use the INFO command to view the new table structure, for example:

INFO, /Structure, phone data
** Structure TABLE 0, 8 tags, 40 length:

DATE LONG 901002
TIME LONG 93200

DUR FLOAT 21.4000
INIT STRING "TAC’

EXT LONG 311

COST FLOAT 5.78000
AREA LONG 215
NUMBER STRING 2155554242

The Structure keyword is used in this example because tables are represented in
PV=WAVE as an array of structures.

The QUERY _TABLE function can be used to retrieve information from thistable.
For example:

res = QUERY TABLE (phone data, ' * Where COST > 1.0")

This query produces anew table containing only the rows where the cost is greater
than one dollar.

Example 2

This example demonstrates the use of the optional alias parameter. This parameter
lets you specify new names for the columns of the table. By default, the names of
the input variables are used as column names.

phone datal = BUILD TABLE ('DATE Call Date,’ + $
TIME Call Time, DUR Call Length,’ + $
"INIT, EXT, COST Charge, AREA Area Code, '+ $
'NUMBER Phone Number’)

BUILD_TABLE Function 95

The structure of this table reflects the new column names:

INFO, /structure, phone data
** Structure TABLE 0, 8 tags, 40 length:

CALL_DATE LONG 901002
CALL_TIME LONG 93200
CALL_ LENGTH FLOAT 21.4000
INIT STRING "TAC’

EXT LONG 311
CHARGE FLOAT 5.78000
AREA_CODE LONG 215
PHONE_NUMBER STRING 2155554242
See Also

GROUP _BY, ORDER _BY, QUERY_TABLE, UNIQUE
For more information on BUILD_TABLE, see,

For information on reading datainto variables, see.

BYTARR Function

Returns a byte vector or array.

Usage
result = BY TARR(dim, [, dim, ..., dim,])

Input Parameters

dim; — The dimensions of the array. This may be any scalar expression, and can
have up to eight dimensions specified.

Returned Value

result — A one-dimensional or multi-dimensional byte array.

96 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Nozero — Normally, BY TARR sets every element of the result to zero. If Nozero
is nonzero, this zeroing is not performed, thereby causing BY TARR to execute
faster.

Examples
a = BYTARR (5)
PRINT, a
0 0 0 0 0
b = BYTARR (2, 3, 5, 7)
INFO, b
B BYTE = ARRAY (2, 3, 5, 7)

See Also

BINDGEN, BYTE, BYTEORDER, BYTSCL, DBLARR,
COMPLEXARR, FLTARR, INTARR, LONARR,
MAKE_ARRAY, STRARR

BYTE Function

Converts an expression to byte data type.

Extracts data from an expression and placesit in a byte scalar or array.

Usage
result = BY TE(expr)

This form is used to convert data.

result = BY TE(expr, offset [, dimy, ..., dim,])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted.

To extract data:

BYTE Function 97

expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin. If present, causes BY TE to extract data, not convert
it.

dim, — (optional) The dimensions of theresult. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value
For data conversion:

result — A copy of expr converted to byte data type. The result has the same size
and structure (scalar or array) as expr.

For extracting data:

result— A copy of only part of expr—the part that is defined by the offset and dim
input parameters. The result has the size and structure of the specified dimensions
and is of the byte data type. If no dimensions are specified, the result is scalar.

Keywords

None.

Discussion

BY TE can be useful in avariety of applications — for example, in hexadecimal
math, when you want to be certain that you are working with abyte valueto ensure
that any comparison you make is valid.

If expr is of type string, each character is converted to its ASCII value and placed
into avector. In other words, each vector element isthe ASCII character code of
the corresponding character in the string.

If expr is not of type string, then expr is converted to byte data type. The result is
expr modulo 256.

TIP Use BYTSCL to convert expr to byte data type using scaling rather than
modulo.

CAUTION If the values of expr are within the range of along integer, but outside
the range of the byte data type (0 to +255), a misleading result occurs without an

98 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

accompanying message. For example, BYTE (256) erroneoudly resultsin 0. If the
values of expr are outside the range of along integer datatype, an error message
may be displayed.

In addition, PV=WAV E does not check for overflow during conversion to byte data
type. Thevauesin expr are simply converted to long integers and thelow 8 bitsare
extracted.

Example 1
a = BYTE('0Olabc’)
INFO, a
A BYTE = Array (5)
PRINT, a
48 49 97 98 99

Example 2
a = BYTE(1.2)
PRINT, a

1

Example 3
a = BYTE(-1)
PRINT, a
255
; The calculated result is 255 (bytes are modulo 256).

See Also

BINDGEN, BYTARR, BYTEORDER, BYTSCL, COMPLEX, DOUBLE,
FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV=WAVE
Programmer’s Guide

BYTE Function 99

BYTEORDER Procedure

Convertsintegers between host and network byte ordering. Thisprocedure can aso
be used to swap the order of bytes within both short and long integers.

Usage
BYTEORDER, variable,, ..., variable,

Input Parameters

variable,— A variable (see Discussion below).

Output Parameters

variable, — A variable (see Discussion below).

Keywords
Htonl — Host to network, longwords.
Htons— Host to network, short integers.

Lswap — Longword swap. Always swaps the order of the bytes within each
longword. For example, the four bytes within alongword are changed from
(B,B,:B,B,)t0(B,,B,B,,B).

Ntohl — Network to host, longwords.
Ntohs — Network to host, short integers.

Sswap — Short word swap. Always swapsthe byteswithin short integers. Theeven
and odd numbered bytes are interchanged.

Discussion

BYTEORDER is most commonly used when dealing with binary data from non-
native architecturesthat may have different byte ordering. An easier solution to use
when reading or writing this sort of datais the XDR format, as explained in the
PV=WAVE Programmer’s Guide

Thesize of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BY TEORDER operates on both scalars

100 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

and arrays. The parameter must be a variable, not an expression or constant, and
may not contain strings.

NOTE The contents of variable are overwritten by the result.

Network byte ordering is big endian. This means that multiple byte integers are
transmitted beginning with the most significant byte.

Examples

a = '1234'X

; Form a hexadecimal value that can be easily interpreted. Note that

; the hex value "12" is in the high-order byte, and "34" is in the low order byte.
b=a

; Remember that b will be overwritten by BYTEORDER.
BYTEORDER, b, /Sswap
PRINT, Format='(2Z9)’, a, b

1234 3412

; The result shows that the high- and low-order bytes in b have been switched.

a 12345678’ XL

b=a
BYTEORDER, b, /Lswap
PRINT, Format=’'(2Z9)’, a, b
12345678 78563412
; Bytes in b are swapped as expected, whereas in hexadecimal
; format, two digits represent a single byte.
See Also
BYTE

BYTEORDER Procedure 101

BYTSCL Function
Scales and converts an array to byte data type.

Usage
result = BY TSCL (array)

Input Parameters
array — The array to be scaled and converted to byte data type.

Returned Value

result — A copy of array whose values have been scaled and converted to bytes.

Keywords

Max — The maximum value of array elements to be considered. If Max is not
specified, array is searched for its largest value.

Min — The minimum value of array elements to be considered. If Min is not
specified, array is searched for its smallest value.

Top — The maximum value of the scaled result. (Default: 255)

Discussion

BYTSCL can be used in avariety of applications— for example, to compress the
gray levelsin an image to suit the level s supported by the particular hardware you
areusing. It can also be used to increase or reduce the contrast of an image by
expanding or restricting the number of gray levels used.

BYTSCL linearly scales all values of array that lie in the range (Min < x < Max)
into the range (0 < x < Top). The result has the same number of dimensions as the
original array.

If the values of array are outside this range (Min < x < Max), BY TSCL maps al
values of array < Min to zero, and maps all values of array > Max to Top (255 by
default).

102 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example 1

To scale an array of floats to byte values, you might enter:

arr = FINDGEN (100)
byt = BYTSCL (arr, Max=50.0)
PRINT, SIZE (byt)
1 100 1 100
PRINT, byt
0 5 10 15 20 25 30 35 40 45 50 56 61 66 71 76 81
86 91

96 101 107 112 117 122 127 132 137 142 147 152 158 163 168 173
178 183 188

193 198 203 209 214 219 224 229 234 239 244 249 255 255 255 255
255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255

255 255 255 255 255

Example 2

Thisexample usesthe BY TSCL function to enhance the contrast of animage. The
image is stored in a byte array, b. The argument

BYTSCL (b, Min = 50, Max = 70)

in the second call to the TV procedure scales the values of b so all byteswith a
valuelessthan or equal to 50 are set to 0, and all byteswith avalue greater than or
equal to 70 are set to 255. All bytes with a value between 50 and 70 are scaled to
lieintherange{0...255}.

OPENR, unit, FILEPATH(’'whirlpool.img’, Subdir = ‘data’), /Get_ Lun
; Open the file galaxy.dat for reading.

b = BYTARR(512,512)
; Retrieve the first galaxy image, which is stored as a 256-by-256 byte array.

READU, unit, b

FREE_LUN, unit

!0rder = 1

LOADCT, 3

WINDOW, 0, Xsize = 1024, Ysize = 512

; Load the red temperature color table and create a window big
; enough for two images.

BYTSCL Function 103

TV, b, 0

; Display the image, without any contrast enhancement, at left side of window.
TV, BYTSCL(b, Min = 50,

Max = 70), 1
; Display the contrast enhanced image at right side of window.

Figure 2-5 Galaxy image before (left) and after (right) contrast enhancement.

See Also
BYTE, BYTARR, BINDGEN

104 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CALL_UNIX Function (UNIX)

Lets a PV=WAVE procedure communicate with an external routine written in C.

Usage
result = CALL_UNIX(p, [, P2, -+ » P3o])

Input Parameters

p;i — A variable of any type. At least one parameter must be passed, but there can
be up to 30 parameters. If the external routine does not require any parameters, the
value of p must be zero.

Returned Value

result — A user-defined variable or data type to be returned from the external
program. The returned variable cannot be —1, since -1 is reserved to indicate
failure.

Keywords

Close — If present and nonzero, causes PV=WAVE to close Unit at the end of
CALL_UNIX. (If Unit is not specified, Close has no effect.)

Hosthame— A string that identifies the node name of the host on which the called
external program is executing. If not specified, the default value of “localhost” is
used.

Procedure— A string with amaximum length of 40 characters. Can say anything,
but its intended use isto control program flow in the external routine.

Program — An integer identifier that enablesthe C routinew_1isten to match
aparticular call to CALL_UNIX to a particular external routine. Must be greater
than or equal to zero. The default valueis zero. Programisintended to allow more
than one external routine to be called by CALL_UNIX.

Unit — An integer used to reference an RPC socket:
e If Unitiszero, Unit is returned with avalid unit number.
» If Unit is nonzero, the value specified by Unit is used.

* If Unitisnot specified, an RPC socket is reopened with each call to
CALL_UNIX.

CALL_UNIX Function (UNIX) 105

By specifying Unit, the overhead of opening an RPC socket each timeissaved. In
most cases, however, the overhead is not noticeable.

User — A string with amaximum length of 40 characters. Can say anything, but
itsintended use isfor controlling access to the external routine.

Timeout — An integer that indicates the maximum time, in seconds, that
PV=WAVE will wait for the external routine to finish. The default value is 60
seconds. If the external routine requires more than 60 seconds to execute, Timeout
must be specified. There is no value to indicate an infinite amount of time.

Discussion

CALL_UNIX sends parameters to another process that is running the external C
routine.

The external routine uses the following C routines:
* w_listen to connect with the process running PV=WAVE
* w_get par toactualy get the parameters

* w_send reply,w smpl reply,orw cmpnd reply tosend values
and parameters back to PV=WAVE.

For information on these C routines, see the PV-WAVE Application Developerls
Guide.

If anerror occursinacall to CALL_UNIX, -1lisreturned. ON_IOERROR can aso
be used to catch CALL_UNIX errors.

Example

NOTE For information on these C routines, seethe PV=WAVE Application Devel-
oper’s Guide.

See Also
ON_IOERROR, UNIX_LISTEN, UNIX_REPLY

106 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CD Procedure

Changes the current working directory.

Usage
CD [, directory]

Input Parameters

directory — (optional) If specified, this parameter is a string specifying the path of
the new working directory. If it is specified as a null string, the working directory
is changed to the user’s home directory.

If this parameter is not specified, no directory change is made and the current
directory remains the working directory.

Keywords

Current — Creates avariable that storesthe current directory name. You can store
the name of the current working directory and change the working directory in a
single statement:

CD, new dir, Current=old dir

Thevariable o1d_dir containsthe name of the working directory before the
changetonew dir.

Discussion
Initially, the working directory isthe directory from which you started PV=-WAVE.

This procedure changes the working directory for the current PV=WAVE session
and any child processes started during the session after the change is made. 1t does
not affect the working directory of the process that started PV=WAVE. Therefore,
when you exit PV=WAVE, you will be in the directory you were in when you
started.

The PUSHD, POPD, and PRINTD procedures, which maintain adirectory stack
and call CD to change directories, provide a convenient interface to CD.

CD Procedure 107

Examples

UNIX

On aUNIX system, to change the current working directory to
/usr/home/mydata, enter the following at the WAVE > prompt:

CD, ' /usr/home/mydata’
To move to the home directory, enter the following:

CD, i

OpenVMS

On an OpenVMS system, to change the current working directory to
SYS$SYSDEVICE: [MYDATA], enter the following at the WAVE > prompt:

CcD, 'SYSSSYSDEVICE: [MYDATA]
To move to the home directory, enter the following:

cp, '

Windows

To change the current directory to D: \user\home\mydata, enter the
following at the WAVE > prompt:

CD, 'D:\user\home\mydata’

See Also
IDir, 'Path, FILEPATH, POPD, PRINTD, PUSHD

108 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

C EDIT Procedure

Standard Library procedure that lets you interactively create a new color table
based on the HLS or HSV color system.

Usage
C EDIT [, colors_out]

Input Parameters

None.

Output Parameters

colors_out — (optional) Contains the color values of the final color table in the
form of atwo-dimensional array that has the number of colorsin the color table as
thefirst dimension and the integer 3 as the second dimension.

The values for red are stored in the first row, the values for green are stored in the
second row, and those for blue in the third row; in other words:

red = colors_out(*, 0)
green = colors _out(*, 1)

blue = colors_out(*, 2)

Keywords

His—If setto 1, indicatesthe HL S (hue, lightness, saturation) color system should
be used.

Hsv — If set to 1, indicates the HSV (hue, saturation, value) color system should
be used. Thisisthe default.

Discussion

C_EDIT works only on displays with window systems. It creates an interactive
window that lets you use the mouse to create a new color table. Thiswindow is
shownin.

C_EDIT Procedure 109

Intensity transformation

color bar -
Yal

1.0 s
0,84
0.6
0,44

pixel value [Fizel Yalue 02

Siderbar —_____ 1 N ..

50 100 150 200
1.0 Saturat;
0,00 Yalue ved araphs
i 0.6 of color

0.44 parameters
. vs. pixel

0,24

color 0.00 Saturation 1 00 0.0
parameter

slider bars

400

"
m M

values

Figure 2-6 The C_EDIT window lets you use the mouse to create a new color table based
on either the HLS or HSV color system.

C_EDIT not only changesthe colorsdisplayed in the window that it creates, it also
changesthe colorsin other windows so that you can watch different anomaliesrise
out of your data.

C _EDIT issimilartothe COLOR_EDIT procedure, except that the color wheel has
been replaced by two additional dlider bars. This allows better control of HSV
colors near zero percent saturation.

The C_EDIT window contains the following items:

e Color Bar — Displaysthe current color table. It is updated as changes are
made to the color table. (When C_EDIT isinitialized, it sets the current color
tabletored.)

* Pixel Value Slider Bar — Used to set tie points.

» Color Parameter Slider Bars— Used to adjust the values for the three color
parameters of value (or lightness), saturation, and hue.

» Graphs— Plot the current values of the three color system parameters agai nst
pixel value. These graphs are updated as tie points are selected, and the color
table is changed.

110 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Touse C_EDIT:

A Adjust thethree color-parameter slider bars by dragging the left mouse button
within each bar until you reach the first color you want in your color table.

@ Onthe Pixel Value dider bar, click with the left mouse button at the position
where you want that particular color to be. The range on this bar beginsat 0
and ends with the maximum value for your color table.

A small tie point then appears indicating the exact point where this color will
occur in the color table. The valuesin the color table are interpol ated between
the tie points.

Q If you need to erase the tie point, click on it with the middle mouse button.

Windows USERS If you have atwo-button mouse, use <Alt>in combination
with the left mouse button to erase the tie point.

The color-system parameter graphs on the right of the window and the color
bar at the top of the window are updated whenever atie point is created or
removed.

@ Create your second color by again adjusting the three color- parameter slider
bars and entering the corresponding tie point in the Pixel Value slider bar.

Repeat this step until you havefinished creating all the colorsyou want in your
color table.

O Usethe right mouse button to exit the procedure.

Sample Usage

Assume that the HSV values associated with the default tie points are (0, 1, O) for
the O pixel value and (1, 1, 0) for the 255 pixel value. Suppose a hew tie point at
pixel value 100 is selected after setting the HSV valuesto (.8, .5, 0). Then the Hue
values are interpolated between 0 and .8 and assigned to pixel values0to 100, and
interpolated between .8 and 1 and assigned to pixel values 101 to 255. The
Saturation values are interpolated between 1 and .5, and between .5 and 1, and
assigned to the same pixel values. The Value quantities remain unchanged in this
example.

You may select as many tie points as desired, with the understanding that each tie
point is associated with the color system parametersin effect when the selection is
made.

Note that when the HSV color system is being used, a Value of 1.0 is maximum
brightness of the selected hue. In the HL S color system, aLightness of 0.5 isthe

C_EDIT Procedure 111

maximum brightness of achromatic hue; 0.0 isblack, and 1.0 isbright white. Also,
inthe HL S system, which model s adouble-ended cone, the Saturation has no effect
at the extreme ends of the cone (i.e., Lightness equals O or 1).

Example 1

TVSCL, DIST(200)
C_EDIT, rgb_arry

— User modifies the color table and exits the procedure. —

SAVE, filename = 'my_ colortable’, rgb array
LOADCT, 5
RESTORE, ’‘my colortable’
rgb_array = REFORM(rgb array, $
N_ELEMENTS (rgb_array) /3, 3)
TVLCT, rgb_array(*,0),rgb array(*,1), $
rgb_array (*,2)

Example 2

TVSCL, DIST(200)
C_EDIT

— User modifies the color table and exits the procedure. —

TVLCT, ¥, g, b, /Get

SAVE, filename = 'my colortable 2’, r, g, b
LOADCT, 8

RESTORE, ’‘my colortable 2’

TVLCT, r, g, b

See Also

COLOR_CONVERT, COLOR _EDIT, COLOR _PALETTE, HLS, HSV,
LOADCT, MODIFYCT, PALETTE, PSEUDO, STRETCH, TVLCT,
WgCbarTool, WgCeditTool, WgCtTool

For more background information about color systems, see the PV=WAVE User’s
Guide.

For an excellent discussion of the HSV and HL S color systems, see Computer
Graphics: Principles and Practice, by Foley, Van Dam, Feiner, and Hughes,
Second Edition, Addison Wesley Publishing Company, Reading, MA, 1990.

112 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CENTER VIEW Procedure

Sets system viewing parametersto display datain the center of the current window
(aconvenient way to set up a3D view).

Usage
CENTER_VIEW

Parameters

None.

Keywords

Ax — Theangle, in degrees, at which to rotate the data around the x-axis. (Default:
—60.0)

Ay — Theangle, in degrees, at which to rotate the data around the y-axis. (Default:
0.0)

Az— Theangle, in degrees, at which to rotate the data around the z-axis. (Default:
30.0)

Persp — The perspective projection distance. If Persp is 0.0 (the default), then
paralel projectionis set.

Winx — The x size of the plot window in device coordinates. (Default: 640)
Winy — They size of the plot window in device coordinates. (Default: 512)

Xr, Yr, Zr— Two-element vectors. Xr(0), Yr(0), and Zr(0) contain the minimum Xx,
y, and zvalues, respectively, inthedatato beplotted. Xr(1), Yr(1), and Zr(1) contain
the maximum values for this data. The default is[—1.0, 1.0] for each of Xr, Yr, and
Zr.

Zoom — The magnification factor. The default is[0.5, 0.5, 0.5].

If Zoom contains one element, then the view is zoomed equally in the x, y, and z
dimensions.

If Zoom contains three elements, then the view is scaled by Zoom(0) in the x
direction, Zoom(1) in they direction, and Zoom(2) in the z direction.

CENTER_VIEW Procedure 113

Discussion

CENTER_VIEW sets the system 3D viewing transformation and conversion
factors from data coordinates to normal coordinates so that datais displayed in the
center of the current window. The correct aspect ratio of the datais preserved even

if the plot window is not sgquare.

NOTE Thedataisrotated Az degrees about the z-axis first, Ay degrees about the
y-axis second, and Ax degrees about the x-axis last.

CAUTION This procedure setsthe system variables !PT, IPT3D, !X.S, !Y.S, and
1Z.S, overriding any values you may have previously set. (These system variables

are described in Chapter 4, System Variables.)

Example
PRO f_gridemo4

; This program shows 4D gridding of dense data and a cut-away view

; of a block of volume data.

points = RANDOMU(s, 4, 1000)

; Generate random data to be used for shading.

ival = FAST GRID4 (points, 32, 32,
ival = BYTSCL(ival)

; Grid the generated data.
block = BYTARR(30, 30, 30)
block(*, *, *) = 255
block = VOL PAD (block, 1)

; Pad the data with zeroes.

block(0:16, 0:16, 16:31) = 0

; Cut away a portion of the block array by setting the elements to zero.

WINDOW, 0, Colors=128
LOADCT, 3

CENTER_VIEW, Xr=[0.0, 31.0], Yr=[0.0,
Az=45.0,

Zr=[0.0, 31.0], Ax=(-60.0),
Zoom=0.6

31.0], s

$

; Set up the viewing window and load the color table. (The
; indices for the 32-by-32-by-32 volume we are viewing go

; from 0 to 31.)

SET SHADING, Light=[-1.0, 1.0, 0.2]

; Change the direction of the light source for shading.

114 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

SHADE VOLUME, block, 1, vertex list, §
polygon list, Shades=ival, /Low
; Compute the 3D contour surface.
imgl POLYSHADE (vertex list, polygon list, /T3d)
; Render the cut-away block with light source shading.

img2 = POLYSHADE (vertex list, polygon list, Shades=ival, /T3d)
; Render the cut-away block shaded by the gridded data.

TVSCL, (FIX(imgl) + FIX(img2))

; Display the resulting composite image of the light source-shaded
; block and data-shaded image of the block.

END

For other examples, see the following demonstration programs. grid demo4,
grid demos5, sphere demol, sphere demo2, sphere demo3,
vol demo2,vol demo3, andvol demo4 inthesedirectories:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedirs: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> isthe main PV=WAVE directory.

See Also
SET_VIEW3D

CHEBYSHEYV Function

Standard Library function that implements the forward and reverse Chebyshev
polynomial expansion of a set of data.

Usage
result = CHEBY SHEV (data, ntype)

Input Parameters

data — The input data (either the original dataset or the Chebyshev polynomial
expansion, depending upon ntype).

ntype — The numeric type to be returned:

CHEBYSHEYV Function 115

-1 Toreturn the set of Chebyshev polynomials.
+1 To return the original data.

Returned Value
result — The numeric type specified by ntype.

Keywords

None.

Discussion

CHEBY SHEV uses a straightforward implementation of the recursion formula. If
you use discontinuous data, the result is subject to round-off error.

CHECKFILE Function

Determines if afile can be read from or written to.

Usage
status = CHECKFIL E(filename)

Input Paramters

filename — A string containing the name of afile. If a pathnameis not included,
the function looks in the current directory for thefile.

Returned Value

status— A valueindicating if the file can be used for the given operation.

1 Indicatesthefile can be used for the specified operation.
0 Indicatesthefile cannot be used.

116 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

FullName— (UNIX Only) A string containing the expanded filenameisreturned.
Constructs such as ~user and SENV_ VAR are expanded.

Is Dir — Returnsa 1 if filename is a directory.

Read — If specified and nonzero, the function verifies that the file is readable.

NOTE Either the Read keyword or the Write keyword must be specified.

Size — Returns the size of thefilein bytes.

Write — If specified and nonzero, the function verifies that the file is writable.

Discussion

You must supply either the Read or Write keyword. If neither of these keywordsis
supplied, the CHECKFILE function returns O.

Example
status = CHECKFILE(!Data dir + ’‘head.img’, /Read)

PRINT, status
1

status = CHECKFILE(!Data dir + ’'new _head.img’, /Write)

PRINT, status
1

status = CHECKFILE(!Data dir + ’'head not.img’, /Read)

PRINT, status
0
; Check the status of a file.

status = CHECKFILE(!Dir, /Read, Is Dir = isdir)

PRINT, status

PRINT, isdir
1
; Determine if a directory exists.

CHECKFILE Function 117

status = CHECKFILE (!Data dir + 'head.img’, Size = sz)

PRINT, sz
262144
; Check the size of a file.

See Also
WoCheckFilein the PV=WAVE Application Developer’s Guide

CHECK MATH Function

Returns and clears the accumul ated math error status.

Usage
result = CHECK_MATH([print_flag, message inhibit])

Input Parameters

print_flag — (optional) If present and nonzero, indicates an error messageisto be
printed if any accumulated math errors exist. Otherwise, no messages are printed.

message_inhibit — (optional) Disables or enables the printing of math error
exception error messages when they are detected. By default, these messages are
enabled. Set message inhibit to 1 to inhibit, and O to re-enable.

When the interpreter exits to the interactive mode, error messages are printed for
accumulated math errors that were suppressed but not cleared.

Returned Value

result— Aninteger indicating the accumulated math error status since thelast call
or issuance of the interactive prompt. (See the Discussion section below for alist
of values.)

CAUTION On machines that do not implement the |EEE standard for floating-
point math, CHECK_MATH does not properly maintain an accumulated error
status.

118 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Trap — Controls how floating-point traps are handled:

* If setto 0, no error messages are printed except the final accumulated error

status.

» If setto 1 (the default), trapsare enabled and programs are allowed to continue
after floating-point errors. The first eight floating-point error exceptions issue
messages. Subsequent errors are silent.

If afloating-point error occurs which is not logged, the accumulated floating-
point error status is printed when PV=WAVE returns to the interactive mode.

NOTE Trap handling is machine dependent. Some machineswon’t work properly
with traps enabled, while others don’t allow disabling traps.

Discussion

Theresult of CHECK_MATH is 0 if no math errors have occurred since the last
call or issuance of the interactive prompt. Other error status values as follows,
where each binary bit represents an error:

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH.

1 Integer divide by zero.

2 Integer overflow.

16 Floating-point divide by zero.

32 H oating-point underflow.

64 Floating-point overflow.

128 Floating-point operand error. Anillegal operand was encountered,

such as a negative operand to the SQRT or ALOG functions; or an
attempt to convert to integer a number whose absolute value is greater
than 231 — 1.

CAUTION Not all machines detect all errors.

CHECK_MATH Function 119

Example

a = [1.0, 1.0, 2.0]
; Array a will not fail as divisor.

o
1]

[1.0, 0.0, 2.0]
; The second element in array b should cause a divide-by-zero error.

junkstatus = CHECK MATH(1, 0, Trap=1)
; Clear the previous error status and print error messages if an error exists.
c=1.0/ a
status = CHECK MATH (0, 0)
PRINT, a, ¢, status

1.00000 1.00000 2.00000
1.00000 1.00000 0.500000
0

d=1.0/D
; Cause an integer divide-by-zero error.
% Program caused arithmetic error:
% Floating divide by 0
% Detected at S$SMAINS
status = CHECK MATH (0, 0)
PRINT, b, d, status

1.00000 0.00000 2.00000
1.00000 Inf 0.500000

16

See Also

FINITE, ON_ERROR, RETURN, STOP

For additional information on error handling, see the PV=WAVE Programmer’s
Guide

120 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CINDGEN Function

Returns a complex single-precision floating-point array.

Usage
result = CINDGEN(dim, [, dim,, ..., dim,])

Input Parameters

dim; —Thedimensionsof theresult. The dimensions may be any scalar expression,
and up to eight dimensions may be specified.

Returned Value

result — Aninitialized complex array with real and imaginary parts of type single
precision, floating point. If theresulting array istreated asaone-dimensional array,
thenitsinitialization is given by the following:

array(i) = COMPLEX(i, 0)

n
for i =0, 1""’[HD1_1]

i=1

Keywords

None.

Example

c = CINDGEN (4)

INFO, c
C COMPLEX = Array (4)

PRINT, c
(0.00000, 0.00000)
(1.00000, 0.00000)
(2.00000, 0.00000)
(3.00000, 0.00000)

CINDGEN Function 121

See Also

BINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DINDGEN,
FINDGEN, INDGEN, LINDGEN, SINDGEN

CLOSE Procedure
Closes the specified file units.

Usage
CLOSE [, unity, ..., unit,]

Input Parameters

unit;— (optional) Thefile unitsto close.

Keywords

All — If present and nonzero, closes al file units and frees any file units that were
allocated via GET_LUN.

Files— If present and nonzero, closes al file units between 1 and 99. File units
greater than 99, which are associated with the GET_LUN and FREE_LUN
procedures, are not affected.

Discussion
All open files are closed and deallocated when you exit PV=WAVE.

Example

OPENW, 1, 'test’

PRINTF, 1, ’'Example Text’
CLOSE, 1

See Also

FREE_LUN, GET_LUN, OPEN (UNIX/OpenVMS), OPEN (Windows),
READ, WRITEU

122 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

COLOR CONVERT Procedure

Converts colors to and from the RGB color system, and either the HLS or HSV
systems.

Usage
COLOR_CONVERT, iy, iy, iy, 0y, 04, 05, keyword

Input Parameters

ig, i1, i, — Theinput color triple(s). May be either scalars or arrays of the same
length.

Output Parameters

0y, 01, 0, — The variables to receive the result. Their structureis copied from the
input parameters.

Keywords
One of the following keywordsis required:

CMY_RGB — Convert from CMY (cyan, magenta, yellow) to RGB (red, green,
blue).

HLS RGB — Convert from HLS (hue, lightness, saturation) to RGB .
HSV_RGB — Convert from HSV (hue, saturation, value) to RGB.
RGB_CMY — Convert from RGB to CMY.

RGB_HLS — Convert from RGB to HLS.

RGB_HSV — Convert from RGB to HSV.

Discussion
RGB and CMY values are bytesin the range of O to 255.

Hueisafloating-point number measured in degrees, from 0.0 to 360.0; ahue of 0.0
degreesisthe color red, green is 120.0 degrees, and blue is 240.0 degrees.

Saturation, lightness, and value are floating-point numbersin the range of 0.0 to
1.0.

COLOR_CONVERT Procedure 123

Note that when RGB values are the same during an RGB to HSV conversion, the
saturation is set to 0.0 and the hue is undefined.

Example

COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV
; Converts the RGB color triple (0, 255, 255), which is the color
; yellow at full intensity and saturation, to the HSV system.

PRINT, h, s, v
60.00000 1.00000 1.00000

; The resulting hue in the variable h is 60 degrees. The saturation
; and value (s and v) are set to 1.0.

See Also

COLOR_EDIT, HLS, HSV, HSV_TO_RGB, LOADCT,
MODIFYCT, PALETTE, PSEUDO, RGB_TO_HSV, STRETCH, TVLCT,
WgCeditTool

For more background information about color systems, see the PV=WAVE User’s
Guide.

For adiscussion of the various color systems, see Computer Graphics: Principles
and Practice, by Foley, Van Dam, Feiner, and Hughes, Second Edition, Addison
Wesley Publishing Company, Reading, MA, 1990, pp. 585-596.

COLOR _EDIT Procedure

Standard Library procedure that |ets you interactively create color tables based on
the HLS or HSV color system.

Usage
COLOR_EDIT [, colors_out]

Input Parameters

None.

124 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Output Parameters

colors_out — (optional) Contains the color values of the final color table in the
form of atwo-dimensional array that has the number of colorsin the color table as
thefirst dimension and the integer 3 as the second dimension.

The values for red are stored in the first row, the values for green are stored in the
second row, and those for blue in the third row; in other words;

red = colors_out(*, 0)
green = colors_out(*, 1)

blue = colors_out(*, 2)

Keywords

HLS — If set to 1, indicates the HL S (hue, lightness, saturation) color system
should be used.

HSV — If set to 1, indicatesthe HSV (hue, saturation, value) color system should
be used. (Default: 1)

Discussion

COLOR_EDIT creates an interactive window that lets you use the mouseto create
anew color table. Thiswindow is shownin .

COLOR_EDIT Procedure 125

Intensity transformation

color bar

color wheel [} G 100 150 200

Saturation

1.0

0,81 graphs

0,63 of color

00] parameters
! vs. pixel

0,24
0,04

values

0 50 100 150 200

slider bars
Hue

400 4

200 4

0 50 100 150 200

Figure 2-7 The COLOR_EDIT window lets you use the mouse to create a new color table
based on either the HLS or HSV color system.

COLOR_EDIT not only changesthe colorsdisplayed in thewindow that it creates,
it also changes the colors in other windows so that you can watch different
anomalies rise out of your data.

TIP If you need greater control of HSV colorsnear zero percent saturation, usethe
C_EDIT procedure.

The COLOR_EDIT window contains the following items:

e Color Bar — Displaysthe current color table. It is updated as changes are
madeto the color table. (When COLOR_EDIT isinitialized, it setsthe current
color tabletored.)

e Color Wheel — Letsyou simultaneously select the hue (position from the azi-
muth of the wheel) and saturation (distance from the center of the wheel) with
the cursor.

o Slider Bars— Usethe top bar to select either the value (HSV system) or the
lightness (HL S system) parameter, depending on the system in use. Use the

126 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

bottom bar to select the pixel value that will become atie point (explained
below).

» Graphs— Plotsthe current values of thethree color system parameters versus
pixel value. These graphs are updated as tie points are selected and the color
table is changed.

Touse COLOR_EDIT:

O Adjust the Value/Lightness dlider bar and color wheel by dragging the | eft
mouse button within each until you reach thefirst color you want in your color
table.

@ Onthe Pixel Value dlider bar, click with the left mouse button at the position
where you want that particular color to be. The range on this bar begins at 0
and ends with the maximum value for your color table.)

A small tie point then appears indicating the exact point where this color will
occur in the color table. The valuesin the color table are interpol ated between
the tie points.

Q If you need to erase the tie point, simply click on it with the middle mouse
button.

Windows USERS If you have atwo-button mouse, use <Alt> in combination
with the left mouse button to erase the tie point.

The color system parameter graphs on the right of the window and the color
bar at the top of the window are updated whenever atie point is created or
removed.

@ Createyour second color by again adjusting the Value/Lightness dider bar and
color wheel and entering the corresponding tie point in the Pixel Value slider
bar.

Repeat this step until you have finished creating all the colorsyou want in your
color table.

O Usethe right mouse button to exit the procedure.

For more information on using interactive color table procedures, see Sample
Usage on page 111.

Example 1
TVSCL, FINDGEN (256, 256)
COLOR_EDIT, rgb_array

COLOR_EDIT Procedure 127

— User modifies the color table and exits the procedure. —

SAVE, filename='my colortable’, rgb array

LOADCT, 2

RESTORE, ’'my colortable’

rgb_array=REFORM(rgb_array, N ELEMENTS (rgb_array) /3, 3)
TVLCT, rgb_array(*, 0), rgb array(*, 1), rgb array(*, 2)

Example 2
TVSCL, FINDGEN (256, 256)
COLOR_EDIT

— User modifies the color table and exits the procedure. —

TVLCT, ¥, g, b, /get

SAVE, filename='my colortable 2’, r, g, b
LOADCT, 8

RESTORE, ’'my_ colortable_ 2’

TVLCT, r, g, b

See Also

C _EDIT, COLOR_CONVERT, COLOR PALETTE, HLS, HSV, LOADCT,
MODIFYCT, PALETTE, PSEUDO, STRETCH, TVLCT, WgCbarTool,
WgCeditTool, WgCtTool

For additional background information about color systems, see the PV-WAVE
User’'s Guide.

For an excellent discussion of the HSV and HL S color systems, see Computer
Graphics: Principles and Practice, by Foley, Van Dam, Feiner, and Hughes,
Second Edition, Addison Wesley Publishing Company, Reading, MA, 1990.

128 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

COLOR PALETTE Procedure

Standard Library procedure that displays the current color table colors and their
associated color tableindices.

Usage
COLOR_PALETTE

Parameters

None.

Keywords

None.

Discussion

COLOR_PALETTE works only on displays with window systems. It displays the
current color table in a new window, along with the corresponding numerical
values or color table indices, thereby letting you visually determine the color
associated with a particular color index. Thiswindow (Motif version only) is
shownin.

Windows USERS Thetotal number of colorsthat can appear in the
COLOR_PALETTE window is 236, which reflects the current value of
ID.N_Colors. The black cellsin the upper-right corner of the window represent
colorsthat are not available to PV=WAV E because they have been reserved by
Windows.

COLOR_PALETTE Procedure 129

WAVE 31

Figure 2-8 The COLOR_PALETTE window (Motif version). This window displays every
other color in the current color table, along with the corresponding numerical value or color
table index. The black cells in the upper-right corner of the window represent colors that are
not available to PV=WAVE because they have been reserved by another application, such
as the window manager.

Example 1

b = FINDGEN (37)

x =Db * 10

y = SIN(x * !Dtor)

; Create an array containing the values for a sine function from 0 to 360 degrees.
PLOT, x, y, XRange=[0,360], XStyle=1, YStyle=1

; Plot data and set the range to be exactly 0 to 360.
COLOR_PALETTE

; Put up a window containing a display of the current color table and
; its associated color indices.

TEK_COLOR
; Load a predefined color table that contains 32 distinct colors.

130 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

POLYFILL, x, y, Color=6
POLYFILL, x, y/2, Color=3
POLYFILL, x, y/6, Color=4
; Fill in areas under the curve with different colors.
z = COS(x * !Dtor)
; Create an array containing the values for a COS function from 0 to 360 degrees.
OPLOT, x, z/8, Linestyle=2, Color=5
; Plot the cosine data on top of the sine data.

Example 2

OPENR, lun, !Data_dir + ’‘head.img’, /Get lun
image = BYTARR (512, 512)

READU, lun, image

LOADCT, O

TVSCL, image

COLOR_PALETTE

LOADCT, 5

LOADCT, 3

See Also
COLOR_CONVERT, COLOR_EDIT, MODIFYCT, PALETTE, WgCeditTool

For more information about the number of colorsthat are displayed in the palette,
see the PV=WAVE User’s Guide.

COMPILE Procedure

Saves compiled user-written procedures and functionsin afile.

Usage
COMPILE, routing, [, ..., routine, |

Input Parameters

routing,— A string containing the name of the compiled function or procedure that
you want to save.

COMPILE Procedure 131

Keywords

All — If nonzero, al currently compiled user-written functions and procedures are
saved.

Filename — Specifies the name of afile in which to save specified compiled
routines. By default, afile named routine. cpr is saved in the current working
directory.

Verbose — If present and nonzero, prints a message for each saved function and
procedure.

Discussion

The COMPILE procedure saves compiled routinesin aformat (XDR) that is
recognized by al the platforms on which PV=WAVE runs.

When a compiled routine is called in a PV=WAVE application, the directoriesin
the !Path system variable are searched for a . cpr file with the same name as the
caled routine. If the . cpr fileisfound, it isloaded and immediately executed. If
a . cpr fileisnot found, PV=WAVE searches ! Path for a . pro file with the same
name. If the . pro fileisfound, it is executed instead.

With a specia runtime license, saved compiled applications can be executed from
the operating system level using the runtime mode flag. For example:

wave -r filename

The -r flag signifies“runtime” mode. It is possibleto set an environment variable
so that the - r flag is not needed.

To do this enter the following command:
(UNIX) setenv WAVE FEATURE TYPE RT
(OpenVMS) DEFINE WAVE FEATURE TYPE RT
(Windows) set WAVE FEATURE= RT
Then, you can execute compiled routines from the operating system prompt by
entering:
wave filename

Note that you do not use the . cpr extension when you execute compiled routines
from the operating system prompt.

NOTE To execute a runtime mode application, you must have a runtime license.
Without aruntimelicense for PV=WAVE, you will be unableto start PV=WAVE in

132 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

runtime mode as described in this section. For information on obtaining aruntime
license for PV=WAVE, please contact Visual Numerics.

Example 1

This example demonstrates how to save a single compiled procedure. Assume the
following procedureis saved in the current working directory in thefile
log plot.pro:

PRO log plot
x = FLTARR (256)
x(80:120) = 1
FINDGEN (256)
freq = freq < (256-freq)
fil = 1. / (1+(freq / 20) *2)

freg

PLOT_ IO, freq, ABS(FFT(X,1)), Xtitle = 3§
'Relative Frequency’, Ytitle =’'Power’, $
Xstyle = 1
OPLOT, freq, fil
WAIT, 3
WDELETE
END

Now start PV=WAVE. At the WAVE > prompt:, compile the procedure with .RUN,
and save the compiled procedure in afile using the COMPILE procedure. Then,
delete the compiled procedure from memory and run the compiled procedure that
isstored in thefile.

.RUN log plot
; Compile the procedure.
COMPILE, ‘log plot’
; Save the compiled procedure.
$1ls log plot*
log plot.cpr log plot.pro
; The file log_plot.cpr is created. This file contains the compiled
; procedure.
DELPROC, ’'log plot’
; Delete the log_plot procedure that is currently in memory.
log plot
; Run the compiled procedure log_plot.cpr.
EXIT
; Exit PV-WAVE, and return to the operating system prompt.

COMPILE Procedure 133

At the system prompt, enter the following:

% wave -r -nohome log plot

This command runs the compiled procedure from the operating system prompt.
The -r flag signifies “runtime” mode.

Example 2

This example demonstrates how severa files from a single application can be
compiled and saved in one file. This simple application creates a Command Tool
widget and includes three separate callback routines.

Place the following code in afile called comtool . pro, and save thefile in the
current working directory:

Widget commands:

PRO ComTool
top=WwInit (’example2’, ’'Examples’, layout)
button=WwButtonBox (layout, ‘Command’, ’‘CbuttonCB’)
status=WwSetValue (top, /Display)
WwLoop

END

Callback routines:

PRO CbuttonCB, wid, data

command = WwCommand (wid, ‘CommandOK’, $
'CommandDone’, Position=[300,300], $
Title = ’'Command Entry Window’)

END

PRO CommandOK, wid, shell
value = WwGetValue (wid)
PRINT, value

END

PRO CommandDone, wid, shell
status = WwSetValue (shell, /Close)
END

Now start PV=WAVE and enter the following commands at the WAVE> prompt:

.RUN comtool
; Compile the application.

COMPILE, ’'ComTool’, ’'CbuttonCB’, ’‘'CommandOK’, ’'CommandDone’, S
Filename = ’‘comtool’

134 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Save the compiled procedures in the file comtool.cpr.

$1ls comtool*
comtool.cpr comtool.pro

; The file comtool.cpr is created. This file contains the compiled
; procedures.

EXIT

At the system prompt, enter the following:
% wave -r comtool

This command runs the compiled comtool application from the operating system
command line. Note that the filename must be the same as the main procedurein
thefile for the application to run successfully from the operating system prompt.
The - r flag signifies “runtime” mode.

See Also
RESTORE, SAVE
Seethe PV=WAVE Programmer’s Guide for more information about runtime mode.

COMPLEX Function

Converts an expression to complex data type.

Extracts data from an expression and placesit in acomplex scalar or array.

Usage

result = COMPLEX(real [, imaginary])
This form is used to convert data.

result = COMPLEX (expr, offset, [dim,, dim,, ..., dim,])
This form is used to extract data.

Input Parameters
To convert data:
real — Scalar or array to be used as the real part of the complex result.

imaginary — (optional) Scalar or array to be used as the imaginary part of
the complex result. If not present, the imaginary part of the result is zero.

COMPLEX Function 135

To extract data:
expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin.

dim; — (optional) The dimensionsof theresult. This parameter may beany
scalar expression, and up to eight dimensions may be specified.

Returned Value
If converting:

result — Theresult is a complex data type with the size and structure
determined by the size and structure of real and imaginary input parame-
ters. If either or both of the parameters are arrays, result will be an array,
following the same rules as standard PV=WAV E operators.

If extracting:

result — Theresult is a complex data type with the size and structure
determined by the size and structure of the dim; parameters. If no dimen-
sions are specified, the result is scalar.

Keywords

None.

Discussion

COMPLEX isused primarily to convert datato complex datatype. If real is of type
string and if the string does not contain avalid floating-point val ue (thereby making
it impossible to convert), then PV=WAVE returns 0 and displays a notice.
Otherwise, expr is converted to complex datatype. The ON_IOERROR procedure
can be used to establish a statement to jump to in the case of such errors.

If only one parameter is supplied, the imaginary part of the result is O; otherwise,
it is set by theimaginary parameter. Parameters are first converted to single-
precision floating-point.

NOTE If three or more parametersare supplied, COMPLEX extractsfieldsof data
from expr, rather than performing conversion.

136 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example
real = INDGEN (5)
b = COMPLEX (real)

INFO, b

B COMPLEX = Array(5)
PRINT, b

(0.00000, 0.00000)

(1.00000, 0.00000)

(2.00000, 0.00000)

(3.00000, 0.00000)

(4.00000, 0.00000)
img = INTARR(5) + 6
c = COMPLEX (real, img)
INFO, c

c COMPLEX = Array (5)
PRINT, c

(0.00000, 6.00000)

(1.00000, 6.00000)

(2.00000, 6.00000)

(3.00000, 6.00000)

(4.00000, 6.00000)
d = COMPLEX (real, 7)
INFO, d

D COMPLEX = Array (5)
PRINT, d

(0.00000, 7.00000)

(1.00000, 7.00000)

(2.00000, 7.00000)

(3.00000, 7.00000)

(4.00000, 7.00000)
e = COMPLEX (7, img)
INFO, e

E COMPLEX = Array (5)
PRINT, e

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

COMPLEX Function 137

See Also
BYTE, COMPLEXARR, DOUBLE, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV=WAVE
Programmer’s Guide

COMPLEXARR Function

Returns a complex single-precision floating-point vector or array.

Usage
result = COMPLEXARR(dimy [, dim, ..., dim,])

Input Parameters

dim, — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A complex single-precision floating-point vector or array.

Keywords

Nozero — If Nozero is nonzero, the normal zeroing (see Discussion) is not
performed, thereby causing COMPLEXARR to execute faster.

Discussion
Normally, COMPLEXARR sets every element of the result to zero.

Example
c = COMPLEXARR (4)
INFO, c
c COMPLEX = Array (4)
PRINT, c
(0.00000, 0.00000)
(0.00000, 0.00000)

138 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

(0.00000, 0.00000)
(0.00000, 0.00000)

See Also
BYTARR, CINDGEN, DBLARR, FLTARR, INTARR, LONARR

CONE Function
Defines a conic abject that can be used by the RENDER function.

Usage
result = CONE()

Parameters

None.

Returned Value

result — A structure that defines a conic object.

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object. (Default: Color (*) =1.0)

Decal — A 2D array of byteswhose elements correspond to indicesinto the arrays
of material properties.

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients. (Default: Kamb (*) =0. 0)

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients. (Default: KAiff (*)=1.0)

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients. (Default: Ktran (*) =0.0)

Radius— A double-precision floating-point number that correspondsto ascaling
factor in therange [0...1]. Radius is multiplied by the upper radius at Z = +0.5 to
givethe lower radius at Z = -0.5. (Default: Radius=0.0)

CONE Function 139

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix.

Discussion

CONE is used by the RENDER function to render conic objects, such as caps on
axes. By defaullt, it is centered at the origin with a height of 1.0, and has an upper
radius of 0.5 (at Z = +1/2) and alower radius of O (at Z = -1/2).

To change the upper radius, use the Scale keyword with the T3D procedure.

To change the lower radius, use the Radius keyword. For example, Radius=0.5
corresponds to a conic object whose lower radiusis one-half of the upper radius,
while Radius=0.0 correspondsto a point whose lower radiusis 0 (aconic that ends
in a point).

To change the dimensions and orientation of a CONE, use the Transform keyword.

Example

T3D, /Reset, Rotate=[90, 0., 0]

c = CONE (Radius=0.33, Transform=!P.T)
TVSCL, RENDER (c)

See Also
CYLINDER, MESH, RENDER, SPHERE, VOLUME

For more information, see the PV=WAVE User’s Guide.

CONGRID Function

Standard Library function that shrinks or expands an image or array.

Usage
result = CONGRID(image, col, row)

Input Parameters

image — The two-dimensional image to resample. Can be of any data type except
string.

140 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

col — The number of columnsto be in the resulting image.

row — The number of rowsto bein the resulting image.

Returned Value

result — The resampled image or array.

Keywords
I nterp — Specifies the interpolation method to be used in the resampling:

If zero, uses the nearest neighbor method.

If nonzero, uses the bilinear interpolation method.

Discussion

CONGRID shrinks or expands the number of elementsin image by interpolating
values at intervals where there might not have been values before. The resulting
image is of the same data type as the input image.

The nearest neighbor interpolation method is not linear, because new values that
are needed are merely set equal to the nearest existing value of image. Therefore,
when increasing the image size, the result may appear asindividual blocks. For
more information, see the PV=WAVE User’s Guide.

Example 1

The following commands demonstrate what the mandrill image looks like before
and after resizing:

OPENR, lun, !Data dir + ’‘mandril.img’, /Get lun
mandril img = BYTARR(512,512)

READU, lun, mandril img

new_image = CONGRID (mandril img, 400, 256)
TVSCL, mandril img

ERASE

TVSCL, new_image

CONGRID Function 141

Figure 2-9 CONGRID has been used to shrink this 512-by-512 mandrill image to one mea-
suring 400-by-256.

Example 2

x = DIST(100)

new_x = CONGRID(x, 500, 200)
TVSCL, x

ERASE

TVSCL, new_X

See Also
BILINEAR, REBIN

CONJ Function

Returns the complex conjugate of the input variable.

Usage
result = CONJ(X)

Input Parameters

X — Thevariablethat isevaluated. Thevariable can beasingle or double-precision
complex scalar or array.

142 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — The complex conjugate of x.

Keywords

None.

Discussion

If xis single-precision complex, the result is single-precision complex. If X is
double-precision complex, the result is double-precision complex.

CONJis defined as:
f(,j)=@,-)
wherei represents the real part of x, and j represents the imaginary part of x.

If xisan array, the result has the same structure, with each element containing the
complex conjugate of the corresponding element of x.

Example

p = COMPLEX (0, 1)
PRINT, p

(0.00000, 1.00000)
PRINT, CONJ (p)

(0.00000, -1.00000)

See Also

COMPLEX, COMPLEXARR, DCOMPLEX, DCOMPLEXARR,
IMAGINARY

CONJ Function 143

CONTOUR Procedure

Draws a contour plot from data stored in arectangular array.

Usage

CONTOUR, z[, x, Y]

Input Parameters

z— A 2D array containing the values that make up the contour surface.

x — (optional) A vector or 2D array specifying the x-coordinates for the contour

surface.

y — (optional) A vector or 2D array specifying the y-coordinates for the contour

surface.

Keywords

The CONTOUR keywords let you control many aspects of the contour plot’'s
appearance. These keywords are listed in the following table. For a description of
each keyword, see Chapter 3, Graphics and Plotting Keywords.

Background
Channel
Charsize
Charthick
Clip

Color
C_Annotation
C Charsize
C_Charthick
C Calors

C Labes
C_Linestyle

Gridstyle
Levels
Max_Value
NLevels
Noclip
Nodata
Noerase
Normal
Overplot
Path_Filename
Position
Spline

Title
[XYZ]Charsize
[XYZ]Gridstyle
[XYZ]Margin
[XY Z]Minor
[XYZ]Range
[XYZ]Style

[XY Z]Tickformat
[XYZ]Ticklen
[XYZ]Tickname
[XYZ]Ticks
[XYZ]Tickv

144 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

C_Thick Subtitle [XYZ]Title

Data T3d [XYZ]Type
Device Thick Y Label Center
Follow Tickformat ZAXis

Font Ticklen ZVaue
Discussion

If thexandy parameters are provided, the contour is plotted as a function of the
X,Y locations specified by their contents. Otherwise, the contour is generated asa
function of the array index of each element of z

If xisavector, each element of x specifies the x-coordinate for a column of z. For
example, X (0) specifiesthe x-coordinatefor z (0, *).If thex parameterisa2D
array, each element of x specifies the x-coordinate of the corresponding point in z
(;; specifies the x-coordinate for z;).

If y isavector, each element of y specifies the y-coordinate for arow of z. If they
parameter is a 2D array, each element of y specifies the y-coordinate of the
corresponding point in z (y; specifies the y-coordinate for z;).

CONTOUR draws contours using one of two different methods:

» Thefirst method, used by default, examines each array cell and draws all con-
tours emanating from that cell before proceeding to the next cell. This method
isefficient in terms of computer resources, but does not allow contour labeling.

» The second method searches for each contour line and then follows the line
until it reaches aboundary or closes. This method gives better-looking results
with dashed line styles, and alows contour labeling, but requires more com-
puter time. It isused if any of the following keywords is specified:
C_Annotation, C_Charsize, C_Charthick, C_Labels, Follow, Spline, or
Path_Filename.

Although these two methods both draw correct contour maps, differencesin their
algorithms can cause small differences in the resulting graph.

Example

In the example below, a contour plot of random datais plotted. The random datais
generated with the PV=WAVE:IMSL Statistics RANDOMOPT procedure. The
Fline keyword causes the contoursto be smoothed using cubic splines. The vector

CONTOUR Procedure 145

assigned to the Levels keyword specifies the levels at which contours are desired.
Thevector of 1'sassigned tothe C_Labelskeyword specifiesthat al contour levels
should be labeled. The C_Charsize keyword is used to increase the size of the
labels.

RANDOMOPT, Set = 1257
z = REFORM (RANDOM(36), 6, 6)
; Create a 6-by-6 array of random numbers.
CONTOUR, z, /Spline, $
Levels = [0.2, 0.4, 0.6, 0.8], s
C_Labels = [1, 1, 1, 1], C_Charsize = 1.5
; Create a contour plot from the random data.

GO

o
N
[&N)
~
u

Figure 2-10 Contour plot of random data.

See Also
CONTOUR2, IMAGE_CONT, SHOWS3, SURFACE

For more information, see

146 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CONTOUR2 Procedure

Draws a contour plot from data stored in an array.

Usage
CONTOUR2, z[, X, Y]

Input Parameters
z— A 1D or 2D array containing values of the dependent variable z=z(x, y).

x — A 1D or 2D array containing values of the first independent variable. If zis
1D, then x isarequired 1D input variable with the same number of elementsas z
If zis 2D, then x isan optional 1D or 2D input.

y — A 1D or 2D array containing values of the second independent variable. If z
is1D, thenyisarequired 1D input variable with the same number of elements as
z If zis2D, then y isan optiona 1D or 2D input.

Keywords
C_Fillcolors— Specifiesan array of color indices used tofill the contour intervals.

Fill — Fills contour intervals with color. This keyword can have the following
values:

0 Nofill (Default)
1 Filled intervalswith contour lines

2 Filled intervals with no contour lines

NOTE |f Fill is specified, labeling is disabled. See Example 2 for information on
creating afilled contour plot with labels.

Frequency — A floating-point value > 0.0 that determines how frequently labels
are printed along the contour. If zis an m-by-n array, the default Frequency value
is:MIN (m,n) /3.5. If zisalD array of length m, the default Frequency value
iS: SQRT (m) /3.5.

Label_style— An integer specifying the contour label fill style. Possible values
are:

CONTOUR?2 Procedure 147

0 Do not print labels (Default)

Print labels and fill them with the background color. This option takes
effect if any other contour label keywords are specified
(C_Annotation, C_Charsize, C_Labels, C_Charthick, Frequency).

Print labels with a transparent background.
Print labels with the fill colors specified by C_Fillcolors.

The CONTOUR2 keywords let you control many aspects of the contour plot’'s
appearance. For a description of each keyword, see Chapter 3, Graphics and

Plotting Keywords.

Background Gridstyle [XYZ]Charsize
Channel Levels [XYZ]Gridstyle
Charsize Max_Vaue [XYZ]Margin
Charthick NLevels [XYZ]Minor
Clip Noclip [XYZ]Range
Color Nodata [XYZ]Style
C_Annotation Noerase [XYZ]Tickformat
C_Charsize Normal [XYZ]Ticklen
C_Charthick Overplot [XYZ]Tickname
C Colors Position [XYZ]Ticks

C Labels Subtitle [XYZ]Tickv
C_Linestyle T3d [XYZ]Title
C_Thick Thick [XYZ]Type
Data Tickformat Y Label Center
Device Ticklen ZAXis

Font Title ZVdue

148 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

Discussion

CONTOURZ2 is an implementation of an algorithm developed by Dr. Albrecht
Preusser, "Computing areafilling contours for surfaces defined by piecewise
polynomials’, Computer Aided Geometric Design 3 (1986), pp. 267-279. For
more information, see the following Web page:

www.fhi-berlin.mpg.de/~grz/pub/preusser.html
CONTOURZ2 provides functionality that CONTOUR does not. CONTOUR
accepts only gridded data: the x and y arrays must define a curvilinear coordinate

system. CONTOUR2 places no such restriction on x and y, and thus accepts
scattered data as well as gridded data.

For scattered data z, x, and y are 1D arrays of the same length.

For gridded datazisa2D (mby n) array, whilexandy can be 2D, 1D, or undefined.
If xand y are 2D then they are of dimensions mby n, and z(i,j) correspondsto the
point (x(i,j), y(i,j)). If xand y are 1D then they are of lengths mand n respectively,
and z(i,j) corresponds to the point (x(i), y(j)). If x and y are undefined then they
default to x = FINDGEN(m) and y = FINDGEN(n).

Example 1

In the example below, randomly scattered data is contoured.
seed0=0 & seedl=2 & seed2=5
z = RANDOMU (seed0, 20)

X = RANDOMU (seedl, 20)

y RANDOMU (seed2, 20)

CONTOUR2, z, x, y, Nlevels=10, /XStyle, /YStyle

CONTOUR?2 Procedure 149

Figure 2-11 Randomly scattered data is contoured.

Example 2

In this example, afilled contour plot with labelsis plotted. Labeling is not active
for filled plots, sowe' |l generatethefilled plot first, then plot the contour lineswith
labels over thefilled plot using the NoErase keyword. We'll slightly enlarge the
size and thickness of the contour labels without affecting the axis text by using the
C_Charsize and C_Charthick keywords.

TEK_COLOR
; Define a color table.

z = DIST(5)
colorindex=[20, 21, 22]
CONTOUR2, z, /XStyle, /YStyle, NLevels=5, Fill=2, $

C Fillcolors=colorindex
; Generate a filled plot with no contour lines.
; Fill contours with colors defined in the colorindex array.

CONTOUR2, z, /XStyle, /¥YStyle, NLevels=5, Label style=3, $
/NoErase, C Colors=0, C _Fillcolors=colorindex, $

C Charsize=1, C_Charthick=1
; Fill contour labels with colors defined in the colorindex array.

150 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-12 Contour plot with contour labels and fill color.

See Also
CONTOUR, IMAGE_CONT, SHOW3, SURFACE
For more information on contour plots, see the PV=-WAVE User’s Guide.

CONTOURFILL Procedure

Standard Library procedure that fills both open and closed contours with specified
colors or patterns.

Usage
CONTOURFILL, filename, z[, %, y]

Input Parameters

filename — The name of the file containing the contour paths. Thisfileis created
using the CONTOUR procedure with the Path_Filename keyword.

CONTOURFILL Procedure 151

z— A 2D array used to generate the contour surface. This array isthe same asthe
one used by CONTOUR.

x — (optional) A vector specifying the x-coordinates used to generate the contours.
This vector is the same as the one used by CONTOUR.

y— (optional) A vector specifying the y-coordinates used to generate the contours.
Thisarray isthe same as the one used by CONTOUR.

Keywords

Color_Index — If present, specifies an array containing the color indicesto be
used in the plot. Element i of this array contains the color of contour level number
i —1. Element O contai nsthe background color. There must be one more color index
than there are number of contour levels.

If not present, the contour colors span the range of available colors.

Delete File— If present, deletes filename after the CONTOURFILL procedure
finishes.

Pattern — A 3D array containing the patternsused to fill the various contour levels.
Each pattern is an n-by-m rectangular array of pixels. (See the description of the
Pattern graphics keyword in Chapter 3, Graphics and Plotting Keywords, for an
example.)

If NP number of patterns are specified, Pattern will be dimensioned (n, m, NP). The
patterns are used to fill the various contour levels. If there are more levels than
patterns, the patterns will be cyclically repeated.

XRange and YRange — The desired data range of the x and y-axes, specified asa
two-element vector. The first element is the axis minimum, and the second is the
maximum. PV=WAV E will frequently round this range. You must use the XRange
and YRange keywords with CONTOURFILL if:

» The XRange and YRange keywords are used in the CONTOUR procedure call
that is used to generate input for CONTOURFILL, and

» XRangeand YRange aredifferent from the array bounds of the z parameter (the
contour surface data), or the minimum and maximum of thex and y parameters,
when given.

Defaults: When the z parameter has dim; = nx and dim, = ny, XRange=[0, nx—1]
and YRange=[0, ny—1]. When x and y parameters are given, XRange=[MIN(X),
MAX(X)] and YRange=[MIN(y), MAX(Y)].

152 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP For best results, the XRange and YRange keywords used with
CONTOURFILL should match the ones used with CONTOUR.

Discussion

CONTOURFILL can be used with CONTOUR tofill the area between the contour
lineswith a solid color or a user-defined pattern. The procedure closes the open

contours aslong asthe z (and x and y, if used in the calling sequence) parameter is
specified in exactly the same manner as was used with the CONTOUR procedure.

TIP If you are plotting alarge data set, use the EMPTY procedure to be sure that
all buffered output is written to the current graphics device.

NOTE CONTOURFILL createsatemporary file named filename+1, so you must
have write permission in the directory where filename exists.

Example 1

Thisexample creates acontour plot of the Pike's Peak el evation demo file, with the
areain between the contour lines filled with a solid color.

OPENR, 1, !Data dir + ’'pikeselev.dat’
pikes = FLTARR (60, 40)
READF, 1, pikes

; Read in the data file.
TEK_COLOR

; Load a color table.
CONTOUR, pikes, Levels=[5,6,7,8,9,10,11,12,13,14,15]*1000, 3

Path='path.dat’, XStyle=1, YStyle=1
; Contour the data and store the results in file path.dat.

CONTOURFILL, ’'path.dat’, pikes, Color Index=INDGEN (12)
; Display the contour plot with contours filled with solid colors.

CONTOURFILL Procedure 153

Figure 2-13 Contour plot of Pike’s Peak elevation filled with solid colors.

The following commandsfill in the areain between the contour lines with a user-

defined pattern.

patl = BYTARR(3, 3)
patl (1, *) = 255
patl(*, 1) = 255
; Create the first pattern, a cross pattern.

pat2 = BYTARR(3, 3)
FOR 1 = 0, 2 DO pat2(i, i) = 255
; Create the second pattern, a diagonal pattern.
pat3 = BYTARR(3, 3)
; Create the third pattern, a solid fill of color zero.
pat4 = REPLICATE(255b, 3, 3)
; Create the fourth pattern, a solid fill of color 255.
pat5 = BYTARR(3, 3)
FOR 1 = 0, 2 DO pat5(2-i, i) = 255
; Create the fifth pattern, a backwards diagonal pattern.

154 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

pat3d = BYTARR(3, 3, 5)
; Create a 3D array in which to store the patterns.

pat3d(*, *, 0) = patl
pat3d(*, *, 1) = pat2
pat3d(*, *, 2) = pat3
pat3d(*, *, 3) = pat4
pat3d(*, *, 4) = path

; Store the patterns in the array named pat3d.

CONTOURFILL, ‘path.dat’, pikes, Pattern = pat3d, /Delete File

; Display the contour plot with the contours lines filled with
; the pattern.

Figure 2-14 Pattern-filled contour map of Pike’s Peak elevation.

Example 2

Instead of using CONTOUREFILL to create color-filled contour plots, asimilar
result can be achieved by loading a color table with the TEK_COLOR and then
using a command of the form

CONTOURFILL Procedure 155

TV, BYTSCL(array, Top=n)
where n + 1 equals the number of contour levels to be colored.

In other words, the previous example could be displayed using the commands:
TEK_COLOR

pikes=REBIN (pikes, 600, 400)

TV, BYTSCL(pikes, Top = 10)

Some of the advantages of using this technique to create color-filled contour plots,
instead of the CONTOURFILL procedure, are:

» Easier access to image processing routines that allow you to quickly analyze
your data, such as: DEFROI, HISTOGRAM, and PROFILES.

* Youdon't have to create atemporary file in your directory.

See Also
CONTOUR, CONTOUR2, POLYFILL, TEK_COLOR

CONVERT COORD Function

Converts coordinates from one coordinate system to another.

Usage
result = CONVERT_COORD(points)
result = CONVERT_COORD(x, Y [, Z])

Input Parameters

points— A (2, n) or (3, n) array of points (or vertices) to convert.

X — A scalar or vector parameter providing the x-coordinates to be converted.
y — A scalar or vector parameter providing the y-coordinates to be converted.

z— (optional) If present, a scalar or vector parameter providing the z-coordinates
of the pointsto be converted.

156 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — An array of the converted coordinates.

Keywords
T3d — If set, the conversion uses T3d coordinates.

One of thefollowing keywords may be used to specify theinput coordinate system.
If no input keyword is used, the function defaults to the data coordinate system.

Data — Specifies that the input coordinates are based on the data coordinate
system.

Device — Specifies that the input coordinates are based on the device coordinate
system.

Normal — Specifiesthat the input coordinates are based on the normal coordinate
system.

One of the following keywords may be used to specify the output coordinate
system. If no output keyword is used, the coordinates are converted to the data
coordinate system.

To _Data — Converts to the data coordinate system.
To_Device — Converts to the device coordinate system.

To_Normal — Convertsto the normal coordinate system.

Discussion

The CONVERT_COORD procedure converts among the data, device, and
normalized coordinate systems for the currently active window and plot.

A valid data coordinate system must be established before you can convert to or
from data coordinates; you may use the PLOT procedure to establish this
coordinate system.

Example
xdata = [.1, .2, .5, .8, .9, .5]
ydata = [.3, .6, .9, .6, .3, .1]

PLOT, xdata, ydata
; Establish data coordinate system

CONVERT_COORD Function 157

point = CONVERT COORD(0.5, 0.5, /Normal, /To Data)
; Find data coordinate for the center of the window.

PRINT, ‘X coord = ', point(0)
PRINT, 'Y coord = ', point (1)
PLOTS, point (0), point(l), Symsize = 5.0, Psym = -1

; Print the coordinates and plot a “+” symbol at the center of the window.

See Also
PLOT, PLOTS
System Variables: 'X.S

For more information, see Coordinate Conversion and Three Graphics Coordinate
Systems in the PV=WAVE User’s Guide.

CONV_FROM_RECT Function

Convertsrectangular coordinates (points) to polar, cylindrical, or one of two spher-
ical coordinate systems: mathematical or global.

Usage
result = CONV_FROM_RECT (vecl, vec2, vec3)

Input Parameters
vecl — A 1D array containing the x rectangular coordinates.
vec2 — A 1D array containing the y rectangular coordinates.

vec3— A 1D array containing the zrectangular coordinates. For polar coordinates,
set vec3 to the scalar value O.

Returned Value

result — By default, global spherical coordinates are returned with (0, *)
containing the longitude, (1, *) containing the latitude, and (2, *) containing the
radii. Note that latitude angles are given with respect to the horizontal axis or
equator.

158 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

If the Sohere keyword is present and nonzero, mathematical spherical coordinates
arereturned as in the default case, except that the latitude angles are given with
respect to the vertical, or polar, axis.

If the Polar keyword is present and nonzero, then a FLOAT (2, n) array is returned
with (0, *) containing the angles and (1, *) containing the radii.

If the Cylin keyword is present and nonzero, then a FLOAT(3, n) array is returned
with (0, *) containing the angles, (1, *) containing the radii, and (2, *) containing
the Z values.

Keywords
Cylin — Specifies that cylindrical coordinates are to be returned.

Degrees— If present and nonzero, causesthe returned coordinatesto bein degrees
instead of radians.

Global — If present and nonzero, the function returns global longitude and latitude
angles. Thelongitude angles are the horizontal angles on the Earth’s globe, where
the angles east of the Greenwich meridian are positive, and angles to the west are
negative. The latitude angles are vertical angles rotated with respect to the equator.
They are positive in the northern hemisphere and negative in the southern
hemisphere. By default, the function returns these global latitude and longitude
values; this keyword can be used, however, to add clarity to the function call.

Polar — Specifies that polar coordinates are to be returned.

Sphere — If present and nonzero, the function returns a spherical coordinate
system wherethe vertical angleisrotated with respect to the vertical (or polar) axis
instead of the horizontal axis. The horizontal anglesand radii arethe sameasinthe
global spherical case. Thissystemisbased on the set of conversion equationsinthe
CRC Standard Mathematical Tables.

See Also
CONV_TO_RECT

For more information, see the PV=WAVE User’s Guide.

CONV_FROM_RECT Function 159

CONVOL Function

Convolves an array with akernel (or another array).

Usage
result = CONVOL (array, kernd [, scale factor])

Input Parameters
array —Thearray to be convolved. Thearray can be of any datatype except string.

kernel —Thearray used to convolve each valuein array. The dimensions of kernel
must be smaller than those of array, but they can be of any datatype except string.
(If astring array is used, PV=WAVE will attempt to convert it and then issue an

error message.)

scale factor — (optional) A scaling factor that reduces each output value by the
specified factor. The scale factor parameter can be used with integer and byte type
dataonly. (Default: 1.0)

Returned Value

result — The convolved array of the same data type and dimensions as array.

Keywords

Center — Specifies how the kernel isto be centered. If nonzero or not specified,
centers the kernel over each array data point. If explicitly set to zero, centers the
kernel a half kernel width to the left of each array data point.

Edge — A scalar string indicating how edge effects are handled. (Default:
"zero’) Vaid strings are:

"zero’ — Setsthe border of the output image to zero. (Default)

" copy’ — Copiesthe border of the input image to the output image.

Zero_Negatives— If set, all negative values in the result are set to zero.

Discussion

Convolution isagenera process that can be used in smoothing, signal processing,
shifting, edge detection, and other filtering functions. Therefore, it is often used in
conjunction with other functions, such as DIGITAL_FILTER, SMOOTH, and
SHIFT.

160 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP When using CONVOL with image data, make sure the data has been first con-
verted to floating-point type.

The kernel parameter is an array whose dimensions describe the size of the
neighborhood surrounding the value in array that is analyzed. The kernel aso
includes values that give aweighting to each point in its array. These weightings
determine the average that is the value in the output array. If kernel is not of the
same type as array, a copy is made and converted into the same type before being
used.

Using the scale _factor parameter allows you to simulate fractional kernel values
and avoid overflow with byte parameters.

In many signal and image processing applications, itisuseful to center asymmetric
kernel over the data, to align the result with the original array. The Center keyword
controls the alignment of the kernel with the array and the ordering of the kernel
elements.

Sample Usage

In the convolution of any two functions, r(t) and s(t), for most applicationsfunction
sistypically asignal or data stream, which goes on indefinitely in time, whiler is
aresponse function, typically apeaked function that fallsto zero in both directions
from its maximum.

In terms of CONVOL parameters, s corresponds to array and r corresponds to
kernel. The effect of convolution isto smear the signal s(t) intime according to the
“recipe’ provided by the response function r(t).

One-Dimensional Convolution
For the example below, assume the following equation:
R = CONVOL (A, K, S)

where 2 isan n-element vector, K isan m-element vector (m< n), and S isthescale
factor.

» If the Center keyword is set to O, the results are as follows.
Whent>m-1, then:

m-1
R = (/9) ALK
i=0

CONVOL Function 161

Otherwise, R, = 0.
» If the Center keyword is omitted or set to 1, the results are shown as follows.
When (m1)/2 <t < n—1-(m21)/2, then:

m-1

R = (/) Auicm2Ki

i=0
Otherwise, R, = 0.

Two-Dimensional Convolution
For the second example, assume the same equation:
R = CONVOL (A, K, S)

where A is an mby-n element array, K is an |-by-I element kernel, s isthe scale
factor, and the result R is an m-by-n element array.

» |If the Center keyword is set to O, the results are as follows.
Whent>1-1andu=1-1, then:

I-11-1

Rou= (/9 AciuiKi
i=0j=0
Otherwise, R, = 0.

» The centered two-dimensional case is similar, except thet — and u—j sub-
scriptsarereplaced by t + i —1/2and u + j —1/2.

Example

This example demonstrates what a 512-by-512 mandrill image looks like before
and after applying the CONVOL function. The following parameters were used:

result = CONVOL (mandril img, kernel, /Center)

where kernel isa3-by-3 array. Thisarray has the following value:
-111
-1-21

-111

This kernel value represents a commonly-used algorithm for edge enhancement.

162 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-15 The CONVOL function has been used to enhance the edges of this 512-by-
512 mandrillimage. In other words, after CONVOL is applied, the dark colors change quickly
to light ones.

See Also

DIGITAL_FILTER, ROBERTS, SHIFT, SMOOTH, SOBEL

For more information on displaying images, see the PV=WAVE User’s Guide.
For asignal processing example, seethe DIGITAL_FILTER Example section.

CONV _TO RECT Function

Converts polar, cylindrical, or spherical (mathematical or global) coordinates to
rectangular coordinates (points).

Usage
result = CONV_TO_RECT(vecl, vec2, vec3)

Input Parameters
vecl — A 1D array containing the polar (longitude) angles.

vec2 — A 1D array containing the latitude angles, unless the Polar or Cylin
keywords are present and nonzero. If either keyword is specified, then vec2 should
contain the radii.

vec3 — A 1D array containing the radii for spherical coordinates, unless Polar or
Cylin keywords are present and nonzero. If Polar is specified, then vec3 should be
the scalar value O (it isignored). If Cylin is specified, then vec3 should contain the
zvalues.

CONV_TO_RECT Function 163

Returned Value

result — If the Polar keyword is present and nonzero, then aFLOAT(2, n) array is
returned with (0, *) containing the x-coordinates and (1, *) containing the y-
coordinates.

If Polar iszero (or not present), then a FLOAT (3, *) array is returned with (0, *)
containing the x-coordinates, (1, *) containing the y-coordinates, and (2, *)
containing the z-coordinates.

Keywords
Cylin — Specifiesthat the input coordinates are cylindrical.

Degrees — If present and nonzero, causes the input coordinates to be in degrees
instead of radians.

Global — If present and nonzero, causes the input coordinates to be in global
longitude and latitude angles. Thelongitude angles are the horizontal anglesonthe
Earth’s globe, where the angles east of the Greenwich meridian are positive, and
anglesto the west are negative. The latitude angles are vertical angles rotated with
respect to the equator. They are positivein the northern hemisphere and negativein
the southern hemisphere. By default, the function expectsthese global |atitude and
longitude values; this keyword can be used, however, to add clarity to the function
call.

Polar — Specifies that the input coordinates are polar.

Sphere— If present and nonzero, causes the input coordinates to be in aspherical
coordinate system wherethe vertical angleisrotated with respect to the vertical (or
polar) axisinstead of the horizontal axis. The horizontal angles and radii are the
same asin the global spherical case. This system is based on the set of conversion
eguations in the CRC Standard Mathematical Tables.

Examples
PRO vol demol

; This program displays a 3D fluid flow vector field with random
; starting points for the vectors.

volx = 17
voly = 17
volz = 59

; Specify the size of the volumes.
winx = 500
winy = 700

; Specify the window size.

164 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

flow axial = FLTARR(volx, voly, volz)
OPENR, 1, !Data Dir + ‘cfd axial.dat’, /Xdr
READU, 1, flow axial
CLOSE, 1
flow radial = FLTARR(volx, voly, volz)
OPENR, 1, !Data Dir + ‘cfd radial.dat’, /Xdr
READU, 1, flow radial
CLOSE, 1
flow tangent = FLTARR(volx, voly, volz)
OPENR, 1, !Data Dir + ’'cfd tangent.dat’, /Xdr
READU, 1, flow tangent
CLOSE, 1
; Read in the data as cylindrical coordinates.
flow pressure = FLTARR(volx, voly, volz)
OPENR, 1, !Data Dir + ’‘cfd pressure.dat’, /Xdr
READU, 1, flow pressure
CLOSE, 1
; Read in the data to be used for the vector color.
points = CONV_TO RECT(flow tangent (*), $
flow radial(*), flow _axial(*), /Cylin, /Degrees)
; Convert the data from cylindrical coordinates to Cartesian
; coordinates.

flow x = FLTARR(volx, voly, volz)

flow y = FLTARR(volx, voly, volz)
flow z = FLTARR(volx, voly, volz)
flow x(*) = points (0, *)
flow y(*) = points(1l, *)
flow z(*) = points(2, *)

; Split the points array into three 2D arrays to abstract the x, y, z
; values from the converted data.
T3D, /Reset
T3D, Translate=[-0.5, -0.5, -0.5]
T3D, Scale=[0.9, 0.9, 0.9]
T3D, Rotate=[0.0, 0.0, -30.0]
T3D, Rotate=[-60.0, 0.0, 0.0]
T3D, Translate=[0.5, 0.5, 0.5]
; Set up the transformation matrix for the view.
WINDOW, 0, XSize=winx, YSize=winy, $
XPos=256, YPos=128, Colors=128, S
Title='3D Velocity Vector Field’

LOADCT, 4

CONV_TO_RECT Function 165

; Set up the viewing window and load the color table.

VECTOR_ FIELD3, flow x, flow y, flow z, 1000, S
Max Length=2.5, Vec_ Color=flow pressure, S
Min Color=32, Max_ Color=127, S
Axis Color=100, Mark Symbol=2, §
Mark_Color=90, Mark_Size=0.5, Thick=2
; Plot the converted data as a vector field.
END

For another example, seethe vec_demo2 demonstration program in
(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedirs: [DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> isthe main PV=WAVE directory.

See Also
CONV_FROM_RECT

For more information, see the PV=WAVE User’s Guide.

CORRELATE Function

Standard Library function that cal culates a simple correlation coefficient for two
arrays.

Usage
result = CORRELATE(x, y)

Input Parameters

x — The X array for which the correlation coefficient is calculated. Can be of any
data type except string and it must be of the same data type and have the same
number of elementsasy.

y— TheY array for which the correlation coefficient is calculated. Can be of any
data type except string and it must be of the same data type and have the same
number of elements as x.

Returned Value

result — The simple product-moment correlation coefficient for x and y.

166 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

CORRELATE calculates the product-moment correlation coefficient of the two
arraysthat are supplied.

Correlation can be characterized as the probability that values (i.e., the two input
arrays) arerelated. | n other words, it measureswhether the eventsin one population
are likely to have produced effects in another population. A result of 1.0 indicates
ahigh correlation, while aresult of 0.0 indicates no correlation whatsoever.

Example 1
scores 1 = [95,76,60,88,91,97,68,75,82,85]
scores_2 = [93,77,62,87,90,97,67,77,80,86]

scores_corr = CORRELATE (scores_1, scores_2)
PRINT, scores_ corr
.993408

Example 2

sample 1 = RANDOMU (seed, 128, 128)

sample 2 = RANDOMU (seed, 128, 128)

samples corr = CORRELATE (sample 1, sample 2)

PRINT, samples corr

0.00
Example 3
x = DIST(200)
y = X

exact corr = CORRELATE (x, y)
PRINT, exact_corr
1.0000

CORRELATE Function 167

COS Function

Calculates the cosine of the input variable.

Usage
result = COS(x)

Input Parameters

x — The angle for which the cosineis desired, specified in radians.

Returned Value

result — The trigonometric cosine of x.

Keywords

None.

Discussion

If xisof double-precision floating-point or complex datatype, COSyieldsaresult
of the same type. All other types yield a single-precision floating-point result.

COS handles complex numbers in the following manner:
cos(x) = complex(cos(i)cosh(r), —sin(r)sinh(—))

wherer andi arethereal and imaginary partsof x. If xisan array, theresult of COS
has the same dimensions (size and shape) as x, with each element containing the
cosine of the corresponding element of x.

Example
x = [-60, -30, 0, 30, 60]
PRINT, COS(x * !Dtor)
0.500000 0.866025 1.00000 0.866025 0.500000

See Also
ACOS, ASIN, ATAN, COSH, COSINES, SIN, TAN

For alist of other transcendental functions, see Transcendental Mathematical
Functionsin Chapter 1.

168 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

COSH Function

Calculates the hyperbolic cosine of the input variable.

Usage
result = COSH(x)

Input Parameters
x — The angle, in radians, that is evaluated.

Returned Value

result — The hyperbolic cosine of x.

Keywords

None.

Discussion
COSH is defined by:
cosh(xX) = (e*X+ e ™)/2

If x is of double-precision floating-point data type, or of complex type, COSH
yields aresult of the same type. All other data types yield a single-precision
floating-point result.

If x isan array, the result of COSH has the same dimensions, with each element
containing the hyperbolic cosine of the corresponding element of x.

Example
x = [0.3, 0.5, 0.7, 0.9]
PRINT, COSH (x)
1.04534 1.12763 1.25517 1.43309
See Also

COS, SINH, TANH

For alist of other transcendental functions, see Transcendental Mathematical
Functionsin Chapter 1.

COSH Function 169

COSINES Function
Standard Library basis function that can be used by the SYDFIT function.

Usage
result = COSINES(x, m)

Input Parameters
X — A vector of data values with n elements.

m — The number of termsin the basis function.

Returned Value
result — An n-by-m array, such that:

result (i, j) = COS(j * x(i))

Keywords

None.

Discussion
COSINES consists simply of the following two lines:

FUNCTION COSINES, x, m
RETURN, COS(x # FINDGEN (m))

See Also
SVDFIT

170 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CPROD Function

Standard Library function that returns the Cartesian product of some arrays.

Usage
result = CPROD(a)

Input Parameters
a— A list of narrays.

Returned Value

result— An (m,n) array whereresult(i,*) is an element of the Cartesian product of
the n arraysin a, and where result(* j) contains only elements from a(j); result is
ordered so that result(*,j) cycles through the elements of a(j) in order, and does so
faster than result(* ,j+1) cycles through the elements of a(j+1).

Keywords

None.

Example

pm, cprod(list([0,1], [0,1,2], [0,1,2,3]))

CREATE HOLIDAYS Procedure
Standard Library procedure that creates the system variable 'Holiday _List, which
isused in calculating Date/Time compression.
Usage
CREATE_HOLIDAYS, dt_list

Input Parameters

dt_list— A Date/Time variable containing one or more days to be specified as
holidays.

CPROD Function 171

Keywords

None.

Discussion

Theresult is stored in the system variable 'Holiday List, a50-element Date/Time
array. 'Holiday _List isused in calculating Date/Time compressions for functions
that take the Compress keyword. For instance, the functions DT_SUBTRACT,
DT_ADD,and DT_DURATION can take the Compress keyword which, if set, will
exclude holidays from their results. In addition, the PLOT procedure uses the
Compress keyword to exclude holidays from a plot.

Example1

The following commands define !Holiday_List to contain the dates for Christmas
and New Years:

holidays=STR_TO DT([’12-25-92’, ’'1-1-92'], date fmt=1)

CREATE HOLIDAYS, holidays

Example 2

CREATE_HOLIDAYS, STR_TO DT(’04-july-1992’, $
Date Fmt=4)

See Also

CREATE_WEEKENDS, DT_COMPRESS, LOAD_HOLIDAYS,
STR_TO DT

CREATE WEEKENDS Procedure

Standard Library procedurethat createsthe system variable 'Weekend_List, which
isused in calculating Date/Time compression.

Usage
CREATE_WEEKENDS, day_names

Input Parameters

day_names— A string or string array containing the weekend names.

172 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

Theresult isstored in the system variable 'Weekend_List, a seven-element integer
array. The valuesin 'Weekend List are either ones or zeros, where 1 represents a
weekend and 0 represents a weekday. The first element of 'Weekend_List
represents Sunday, and the last represents Saturday. 'Weekend_Listisusedin
calculating Date/ Time compressionsfor functionsthat take the Compresskeyword.

For instance, theroutinesDT_SUBTRACT, DT_ADD and DT_DURATION, can
use the Compress keyword which, if set, excludes weekends from their results. In
addition, the PLOT procedure uses the Compress keyword to remove weekends
from aplot.

Thevaluesintheinput string day_names must match or be a substring of stringsin
the !Day_Names system variable. By default, !'Day_Names contains:

PRINT, !Day Names
Sunday Monday Tuesday Wednesday Thursday
Friday Saturday

Thus, day_names = ['Sat’, 'Sun’'] isavalid assignment. If al days of the week are
set to weekends, an error results.

Example

CREATE WEEKENDS, 'Sat’
; Defines Saturday as a weekend.

PRINT, !Weekend List
0 0 0 0 0 0 1

; The first element in the array !Weekend_List represents
; Sunday. The last represents Saturday. Weekend days have
;avalue of 1.

See Also
CREATE_HOLIDAYS, DT_COMPRESS, LOAD_WEEKENDS

CREATE_WEEKENDS Procedure 173

CROSSP Function

Standard Library function that returns the cross product of two three-element
vectors.

Usage
result = CROSSP(vy, V)

Input Parameters

v; — Thefirst operand of the cross product. This parameter must be a three-
element vector.

v, — The second operand of the cross product. Must be a three-element vector.

Returned Value

result — A three-element floating-point vector containing the cross product of v,

and v,.
Keywords
None.
Discussion
The cross product of two arraysiscommonly used in avariety of applications. Itis
defined as:
i j ok
ViXVp = |2y by ¢
a, b, ¢,
or
vy XV, = (byc,—b,ycy)i + (cia,—Cray) j + (a;by,—a,b)k
Example
vl = [2, 1, -2]

174 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

v2 = [4, -1, 3]
result = CROSSP(vl, v2)
PRINT, result

1 -14 -6

CURSOR Procedure

Reads the position of the interactive graphics cursor from the current graphics
device.

Usage
CURSOR, x, y [, wait]

Input Parameters

wait — (optional) An integer specifying when CURSOR returns. This parameter
may be used interchangeably with the five keywords listed below that specify the
type of wait.

Value Keyword Action

0 Nowait Return immediately.

1 Wait Return if button pressed (the default value).

2 Change Return if button pressed, changed, or pointer moved.
3 Down Return when button down transition is detected.

4 Up Return when button up transition is detected.

UNIX and OpenVMS USERS Not all wait modeswork with all display devices.
Many devices, such as Tektronix terminals, do not have the ability to return imme-
diately, and so always wait. In addition, not all types of waiting are available for
devicesthat do not have the ability to sense transitions or states.

Output Parameters
X — A named variable to receive the cursor’s current column.

y — A named variable to receive the cursor’s current row.

CURSOR Procedure 175

Keywords

Change—Waits for pointer movement or button down within the currently
selected window.

Data —If present and nonzero, causes the values placed into x and y to be in data
coordinates (the default).

Device —If present and nonzero, causes the values placed into x and y to bein
device coordinates.

Down —Waits for a button down transition within the currently selected window.

Normal — If present and nonzero, causes the values placed into x and y to bein
normalized coordinates.

Nowait — Reads the pointer position and button status and return immediately. If
the pointer is not within the currently selected window, the device coordinates—1,
—1 are returned.

Up —Waits for a button up transition within the current window.

Wait — Waitsfor abutton to be depressed within the currently selected window. If
abutton is already pressed, returns immediately.

Discussion

CURSOR enables the graphic cursor on the device and waits for the operator to
position it. On devicesthat have amouse, CURSOR normally waits until amouse
buttonis pressed. If no mouseis present, CURSOR waitsfor akey on the keyboard
to be pressed.

NOTE Not all graphics devices have interactive cursors.

The system variable ! Err is set to the button status; if no mouseis present, it is set
to the ASCII code of the key. Each mouse button is assigned abit in |Err—bit O is
the left-most button, bit 1 the next, and so on.

Thus, for athree-button mouse, ! Err will contain the values 1 — 7, depending upon
which button or combination of buttons was pushed. For example, the left button

produces a value of 1, the middle button 2, and the right button 4, while pressing

the left and right buttons together produce the value 5.

The system variable!Mouse containsthe X and Y position of the mouse, the mouse
button status, and a date/time stamp. The mouse position is given in device

176 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

coordinates. The button status appears as 1 — 7; these values are contained in the
IErr system variable. The date/time stamp may not be available on all systems.

Since the values returned are, by default, in data coordinates, if no data coordinate
system has been previously established, then calling CURSOR without specifying
either the Normal or Device keywords will result in an error and procedural
execution will be halted.

Example 1
WINDOW, XSize=512, YSize=512
CURSOR, x, y, /Normal

; This returns the normalized coordinates of the point selected in
; the graphics window when a button is pressed. The button press
; is the default event activation, and not overtly specified.

Example 2

In this example, PLOTS and CURSOR are used interactively in aloop to build a
sketch pad. While the cursor isin the graphics window and a button is held down,
CURSOR returns the device coordinates of the cursor. The PLOTS procedure
draws aline segment between the previously returned cursor position and the
current cursor position.

PRO sketch
false = 0
true = 1

window, 0

XYOUTS, 2, 2, "QUIT", Size = 2, /Device
; Create a quit button in the window.

PLOTS, [0, 48, 48], [20, 20, 0], /Device

first = true

REPEAT BEGIN
CURSOR, xnew, ynew, /Device

; Get cursor position, placing the x-coordinate in xnew, and
; the y-coordinate in ynew.

IF (xnew LE 48) AND (ynew LE 20) THEN STOP
; If cursor position is within the QUIT button, then stop.
IF first THEN BEGIN
xold = xnew
yold = ynew
first = false
ENDIF
; First time through loop, set xo1d and yold to be the same

CURSOR Procedure 177

; as xnew and ynew.
PLOTS, [x0ld, xnew], [yold, ynew], /Device
; Plot a line segment from (xo01d, yold) to (xnew, ynew).
xold = xnew
yold = ynew
ENDREP UNTIL FALSE
END

See Also
1Err, 'Mouse, TVCRS

CURVATURES Function

Standard Library function that computes curvatures on a parametrically defined
surface.

Usage

C = curvatures (s)

Input Parameters

s— A 3-dlement list of 2-dimensional arrays of dimensions d.

Returned Value

c— A 2-element list of 2-dimensional arrays of dimensions d, where c(0) defines
the distribution of minimum curvature and c(1) defines the distribution of maxi-
mum curvature.

Keyword

X - A 2-element list of vectors defining the independent variables. By defaullt,
x(i) = findgen(d(i))

Example

Seewave/lib/user/examples/curvatures_ex.pro.

178 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also
EUCLIDEAN, JACOBIAN, NORMALS

CURVEFIT Function

Standard Library function that performs a nonlinear |east-squares fit to a function
of an arbitrary number of parameters.

Usage

result = CURVEFIT(X, y, wt, parms, [sigma])

Input Parameters

X — A vector containing the independent x-coordinates of the input data points.
There are n elements in the vector.

y— A vector containing the dependent y-coordinates of theinput data points. Must
have the same number of elements as the x input parameter.

wt — The vector of weighting factors for determining the weighting of the least-
squares fit (see Discussion). The vector must be the same size as the x input
parameter.

parms— A six-element vector containing the parameters of the fitted function. On
input, it should contain theinitial estimates of each parameter.

Output Parameters

parms — On output, contains the calculated parameters of the fitted function.

If parmsis supplied as adouble-precision variable, the calculations are performed
in double-precision accuracy. Otherwise, the calculations are performed in single-
precision accuracy.

sigma— (optional) A vector containing the standard deviations for the parameters
in parms.
Returned Value

result — A vector containing the calculated y-coordinates of the fitted function.

CURVEFIT Function 179

Keywords

None.

Discussion

CURVEFIT uses anonlinear least-squares method to fit an arbitrary function in
which the partial derivatives are known or can be approximated. Thisisin contrast
to linear least-squares fitting methods that would require their fitting functions to
be linear in their coefficients.

Theinitial estimates of parms should be as close to the actual values as possible or
the solution may not converge. CURVEFIT performs iterations of the fitting
function until the chi-squared value for the goodness of fit changes by lessthan 0.1
percent, or until 20 iterations are reached.

TIP Theseinitial estimates for parms can be calculated from the result of the
POLY _FIT function whenit is used to fit a straight line through data.

The function to be fit must be defined and called with FUNCT.

CURVEFIT is modified from the program CURFIT found in Data Reduction and
Error Analysisfor the Physical Sciences, by Philip Bevington, McGraw-Hill, New
York, 1969. It combines agradient search with an analytical solution developed
from linearizing the fitting function. This method is termed a* gradient-expansion
algorithm.”

Weighting Factor

Weighting is useful when you want to correct for potential errorsin the data you
arefitting to a curve. The weighting factor, wt, adjusts the parameters of the curve
so that the error at each point of the curve is minimized.

wt can have any value, aslong asits size is correct. Some possible ways to weight
acurve are suggested below (wherei isan index into y, the vector of Y values):

v For statistical weighting, use wt = 1/y;
v/ For instrumental weighting, usewt = 1/(Sd dev of y;)
v/ For noweighting, usewt = 1

« Statistical Weighting — Statistical weighting is useful when you arrived at
your dependent values by measuring anumber of discrete events with respect
to the independent variable, such as counting the number of cars passing
through an intersection over 10-minute intervals.

180 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

* Instrumental Weighting — Instrumental weighting is useful when you are
measuring things from a scale, such as length, mass, voltage, or current, and
you suspect that unequal errors have been introduced into the data by the mea-
suring device. For example, if an ohm meter has three different scales (one for
0to 1 ohm, onefor 2 to 99 ohms, and onefor 100 ohmsor more), the weighting
factor would be the same for each measurement taken with the same scale.

TIP Inmost cases, you would use a different weighting factor for each scale or
instrument that was used to measure your original data.

* NoWeighting— If youfeel that fluctuationsin your dataare dueto instrument
error but that the uncertainties of the measuring device used are equal for al
the data collected, you would probably specify no weighting (wt = 1).

Example

For an example, refer tothegaussfit.pro filein the Standard Library.

See Also
FUNCT, GAUSSFIT, POLY_FIT

CYLINDER Function
Defines a cylindrical object that can be used by the RENDER function.

Usage
result = CYLINDER()

Parameters

None.

Returned Value
result — A structure that defines a cylinder object.

CYLINDER Function 181

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object. (Default: Color (*) =1.0)

Decal — A 2D array of byteswhose el ements correspond to indicesinto the arrays
of material properties.

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients. (Default: Kamb (*) =0. 0)

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients. (Default: KAiff (*)=1.0)

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients. (Default: Ktran (*) =0.0)

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix.

Discussion

A CYLINDER isused by the RENDER function to render cylindrical objects, such
as for molecular modeling (symbolizing bonds), or for generating axes and 3D
lines. It is defined as having aradius of 0.5 and being centered at the origin with a
height of 0.5in the +z direction and 0.5 in the —z direction.

To change the dimensions and orientation of a CYLINDER, use the Transform
keyword.

Example

T3D, /Reset, Rotate=[90, 0., 0]
¢ = CYLINDER (Transform=!P.T)
TVSCL, RENDER (c)

See Also
CONE, MESH, RENDER, SPHERE, VOLUME
For more information, see the PV=WAVE User’'s Guide.

182 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DAY_NAME Function

Standard Library procedurethat returnsastring array or string constant containing
the name of the day of the week for each day in a Date/Time variable.

Usage
result = DAY_NAME(dt_var)

Input Parameters
dt var — A date/time variable.

Returned Value

result — A string array or string constant containing the name of the day of the
week for each input Date/Time value.

Keywords

None.

Discussion

The names of the days of the week are string values taken from the system variable
!Day Names.

Example
date = TODAY()
day = DAY NAME (date)
PRINT, day
Monday

See Also
DAY _OF WEEK, DAY _OF YEAR, MONTH_NAME
For more information on Date/Time data, see the PV=-WAVE User’s Guide.

DAY_NAME Function 183

DAY _OF_WEEK Function

Returns an array of integers containing the day of the week for each date in aDate/
Time variable.

Usage
result = DAY_OF WEEK((dt_var)

Input Parameters
dt var — A Date/Time variable.

Returned Value

result — The day of the week expressed as an integer. Day 0 is Sunday and day 6
is Saturday.

Keywords

None.

Example

Assumethat you have aDate/Timevariable, date, for April 13, 1992. To find out
which day of the week this dateis, enter:

day = DAY OF WEEK (date)
PRINT, day
1
; The day is a Monday.

See Also
DAY _NAME, DAY_OF YEAR, MONTH_NAME
For more information on Date/Time data, see the PV=-WAVE User’s Guide.

184 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DAY _OF_YEAR Function

Returns an array of integers containing the day of the year for each datein a Date/
Time variable.

Usage
result = DAY_OF YEAR(dt_var)

Input Parameters
dt var — A Date/Time variable.

Returned Value

result — An array of integers representing the day of the year for each date in the
input variable.

Keywords

None.

Discussion
Theresult fallsin arange between 1 and 365 (or 366 if it isaleap year).

Example

today = TODAY ()
; Create a Date/Time variable.

daynumber = DAY OF YEAR (today)
PRINT, daynumber
106

See Also
DAY _NAME, DAY _OF WEEK, MONTH_NAME
For more information on Date/Time data, see the PV=-WAVE User’s Guide.

DAY_OF_YEAR Function 185

DBLARR Function

Returns a double-precision floating-point vector or array.

Usage

result = DBLARR(dim, ..., dim,)

Input Parameters

dim;— The dimensions of the result. May be any scalar expression. Up to eight

dimensions may be specified.

Returned Value

result —A double-precision floating-point vector or array.

Keywords

Nozero —If Nozero is nonzero, the normal zeroing is not performed, causing

DBLARR to execute faster.

Discussion

Normally, DBLARR sets every element of the result to zero.

Example

r = DBLARR (3, 3)

PRINT, r
0.0000000
0.0000000
0.0000000

See Also

0.0000000
0.0000000
0.0000000

BYTARR, COMPLEXARR, DCOMPLEXARR, DINDGEN, DOUBLE,
FLTARR, INTARR, LONARR, MAKE_ARRAY

186 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

DCINDGEN Function

Returns a double-precision floating-point complex array.

Usage
result = DCINDGEN(dim, [, dim,, ..., dim.])

Input Parameters

dim; —Thedimensionsof theresult. The dimensions may be any scalar expression,
and up to eight dimensions may be specified.

Returned Value

result— Aninitialized complex array with real and imaginary parts of type double
precision, floating point. If theresulting array istreated asaone-dimensional array,
thenitsinitialization is given by the following:

array(i) = DCOMPLEX(i, 0)

n
for i =0, 1""’[HD1_1]

i=1

Keywords

None.

Example

c = DINDGEN (4)

INFO, c
C DOUBLE COMPLEX = Array (4)

PRINT, c
(0.0000000, 0.0000000)
(1.0000000, 0.0000000)
(2.0000000, 0.0000000)
(3.0000000, 0.0000000)

See Also

COMPLEX, COMPLEXARR, DCOMPLEX, DCOMPLEXARR

DCINDGEN Function 187

DCOMPLEX Function

Converts an expression to double-precision complex data type.

Extracts data from an expression and placesit in acomplex scalar or array.

Usage
result = DCOMPLEX(real [, imaginary])

This form is used to convert data.
result = DCOMPLEX (expr, offset, [dimy, dim, ..., dim,])
This form is used to extract data.
Input Parameters
To convert data:
real — Scalar or array to be used asthe real part of the complex result.

imaginary — (optional) Scalar or array to be used as the imaginary part of
the complex result. If not present, the imaginary part of the result is zero.

To extract data:
expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin.

dim; — (optional) The dimensionsof theresult. This parameter may beany
scalar expression, and up to eight dimensions may be specified.

Returned Value

If converting:

result — The result is a double-precision complex data type with the size
and structure determined by the size and structure of real and imaginary
input parameters. If either or both of the parameters are arrays, result will
be an array, following the same rules as standard PV=WAV E operators.

If extracting:

result — Theresult is a complex data type with the size and structure
determined by the size and structure of the dim; parameters. If no dimen-
sions are specified, the result is scalar.

188 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

DCOMPLEX isused primarily to convert datato complex datatype. If real is of
type string and if the string does not contain a valid floating-point value (thereby
making it impossible to convert), then PV=WAVE returns 0 and displays a notice.
Otherwise, expr is converted to complex datatype. The ON_IOERROR procedure
can be used to establish a statement to jump to in the case of such errors.

If only one parameter is supplied, the imaginary part of the result is 0; otherwise,
itis set by the imaginary parameter. Parameters are first converted to double-
precision floating-point.

NOTE |If three or more parameters are supplied, DCOMPLEX extracts fields of
data from expr, rather than performing conversion.

Example
real = DINDGEN (5)
b = DCOMPLEX (real)

INFO, b

B DOUBLE COMPLEX = Array(5)
PRINT, b

(0.0000000, 0.0000000)

(1.0000000, 0.0000000)

(2.0000000, 0.0000000)

(3.0000000, 0.0000000)

(4.0000000, 0.0000000)
img = INTARR(5) + 6
c = DCOMPLEX (real, img)
INFO, c

Cc DOUBLE COMPLEX = Array(5)
PRINT, c

(0.0000000, 6.0000000)

(1.0000000, 6.0000000)

(2.0000000, 6.0000000)

(3.0000000, 6.0000000)

(4.0000000, 6.0000000)

d = DCOMPLEX (real, 7)

DCOMPLEX Function 189

INFO, d

D DOUBLE COMPLEX = Array(S)
PRINT, d

(0.0000000, 7.0000000)

(1.0000000, 7.0000000)

(2.0000000, 7.0000000)

(3.0000000, 7.0000000)

(4.0000000, 7.0000000)
e = DCOMPLEX (7, img)
INFO, e

E DOUBLE COMPLEX = Array(S)
PRINT, e

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)
See Also

BYTE, COMPLEXARR, DCOMPLEXARR, DOUBLE, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide

DCOMPLEXARR Function

Returns a double-precision floating-point complex vector or array.

Usage
result = DCOMPLEXARR(dim, [, dim,, ..., dim,])

Input Parameters

dim; — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A complex double-precision floating-point vector or array.

190 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Nozero — If Nozero is nonzero, the normal zeroing (see Discussion) is not
performed, thereby causing DCOMPLEXARR to execute faster.

Discussion
Normally, DCOMPLEXARR sets every element of the result to zero.

Example
¢ = DCOMPLEXARR (4)
INFO, c
C DOUBLE COMPLEX = Array(4)
PRINT, c
(0.0000000, 0.0000000)
(0.0000000, 0.0000000)
(0.0000000, 0.0000000)
(0.0000000, 0.0000000)
See Also

BYTARR, CINDGEN, DBLARR, DCOMPLEX, DOUBLE, FLTARR,
INTARR, LONARR

DC ERROR _MSG Function

Returns the text string associated with the negative status code generated by a
“DC” dataimport/export function that does not complete successfully.

Usage
msg_str = DC_ERROR_M SG(status)

Input Parameters

status — The error message number returned by any of the"DC" functions. Must
be integer.

DC_ERROR_MSG Function 191

Returned Value

msg_str — Thetest string that correspondsto the value of status. Returnsastring;
the string is an empty (null) string if statusis greater than or equal to 0 (zero).

Keywords

None.

Discussion

When status has a value less than 0 (zero), it indicatesa"DC" function error
condition, such as an invalid filename, or an unexpected end-of-file.

Because the error message number statusincludes both the error number and an 1D
number that corresponds to the "DC" function that produced the error, both the
function name and the specific error are described in the message string returned
by DC_ERROR_MSG.

Example

Thefollowing statements read afile containing 8-bit image data. Depending onthe
status returned by DC_READ_8 BIT, either an error message is written or the
image is displayed in awindow the exact size of the image:

status = DC_READ 8 BIT(’mongo.img’, mongo, XSize=xs, YSize=ys)
; Use DC_READ_8_BIT to read the image file.

IF (status LT 0) THEN BEGIN
msg _str = DC_ERROR MSG(status)
; Obtain the error message if status has a negative value.
PRINT, msg_str
; Print the error message.
ENDIF ELSE BEGIN
WINDOW, XSize=xs, YSize=ys
; Define a window the right size to hold the image.
TVSCL, mongo
; Display the image inside the window.

ENDELSE

192

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also
DC_OPTIONS

DC_OPTIONS Function
Sets the error message reporting level for al “DC” import/export functions.

Usage
status= DC_OPTIONS(msg_level)

Input Parameters
msg_level — The error message reporting level. Allowed values are:

0 No messages. All “DC” functions operate in a silent mode.

1 Error messages (messages that indicate a“DC” function has
failed).

2 Error message plus warning messages (messages that indicate
the “DC” function did something, but possibly not what the
user expected).

3 Error message plus warning messages plus informational mes-
sages. All levels of error messages are reported.

Each level of message reporting includes all error message reporting levelswith a
lower value, aswell. For example, Level 3 includes both Level 2 and Level 1

messages.

Returned Value
status — The value returned by DC_OPTIONS; expected values are:

<0 Indicates an error, such as an invalid value for msg_level.

0 Indicates a successful interpretation of msg_level.

Keywords

None.

DC_OPTIONS Function 193

Discussion

By default, all messages are sent to LUN -2, the standard error stream (stderr
for UNIX and SYSSERROR for OpenVMS).

If you are using DC_OPTIONS with an error message reporting level of O,
messages are not automatically sent to the standard error stream, but status codes
are still being generated by the various “DC” functions. These status codes can be
used asinput to DC_ERROR_MSG; thisisthe way to abtain the corresponding
error message string, a string that you can then process or display in any way that
you choose to.

See Also
DC_ERROR_MSG

DC _READ_8 BIT Function
Reads an 8-bit imagefile.

Usage
status= DC_READ_8 BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the 8-bit imagefile.

Output Parameters
imgarr — The byte array into which the 8-bit image datais read.

Returned Value
status— The value returned by DC_READ_8 BIT; expected values are:

<0 Indicatesan error, such as an invalid filename.
0 I ndicates a successful read.

194 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

XSize — The width (size in the x direction) of imgarr. XSze is computed and
output if imgarr is not explicitly dimensioned. XSze isreturned as an integer.

YSize — The height (sizein they direction) of imgarr. YSzeis computed and
output if imgarr is not explicitly dimensioned. YSzeis returned as an integer.

Discussion

DC_READ_8 BIT handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These stepsinclude: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done reading the data.

If the dimensions of the byte array imgarr are not known, DC_READ 8 BIT
makes a “ best guess’ about the width and height of the image. It guesses by
checking the number of bytesin the file and comparing that number to the number
of bytes associated with the following common image sizes:

Image Width Image Height
640 480

640 512

128 128

256 256

512 512

1024 1024

If no match isfound, DC_READ_8 BIT assumes that the image is square, and
returns XSze and YSize as the sguare root of the number of bytesin thefile.

NOTE You do not need to explicitly dimension imgarr, but if your image datais
not one of the standard sizes shown above, you will get more predictable resultsif
you dimension imgarr yourself.

Example
If still life.img isa640-by-480 imagefile, the function call:

DC_READ_8 BIT Function 195

status = DC_READ 8 BIT(’still life.img’, $

s life, XSize=xdim, YSize=ydim)
reads the binary datain thefilestill life.img and transfersit to avariable
nameds life.ltalsoreturnsxdim=640 andydim=480, sincethesekeywords
were provided in the function call.

On the other hand, if still 1ife.img isa200-by-350image file, the values
returned are xdim=264 and ydim=264. The keyword results xdim and ydim
are computed by taking the square root of the number of bytesin thefile. This
conversion is done because 200-by-350 is not a“common” image size for which
DC_READ_8 BIT checks.

See Also
DC_ERROR_MSG, DC WRITE 8 BIT

For more information on input and output of image data, see the PV=WAVE
Programmer’s Guide.

DC_READ_24 BIT Function
Reads a 24-bit imagefile.

Usage
status= DC_READ_24 BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the 24-bit imagefile.

Output Parameters

imgarr — The byte array into which the 24-bit image datais read. Must be a 3-
dimensional byte array. Either thefirst or last dimension of the array is 3; see the
Discussion section for more details.

Returned Value
status — The value returned by DC_READ_ 24 BIT; expected values are:

196 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

<0 Indicatesan error, such as an invalid filename.
0 Indicates a successful read.

Keywords
Org — Organization (in thefile) of the 24-bit image data. Allowed values are:

0 Pixel interleaving (RGB triplets).

1 Image interleaving (separate planes).

If not provided, O (pixel interleaving) is assumed.

XSize— Thewidth (size in the x-direction) of imgarr. The width is computed and
returned in XSzeif imgarr is not explicitly dimensioned. XSzeisreturned as an
integer.

YSize— The height (sizein they-direction) of imgarr. The height iscomputed and
returned in YSizeif imgarr is not explicitly dimensioned. YSzeisreturned as an
integer.

Discussion

DC_READ_24 BIT handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done reading the data.

When choosing the value for the Org keyword, be sure to select an organization
that matches the file, eveniif it is the opposite of that used in the variable. In other
words, if the datain the fileis pixel interleaved, specify Org=0, and if the datais
image interleaved, specify Org=1.

Theway the dataisread into the variable depends primarily on the dimensionsthat
the variablewas given when it was created. Consequently, animageinterleavedfile
can beread into apixel interleaved variable, and vice versa. So, if you want the data
inthe variable organized differently than it was organized in thefile, pre-dimension
the import variable before calling DC_READ_24 BIT. Dimension the variable
with awidth w and a height h that matches those shown in the table later in this
section.

DC_READ_24 BIT Function 197

Dimensionality of the Import Variable

If the dimensions of the byte array imgarr are not known, DC_READ 24 BIT
makesa“best guess’ about the width, height, and depth of theimage. It guesses by
checking the number of bytesin the file and comparing that number to the number
of bytes associated with the following common image sizes:

Image Width Image Height Image Depth
640 480 3
640 512 3
128 128 3
256 256 3
512 512 3
1024 1024 3

If no match isfound, DC_READ 24 BIT resorts to assuming that theimageis
square, and returns XS ze and YS ze as the square root of the number of bytesin the
file, divided by 3.

PV=WAVE uses the following guidelines to dimension imgarr:

Interleaving M ethod Dimensions of Image Variable

Pixel Interleaving Dimensionimgarr as3x wx h, wherew and h are
the width and length of the image in pixels.

Image Interleaving Dimensionimgarr aswx hx 3, wherew and h are
the width and length of the image in pixels.

NOTE You do not need to explicitly dimension imgarr, but if your image datais
not one of the standard sizes (e.g., 3-by-512-by-512 or 640-by-480-by-3), you will
get more predictable results if you dimension imgarr yourself.

Example

If thefileharpoon . img contains a 786432 byte 24-bit image-interleaved image,
the function call:

status = DC_READ 24 BIT(’harpoon.img’, $

198 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

H24 image, Org=1l, XSize=xdim, YSize=ydim)

reads the file harpoon . img, creates a 512-by-512-by-3 image-interleaved byte
array named H24 image, and returns xdim and ydim as 512.

See Also
DC_ERROR_MSG, DC WRITE 24 BIT

For more information about 24-bit (binary) data and for more information about
image interleaving options, see the PV=WAVE Programmer’s Guide.

Windows USERS For an example showing how to use DC_READ_FREE to
import datafrom aMicrosoft Excel spreadsheet, see the PV=WAVE Programmer’s
Guide.

DC _READ CONTAINER Function
Reads asingle variable from an HP VEE Container file.

Usage
status= DC_READ_CONTAINER(filename, var_name)

Input Parameters

filename — A string containing the path name and filename of the Container file.

Output Parameters

var_name — The PV=WAVE variable into which the Container file datais read.
The appropriate type and dimension of var_nameis set based on the datafound in
the Container file.

Returned Value

status— A valuereturned by DC_READ_CONTAINER indicating the success or
failure of the container file read operation as follows:

<0 Indicatesan error, such asan invalid filename or incorrect file format.

DC_READ_CONTAINER Function 199

0 Indicates a successful read.

Keywords

Double_Complex — All HP-V EE complex data types (Complex and PComplex)
are pairs of double-precision floating point values. However, prior to PV=WAVE
7.0, the only complex data type supported by PV=WAV E was single precision. For
compatibility with versions of PV=WAVE prior to version 7.0, this function still
returns Complex and PComplex as single precision complex by default. Specify
theDouble_Complex keyword to retain the precision of the HP-V EE datatypesand
return a PV=WAV E double-precision complex variable.

End_record — (scalar) Indicatesthe ending location of the desired variable within
amulti-variable Container file.The keyword isn't required, if only onevariableis
described within the Container file. Valid values for End_record can be obtained
by calling DC_SCAN_CONTAINER.

Extent — Returns the extent value for the variable described in the Container file,
if it exists.

Mapping — Returns the mapping value for the variable described in the Container
file, if it exists.

Start_record — (scalar) Indicates the starting location of the desired variable
within amulti-variable Container file. The keyword isn't required, if only one
variableis described within the Container file. Valid valuesfor Sart_record can be
obtained by calling DC_SCAN_CONTAINER.

Discussion

HP VEE is Hewlett-Packard's Visual Engineering Environment, a graphical
programing language for creating test systems and solving engineering problems.

DC_READ_CONTAINER enables you to import data into PV=WAVE from HP
VEE. The Container file format is a proprietary HP ASCI|I file format which
contains a header description of the enclosed data. PV=WAVE reads this header
information and creates a PV=WAVE variable of the appropriate type and
dimension to hold the enclosed data.

An HP VEE Container fileis created in HP VEE by using the Write Container
transaction in the To File object. Please refer to your HP VEE documentation for
more information.

200 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

An HP VEE Container file contain one or more variable descriptions (see
DC_SCAN_CONTAINER for adescription of how to read Container files with
multiple variables).

Example

In this example, sineis an undefined variable. DC_READ_CONTAINER resizes
the variable sine to fit the container data.
status = DC_READ CONTAINER (!Data_dir+’hpvee_sine.con’, sine)

INFO
SINE FLOAT = Array (256)

WzPlot, sine
; View the sine data.

See Also
DC_SCAN_CONTAINER

DC READ DIB Function (Windows)
Reads data from a Device Independent Bitmap (DIB) format file into a variable.

Usage
status = DC_READ_DIB(filename, imgarr)

Input Parameters

filename — (string) The pathname and filename of the DIB file.

Output Parameters

imgarr — The variable into which the DIB image dataisread. May be an array of
any dimension and type; imgarr’s datatype is changed to byte and then imgarr is
redimensioned using information in the DIB file.

Returned Value
status— The value returned by DC_READ_DIB; expected values are:

DC_READ_DIB Function (Windows) 201

<0 Indicatesan error, such as an invalid filename.
0 Indicates a successful read.

Output Keywords

Colormap — Used to specify avariablein which to place the colormap stored with
the DIB image. Colormap isreturned as a 2D array of long integers.

ColorsUsed — Returns the number of colors used by the bitmap image (long).

Compression — Returns the compression style used in the DIB image. Valid
values are:

0 None (no compression)
1 Run-length encoded format for bitmaps with 8 bits per pixel
2 Run-length encoded format for bitmaps with 4 bits per pixel

I mageH eight — Returns the DIB image height (long).
I mageWidth — Returns the DIB image width (long).

I mportantCol ors— Returns the number of colorsthat areimportant for theimage
to be displayed as it was saved (long).

XResolution — Returns the number of pixels per meter in the x direction (long).

YResolution — Returns the number of pixels per meter in the y direction (long).

Discussion

Devicelndependent Bitmap (DIB) isabitmap format that isuseful for transporting
graphics and color table information between different devices and applicationsin
the Windows environment. DIB files can be produced by graphics applications
such as Microsoft Image Editor, Microsoft Paintbrush, and PV=WAVE.

DC_READ_DIB enables you to import DIB images into variables. It handles: 1)
opening thefile, 2) assigning it alogical unit number (LUN), 3) closing the file
when you are finished reading the data, and 4) automatically redimensioning the
input variable.

202 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP Toread the contents of aDIB file directly into a graphics window without the
intermediate step of having the data placed in a variable, use the function
WREAD_DIB.

Example

Assumethat afile called head . bmp contains DIB data that was exported either
from PV=WAVE or from another application. To read this data directly into a
variable headimg, enter:

status = DC_READ DIB(’'head.bmp’, headimg, $
Imagewidth=xsize, Imagelength=ysize, Colormap=colors)

The dimensions of the image array are returned in the variables xsize and
ysize. The DIB image colormap isreturned in the 2D array variable colors.

See Also
DC_ERROR_MSG, DC_WRITE_DIB, WREAD _DIB, WWRITE_DIB

For more information on input and output of DIB and metafile images, see the
PV-WAVE Programmer’s Guide.

DC _READ_FIXED Function
Reads fixed-formatted ASCI| data using aformat that you specify.

Usage
status= DC_READ_FIXED(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file containing
the data.

Output Parameters

var_list — Thelist of variables into which the datais read. Include as many
variable namesin var_list as you want to be filled with data, up to a maximum of
2048. Note that variables of type structure are not supported. An exception to this

DC_READ_FIXED Function 203

isthe!DT, or date/time, structure. It is possibleto transfer date/time datausing this
routine.

NOTE The variablesin the var_list do not need to be predefined unless multiple
data types exist in the data file. An example of afile with multiple data typesis:

08/04/1994 10:00:00 23.00 -94.00 11.00
Since the above exampl e contains date/time and float datatypes, all of the variables

holding this datawill need to be declared before the DC_READ_FIXED function
iscalled.

Returned Value
status — The value returned by DC_READ_FIXED; expected values are:

<0 Indicates an error, such as an invalid filename or an 1/O error.
0 Indicates a successful read.

Keywords

Bytes Per Rec — A long integer that specifies how many characters comprise a
single record in the input data file; use only with column-oriented files. If not
provided, each line of datain thefileistreated as a new record. For more details
about when to use the Bytes Per_Rec keyword, see Example 5 on page 214.

Column — A flag that signifies filename is a column-organized file.

Dt_Template— An array of integers indicating the data/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 6 on page
215. To seeacompletelist of date/timetemplates, seethe PV=-WAVE Programmer’s
Guide.

Filters— An array of one-character strings that PV=WAV E should check for and
filter out asit reads the data. A character found on the keyboard can be typed; a
special character not found on the keyboard is specified by ASCII code. For more
details, see Example 2 on page 212.

Format — A string containing the C- or FORTRAN-like format statement that will
be used to read the data. The format string must contain at least one format code

204 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

that transfers data; FORTRAN formats must be enclosed in parentheses. If not
provided, aC format of $1f isassumed.

Ignore— An array of strings; if any of these strings are encountered, PV=WAVE
skips the entire record and starts reading data from the next line. Any string is
allowed, but the following three strings have special meanings:

$BLANK_LINES Skip all blank lines; this prevents those lines from
being interpreted as a series of zeroes.

$TEXT_IN_NUMERIC Skip any line wheretext isfound in anumeric field.
$BAD_DATE _TIME Skip any line where invalid date/time data is found.

For an example showing how to use the Ignore keyword, see Example 7 on page
216.

Miss_Str — An array of strings that may be present in the data file to represent
missing data. If not provided, PV=WAV E does not check for missing dataasit reads
the file. For an example showing how to use the Miss Str keyword, see
DC_READ_FREE, Example 3 on page 227.

Miss Vals— An array of integer or floating-point values, each of which
correspondsto astring in Miss_Str. As PV=WAVE reads the input datafile,
occurrences of strings that match thosein Miss_Str are replaced by the
corresponding element of Miss Vals.

Nrecs — Number of recordsto read. If not provided or if set equal to zero (0), the
entirefileisread. For more information about records, see Physical Records vs.
Logical Records on page 208.

Nskip — Number of physical recordsin thefileto skip before datais read. If not
provided, or set equal to zero (0), no records are skipped.

Resize— An array of integersindicating the variablesin var_list that can be
resized based on the number of records detected in the input datafile. Valuesin
Resi ze should be in the range:

1<Resize,<# of vars in var_list
For an example showing how to use the Resize keyword, see Example 4 on page
213.

Row — A flag that signifies filename is arow-organized file. If neither Row nor
Column is present, Row is the default.

DC_READ_FIXED Function 205

Discussion

DC_READ_FIXED is capable of interpreting either FORTRAN-or C-style
formats, and is very adept at reading column-oriented data files. Also,
DC_READ_FIXED handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done reading the data.

If neither the Row or Column keywords are provided, the file is assumed to be
organized by rows. If both keywords are used, the Row keyword is assumed.

NOTE Thisfunction can be used to read datainto date/time structures, but not into
any other kind of structures.

String Resources Used By This Function

Upon execution, the DC_READ_FIXED function examinestwo stringsin astring
resourcefile. These strings, described below, allow you to control how the function
handles binary files.

The string resourcefileis:

(UNIX) <wavedir>/xres/!Lang/kernel/dc.ads

(OpenVMS) <wavedirs: [XRES. !Lang.KERNEL]DC.ADS

(Windows) <wavedirs>\xres\!Lang\kernel\dc.ads

Where <wavedirs> isthe main PV=WAVE directory.

Thestringsthat areexaminedareDC_binary checkandDC allow chars.

DC_binary check — Thisstring can be set to the values True or False. If
set to True, the datafile is checked for the presence of binary characters before
thefileisread. If binary characters arefound, thefileisnot read. If thisstring is set
to False, no binary character checking is performed. (Default: True)

For example, to turn off binary checking, set the string asfollowsinthe dc . ads
file:

DC binary check: False

DC_allow chars— Thisstring letsyou specify additional charactersto allow
in the check for binary files. Before afileisread, thefirst several lines are checked
for the presence of non-printable characters. If non-printable characters are found,
thefileis considered to be a binary file and the file is not read. By default, all

206 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

printable characters in the system locale are allowed. Characters may be specified
either by entering them directly or numerically by three digit decimal values by
preceding them with a“\” (backslash).

For example, to allow characters 165 and 220, set the string as follows in the
dc.ads file:

DC allow chars: \165\220

How the Data is Transferred into Variables

Asmany as 2048 variables can beincluded in theinput argument var_list. You can
use the continuation character ($) to continue the function call onto additional
lines, if needed. Any undeclared variablesin var_list are assumed to have adata
type of float (single-precision floating-point).

Asdatais being transferred into multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the import
variable varies the fastest. For two-dimensional import variables, thisimplies that
the column index varies faster than the row index. In other words, datais
transferred into a two-dimensional import variable one row at atime. For more
details about reading column-oriented data into multi-dimensional variables, see
Example 4 on page 227 (in the DC_READ_FREE function description).

The format string is processed from left to right. Record terminators and format
codes are processed until no variables are left in the variable list or until an error
occurs. In aFORTRAN format string, when a slash record terminator (/) is
encountered, the rest of the current input record is ignored, and the next input
record is read.

Format codes that transfer data are matched with the next available variable (or
element of a multi-dimensional variable) in the variablelist var_list. Dataisread
from the file and formatted according to the format code. If the data from thefile
does not agree with theformat code, or the format code does not agree with thetype
of the variable, atype conversion is performed. If no type conversion is possible,
an error results and a nonzero statusis returned.

Once al variablesin the variable list have been filled with data,
DC_READ_FIXED stopsreading data, and returns a status code of zero (0). This
istrue even if there are format codes in Format that did not get used. Even if an
error occurs, and status is nonzero, the data that has been read successfully (prior
to the error) isreturned in the var_list variables.

DC_READ_FIXED Function 207

TIP If an error does occur, use the PRINT command to view the contents of the
variablesto see where the last successfully read value occurs. Thiswill enable you
to isolate the portion of thefile in which the error occurred.

If the format string does not contain any format codes that transfer data, an error
occurs and a nonzero status is returned. The format codes that PV=WAV E
recognizes are listed in Appendix A of the PV-WAVE Programmer’s Guide If a
format code that does not transfer datais encountered, it is processed as discussed
in that appendix.

Format Reversion when Reading Data

If the last closing parenthesis of the format string is reached and there are still
unfilled variables remaining, format reversion occurs. In format reversion, the
current record isterminated, anew oneisread, and format string processing reverts
to thefirst group repeat specification that does not have an explicit repeat count. If
the format does not contain a group repeat specification, format processing reverts
to theinitial opening parenthesis of the format string.

For more information about format reversion and group repeat specifications, see
the PV=WAVE Programmer’s Guide

Physical Records vs. Logical Records

Inan ASCII text file, the end-of -lineis signified by the presence of either a CTRL-
Jor aCTRL-M character, and arecord extends from one end-of-line character to
the next. However, there are actually two kinds of records:

v/ physical records
v logical records

For column-oriented fil es, the amount of datain aphysical record is often sufficient
to provide exactly one value for each variablein var_list, and then it isalogical
record, aswell. For row-oriented files, the concept of logical recordsisnot rel evant,
since datais merely read as contiguous val ues separated by delimiters, and the end-
of-lineis merely interpreted as another delimiter.

NOTE The Nrecs keyword counts by logical records, if they have been defined.
The Nskip keyword, on the other hand, counts by physical records, regardless of
any logical record size that has been defined.

208 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Changing the Logical Record Size

You can use the Bytes PerRec keyword to explicitly define adifferent logical
record size, if you wish. However, in most cases, you do not need to provide this
keyword. For an example of whento usethe Bytes Per_Rec keyword, see Example
5 on page 214.

NOTE By default, DC_READ_FIXED considers the physical record to be one
linein thefile, and the concept of alogical record is not needed. But if you are
using logical records, the physical recordsin the file must all be the same length.
The Bytes Per_Rec keyword can be used only with column-oriented data files.

Filtering and Substitution While Reading Data

If you want certain characters filtered out of the data as it is read, use the Filters
keyword to specify these characters. Each character (or sequence of digits that
representsthe ASCI| codefor acharacter) must be enclosed with single quotes. For
example, either of the following is a valid specification:

v, or 44!

Furthermore, the two specifications shown above are equival ent to one another. For
more examples of using the Filters keyword, see Example 2 on page 212, or
DC_READ_FREE, Example 4 on page 227.

Characters that match one of the valuesin Filters are treated asif they aren’t even
there; in other words, these characters are not treated as data and do not contribute
to the size of the logical record, if one has been defined using the Bytes Per Rec

keyword.

NOTE If you want to supply multi-character strings instead of individual charac-
ters, you can do this with the Ignore keyword. However, keep in mind that a
character that matches Filtersis simply discarded, and filtering resumes from that
point, while a string that matches Ignore causes that entire line to be skipped.

So if you are reading a datafile that contains a value such as #$*10.00**, but you
don’'t want the entire line to be skipped, filter the characters individually with
Filters=['#,'$, "*'], instead of collectively with Ignore = ['#$*', **'].

DC_READ_FIXED Function 209

Missing Data Substitution

PV=WAV E expects to substitute a value from Miss_Vals whenever it encounters a
string from Miss_Str in the data. Consequently, if the number of elementsin
Miss_Str does not match the number of elementsin Miss_Vals, a nonzero statusis
returned and no dataisread. The maximum number of values permittedin Miss_Str
and Miss Valsis 10.

If the end of thefile isreached before all variables are filled with data, the
remainder of each variableis set to Miss Valg(0) if it was specified, or O (zero) if
Miss Valswas not specified. In this case, statusis returned with avalue less than
zero to signify an unexpected end-of-file condition.

Reading Row-Oriented Files

If you include the Row keyword, each variable in var_list is completely filled
before any datais transferred to the next variable.

The dimensionality of the last variable in var_list can be unknown; a variable of
length nis created, where n isthe number of valuesremaining in thefile. All other
variablesin var_list must be pre-dimensioned.

If you include the Resize keyword with the call to DC_READ_FIXED, the last
variable can be redimensioned to match the actual number of values that were
transferred to the variable during the read operation.

If you areinterested in anillustration showing what row-oriented data can look like
inside afile, see the PV=-WAVE Programmer’s Guide.

Reading Column-Oriented Files

If you include the Column keyword, DC_READ_FIXED viewsthe datafilesasa
series of columns, with a one-to-one correspondence between columnsin the file
and variablesin the variable list. In other words, one value from the first record of
thefileistransferred into each variablein var_list, then another value from the next
record of thefileistransferred into each variablein var_list, and so forth, until all
the datain the file has been read, or until the variables are completely filled with
data.

If avariableinvar_list isundefined, afloating-point variable of length nis created,
where nisthe number of records read from the file. To get asimilar effect in an
existing variable, include the Resize keyword with the function call.

All variables specified with the Resize keyword are redimensioned to the same
length — the length of the longest column of datain the file. The variables that

210 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

correspond to the shortest columns in the file will have one or more values added
to the end; either Miss Vals(0) if it was specified, or 0 (zero) if Miss Valswas not
specified.

If you areinterested in anillustration demonstrating what column-oriented datacan
look likeinside afile, see the PV=WAVE Programmer’s Guide.
Multi-dimensional Variables

The following table shows how column-oriented datain afile is read into multi-
dimensional variables:

Dimensions How Datais Read From the File
of Variable (If Variable is Pre-dimensioned)
One-dimensiond One value read from each record of file
Axn) (repeated n times)
Two-dimensional m values read from each record of file
(m columns by n rows) (repeated n times)
Three-dimensional m values read from each record of file
(mxnxp) (repeated n times)

(entire process repeated p times)
g-dimensional m values read from each record of file
(mxnxpxaq) (repeated n times)

(above process repeated p times)
(entire process repeated q times)

You can combine one- and two-dimensional variablesin var_list, aslong as the
second dimension of the two-dimensional variable matches the dimension of the
one-dimensional variable. For example, with two variables, var1 (50) and
var2 (2,50), onecolumn of datawill betransferred to var1 and two columns
of datawill be transferred to var2.

NOTE [f you want to intermingle multi-dimensional variablesin var_list, you
must be sure that the product of all dimensions (excluding the first dimension) of
each variableisequal. For example, you can combinetwo-, three-, and four-dimen-
sional variablesin var_list if the variables have dimensions like these:

Varl 2-by-30
Var2 2-by-15-by-2

DC_READ_FIXED Function 211

Var3 2-by-10-by-3
Vard 2-by-3-by-2-by-5

Example 1

The function call:

status=DC_READ FIXED('results.wp’, /Column, S

unitl, unit2, unit3, run total, Ignore= $
["Total", "------ mt,oon $TEXT_IN_NUMERIC" ,]
" $BLANK_LINES"] , Format="(F7.2,5X)")

reads the data from file results . wp and places the data into four variables:
unitl,unit2,unit3,and run_ total.

Because the variables were not predefined, all dataisinterpreted as single-
precision floating-point data, and all variables are treated as resi zable one-
dimensional arrays. Any blank lines or strings specified with the Ignore keyword
(inthisexample, “Total” and“------ ™) areignored. Also, any line with non-
numeric charactersin anumeric field isignored.

Example 2

The function call:

status = DC_READ FIXED(’yields.doc’, intake, $
chute, conveyor, crusher, /Column, S
Filter=['/", ":', ','1, $
Format="(F7.2, 8X, F6.4, 3X)", S
Ignore=["$BLANK LINES"])

reads datafrom thefile yields . doc and places the datainto four variables:
intake, chute, conveyor, and crusher.

Because the variables were not predefined, all dataisinterpreted as single-
precision floating-point data, and all variables are treated as resizable one-
dimensional arrays. Any extraneous characters (in thisexample, “/”, “:", and “,")
are discarded because the Filter keyword is provided. Also, all totally blank lines
in thefile are ignored.

Example 3

212 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The datafile shown below is afixed-formatted ASCII filenamed simple.dat.
The'. charactersin simple . dat represent blank spaces:

.1.2.3.4.5
..6..7..8...9..10
.11..12..13..14..15
..16..17..18..19..20

The function call:
status = DC_READ FIXED('’simple.dat’, varl, $
Format=' (I4)’, /Column)

resultsinvarl=[1.0, 6.0, 11.0, 16.0].Becausevarl wasnot
predefined, DC_READ_FIXED createsit as a one-dimensional floating-point

array.
On the other hand, the commands;

Varl = INTARR(2)

Var2 = INTARR(2)

status = DC_READ FIXED('simple.dat’, varl, $
var2, Format=’ (2(4X, I4))’', Nskip=2)

skip thefirst two recordsin thefileand resultinvari=[12, 14] and
var2=[17, 19].Because neither the Row or Column keyword was supplied,
the file is assumed to use row organization.

Example 4

The data file shown below is a fixed-formatted ASCII file; thisfileis named
nimrod.dat. The'. charactersinnimrod.dat represent blank spaces.
nimrod.dat isvery muchlikethedatafilein Example 3 on page 212, except that
it has a missing value where you would expect to see the numeral “8":

..1.2.3.4.5
..6...7......9..10
.11..12..13..14..15
..16..17..18..19..20

When reading this file as column-oriented data, the results vary, depending on
whether a C or FORTRAN format string is being used, and whether the Resize
keyword has been included in the function call to DC_READ_FIXED.

For example, the commands:

A
C

INTARR (20) & B = INTARR(20)
INTARR (20) & D = INTARR(20)

DC_READ_FIXED Function 213

E = INTARR(20)

status = DC_READ FIXED(’'nimrod.dat’, S
A, B, C, D, E, Format=' (2X, I2)', S
Resize=[1, 2, 3, 4, 5], /Column)

resultina=[{1, 6, 11, 161,B=[2, 7, 12, 17],C=[3, 0, 13, 18],
D=[4, 9, 14, 19],andE=[5, 10, 15, 20].Themissingvaueis
interpreted as a zero (0). All variables are resized to alength of 4.

On the other hand, the commands;

A = INTARR(20) & B = INTARR(20)
C = INTARR(20) & D = INTARR(20)
E INTARR (20)

status = DC_READ FIXED(’'nimrod.dat’, §
A, B, C, D, E, Format='%d’, $
Resize=[1, 2, 3, 4, 5], /Column)

resultina=[1, 6, 11, 16],B=[2, 7, 12, 17],

c = [3, 9, 13, 18],D = [4, 10, 14, 19],and

E = [5, 15, 20].Themissingvalueis skipped altogether, and E isresized to
alength of 3 to reflect the number of valuesthat were transferred into the variable.
The other variables are resized to 4.

Any variable that is not resizable (because it was omitted from the Resize vector),
will be padded to the end with extra values. For the latter of the two callsto
DC_READ_FIXED showninthisexample, A, B, C, and D would be padded with
an additional 16 zeroes, while E would be padded with an additional 17 zeroes.
(Zeroes are used for the padding because Miss_Vals was not specified.)

If thefilenimrod.dat had used some other character as a delimiter, such as
commas or slashes, both the C and FORTRAN format strings would have yielded
the sameresult, namely, ¢ = [3, 0, 13, 18].Itisonly because of the way
a C format skips over blank space that the C format was unable to detect the
presence of amissing value.

Example 5

Thedatafile shown below contains 18 pairs of XY datathat could be used to create
a scatter plot:

5.992E+04,7.121E-01,8.348E+04,7.562E-01,5.672E+04,9.451E-01,
5.459E+04,8.659E-01,7.088E+04,8.659E-01,8.541E+04,3.437E-01,
4.981E+04,4.679E-01,8.438E+04,5.019E-01,6.902E+04,7.340E-01,
6.239E+04,8.023E-01,7.865E+04,6.643E-01,5.870E+04,9.992E-01,
7.439E+04,9.456E-01,4.672E+04,9.801E-01,6.872E+04,4.325E-01,

214 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

6.362E+04,5.894E-01,8.992E+04,7.509E-01,2.785E+04,4.796E-01,

For data organized like this, you use the Bytes Per Rec keyword to specify the
exact length of the record. In this example, all X values are single-precision
floating-point numbers with an exponent of E+04, and all Y values are single-
precision floating-point numbers with an exponent of E-01. Therefore, each XY
pair uses 18 ASCI| characters (bytes) apiece. Thus, you would specify 20 bytes per
record (9 times 2, plus 2 more bytes for the comma delimiters separating values).

status=DC_READ FIXED(/Column, "xy5.dat", Xa, $
Ya, Format="(E9.3, 1X)", Bytes Per Rec=20)

If you omit the Bytes Per_Rec keyword, but still read the file as a column-oriented
file, only thefirst pair of datavalues on each linewould actually betransferred into
thevariables Xa and Ya. Nor can thefile be read as row-oriented data, because Xa
would be filled completely before any data was transferred to Ya.

TIP Only includethe Bytes Per Rec keyword when you have alogical record that
islonger or shorter than one linein thefile. For the mgority of column-oriented
data files, one and only one value from each variable is on asingle line, and the
Bytes Per_Rec keyword is completely unnecessary.

Example 6

Assume that you have afile, chrono . dat, that contains some data values and
also some chronological information about when those data val ues were recorded:

01/01/92 10:30:35 10.00 04-30-92 32767
02/01/92 23:22:15 15.89 06-15-91 99999
05/15/91 03:03:03 14.22 12-25-92 87654

The date/time templates that will be used to transfer this data have the following
definitions:

Number Template Description
1 MM*DD*YY (* = any delimiter)
-1 HH*MM*SS (* = any delimiter)

To read the date and time from the first two columns into one date/time variable
and read the third column of floating point datainto another variable, use the
following commands:

datel = REPLICATE ({!DT},3)

DC_READ_FIXED Function 215

date2 = REPLICATE ({!DT},3)

; The system structure definition of date/time is |DT. Date/time
; variables must be defined as IDT structure arrays before being
; used if the date/time data is to be read as such.

status = DC_READ FIXED("chrono.dat", datel, datel, decibels,
Dt Template=[1,-1]1, $
Format=" (2 (A8, 1X), F5.2)", /Column)

; The variable date1 is listed twice; this way, both the date data
; and the time data can be stored in the same variable, date1.

To read al columns, change the call to DC_READ_FIXED and define a new
variable:

calib = INTARR(3)

status = DC_READ FIXED("chrono.dat", datel, $
datel, decibels, date2, calib, /Column, $
Format="%8s %8s %f %8s %d", Ignore= $
["$BAD_DATE_TIME"], Dt_Template:[l,—l])

Notice how the date/time templ ates are reused. For each new record, Template 1is
used first to read the date datainto date1. Next, Template —1 is used to read the
timedatainto datel. Finaly, since thereis another date/time variable to be read
(date?2) and there are no more templates | eft, the template list is reset and
Template 1 is used again. The template list is reset for each record.

NOTE Because of theinternal conversion that DC_READ_FIXED performsto
convert the date strings to PV=WAV E's date/time internal structure, the date and
time data must be read with the A8 (FORTRAN) or $8s (C) format string.

Normally an error would be reported if the input text to be read as date/timeis
invalid and cannot be converted. But because the Ignore=["$BAD_DATE_TIME"]
keyword was provided, any record containing this type of error isignored and no
error isreported.

Example 7

The datafile shown below is afixed-formatted ASCI| file named wages . wp. All
floating-point datain the file has been decimal -point-aligned by aword-processing
application:

1070.00 9007.97 1100.00 1250.00 850.50 2010.00

5000.00 3050.00 1044 .12 3500.00 6031.00 905.00

216 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

415.00 5200.00 1300.10 350.00 745.00 3000.00
200.00 3100.00 8100.00 7050.00 6780.00 2310.25
950.00 1050.00 1350.00 410.00 797.00 200.36
2600.00 2000.00 1500.00 2000.00 1000.00 400.00
1000.00 9000.00 1100.00 2091.00 3440.10 2000.37

5000.00 3000.00 1000.01 3500.00 6000.00 900.12

The following commands:

Maria = Fltarr(l12) & Naomi = Fltarr(12)
Klaus = Fltarr(12) & Carlos = Fltarr(1l2)

status = DC_READ FIXED(’'wages.wp’, Maria, $
Carlos, Klaus, Naomi, Format="(F7.2,5X)", S
Ignore:["$BLANK_LINES"])

read the datafrom filewages . wp and placesthe datainto four variables: Maria,
Carlos,Klaus, and Naomi. By default, row organization is assumed in thefile,
with five spaces separating the values in thefile.

With row organization, each variableis“filled up” before any dataistransferred to
the next variable in the variable list. This means that the first two lines of thefile
aretransferred into thevariableMaria, the new twolines of thefilearetransferred
into the variable Carlos, the next two lines of the file are transferred into the
variable K1aus, and the last two lines of the file are transferred into the variable
Naomi. Theblank linesin thefile are skipped entirely, preventing those linesfrom
being interpreted as a series of zeroes.

See Also
DC_ERROR_MSG, DC_READ _FREE, DC WRITE_FIXED

For more information about fixed format 1/0 in PV=WAVE, see the PV=WAVE
Programmer’s Guide.

DC_READ_FIXED Function 217

DC READ FREE Function
Reads freely-formatted ASCI| files.

Usage
status= DC_READ_FREE(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file containing
the data.

Output Parameters

var_list — Thelist of variables into which the datais read. Include as many
variables namesin var_list asyou want to be filled with data, up to a maximum of
2048. Note that variables of type structure are not supported. An exception to this
isthe!DT, or date/time, structure. It is possibleto transfer date/time datausing this
routine.

NOTE Thevariablesin the var_list do not need to be predefined unless multiple
data types exist in the data file. An example of afile with multiple data typesis:

08/04/1994 10:00:00 23.00 -94.00 11.00
Since the above exampl e contains date/time and float datatypes, all of the variables

holding this datawill need to be declared before the DC_READ_FIXED function
iscalled.

Returned Value
status — The value returned by DC_READ_FREE; expected values are:

<0 Indicatesan error, such as an invalid filename or an I/O
error.

0 Indicates a successful read.

218 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords
Column — A flag that signifies filename is a column-organized file.

Delim — An array of single-character strings that are the field separators used in
the datafile. If not provided, a comma- or space- delimited file is assumed.

Dt _Template— An array of integers indicating the date/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 5 on page
229. To seeacompletelist of date/timetemplates, seethe PV=WAVE Programmer’s
Guide.

Filters— An array of one-character strings that PV=WAV E should check for and
filter out asit reads the data. A character found on the keyboard can be typed; a
special character not found on the keyboard is specified by ASCII code. For more
details about the Filters keyword, see Filtering and Substitution While Reading
Data on page 223.

Get_Columns — An array of integers indicating column numbers to read in the
file. If not provided or if set equal to zero (0), al columns are read. Ignored if the
Row keyword is supplied.

Ignore— An array of strings; if any of these strings are encountered, PV=-WAVE
skipsthe entire line and starts reading data from the next line. Any string is
allowed, but the following three strings have special meanings:

$BLANK LINES Skip al blank lines; this prevents those
lines from being interpreted as a series of
ZEroes.

STEXT IN NUMERIC Skip any line wheretext isfound in a
numeric field.

$SBAD DATE TIME Skip any line where invalid date/time data
isfound.

For an example showing how to use the Ignore keyword, see Example 2 on page
226.

Miss Str — A string array that specifies strings that may be present in the datafile
to represent missing data. If not present, PV=WAV E does not check for missing
dataasit readsthefile.

Miss Vals— An array of floating-point values, each of which correspondsto a
string in Miss_Str. As PV=WAVE reads the input data file, occurrences of strings

DC_READ_FREE Function 219

that match those in Miss_Str are replaced by the corresponding element of
Miss Vals.

Nrecs— Number of recordsto read. If not provided or if set equal to zero (0), the
entire fileisread. For more information about records, see Physical Records vs.
Logical Records on page 222.

Nskip — Number of physical recordsin the file to skip before dataiis read. If not
provided or if set equal to zero (0), no records are skipped.

Resize — An array of integersindicating the variablesin var_list that can be
resized based on the number of records detected in the input datafile. Valuesin
Resize should be in the range:

1<Resize,<# of vars in var_list

For an example showing how to use the Resize keyword, see DC_READ_FIXED,
Example 4 on page 213, or DC_READ_FREE, Example 4 on page 227.

Row — A flag that signifies filename is a row-organized file. If neither Row nor
Column is present, Row is the default.

Vals Per_Rec— A long integer that specifies how many values compriseasingle
record in the input data file; use only with column-oriented files. If not provided,
each line of datain thefileistreated as anew record. For more details about when
to use the Vals Per_Rec keyword, see Example 4 on page 227.

Discussion

DC_READ_FREE isvery adept at reading column-oriented data files. Also,
DC_READ_FREE handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done reading the data.

DC_READ_FREE relieves you of the task of composing aformat string that
describes the organization of the datain the input file. All you do istell
DC_READ_FREE which delimitersto expect in thefile; commaand space are the
default delimiters expected. In other words, DC_READ_FREE easily reads data
values separated by any combination of commas and spaces, or any other
delimitersthat you explicitly define using the Delim keyword.

If neither the Row or Column keywords are provided, the file is assumed to be
organized by rows. If both keywords are used, the Row keyword is assumed.

220 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE Thisfunction can be used to read datainto date/time structures, but not into
any other kind of structures.

String Resources Used By This Function

Upon execution, the DC_READ_FREE function examines two stringsin astring
resourcefile. These strings, described below, allow you to control how the function
handles binary files.

The string resourcefileis:
(UNIX) <wavedir>/xres/!Lang/kernel/dc.ads
(OpenVMS) <wavedirs>: [XRES. !Lang.KERNEL]DC.ADS

(Windows) <wavedirs>\xres\!Lang\kernel\dc.ads
Where <wavedir> isthe main PV=WAVE directory.
Thestringsthat areexaminedareDC_binary checkandDC_allow chars.

DC_binary check — Thisstring can be set to the values True or False. If
set to True, the datafile is checked for the presence of binary characters before
thefileisread. If binary charactersarefound, thefileisnot read. If thisstring is set
to False, no binary character checking is performed. (Default: True)

For example, to turn off binary checking, set the string asfollowsinthedc . ads
file:

DC binary check: False

DC _allow chars— Thisstring letsyou specify additional charactersto allow
in the check for binary files. Before afileisread, thefirst several lines are checked
for the presence of non-printable characters. If non-printable characters are found,
thefileis considered to be abinary file and the file is not read. By default, all
printable characters in the system locale are allowed. Characters may be specified
either by entering them directly or numerically by three digit decimal values by
preceding them with a“\” (backslash).

For example, to allow characters 165 and 220, set the string as follows in the
dc.ads file

DC allow chars: \165\220

DC _READ_FREE Function 221

How the Data is Transferred into Variables

Asmany as 2048 variables can beincluded in theinput argument var_list. You can
use the continuation character ($) to continue the function call onto additional
lines, if needed. Any undeclared variablesin var_list are assumed to have a data
type of float (single-precision floating-point).

Asdatais being transferred into multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the import
variable varies the fastest. For two-dimensional import variables, thisimplies that
the column index varies faster than the row index. In other words, datais
transferred into a two-dimensional import variable one row at atime. For more
detail s about reading column-oriented data into multi-dimensional variables, see
Example 4 on page 227.

If the current input line is empty or DC_READ_FREE has reached the end of the
lineand there are still unused variablesin var_list, the next lineisread. When there
are no unused variables left in var_list, the remainder of the lineisignored.

When reading into numeric variables, PV=WAV E attemptsto convert theinput into
avalue of the expected type. Decimal points are optional and scientific notation is
allowed. If areal valueis provided for an integer variable, the valueistruncated at
the decimal point.

NOTE If thefile contains string data, make sure the strings do not contain delim-
iter characters. Otherwise, the string will be interpreted as more than one string,
and the data in the file will not match the variable list.

Onceadll variablesin the variablelist have been filled with data, DC_READ_FREE
stops reading data, and returns a status code of zero (0). Even if an error occurs,
and statusis nonzero, the data that has been read successfully (prior to theerror) is
returned in the var_list variables.

TIP If an error does occur, use the PRINT command to view the contents of the
variablesto see where the last successfully read value occurs. Thiswill enableyou
to isolate the portion of the file in which the error occurred.

Physical Records vs. Logical Records

Inan ASCI| text file, the end-of -lineis signified by the presence of either a CTRL-
Jor aCTRL-M character, and a record extends from one end-of-line character to
the next. However, there are actually two kinds of records:

222 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

v/ physical records
v logica records

For column-oriented files, the amount of datain aphysical record is often sufficient
to provide exactly one value for each variablein var_list, and then it isalogical
record, aswell. For row-oriented files, the concept of logical recordsisnot relevant,
since dataismerely read as contiguous val ues separated by delimiters, and the end-
of-lineis merely interpreted as another delimiter.

NOTE The Nrecs keyword counts by logical records, if they have been defined.
The Nskip keyword, on the other hand, counts by physical records, regardless of
any logical record size that has been defined.

Changing the Logical Record Size

You can use the Vals_Per_Rec keyword to explicitly define a different logical
record size, if you wish. However, in most cases, you do not need to provide this
keyword. For an example of when to use the Vals_Per_Rec keyword, see Example
4 on page 227.

NOTE By default, DC_READ_FREE considersthe physical record to be oneline
in the file, and the concept of alogical record is not needed. But if you are using
logical records, the physical recordsin thefile must al contain the same number of
values. The Vals_Per_Rec keyword can be used only with column-oriented data
files.

Filtering and Substitution While Reading Data

If you want certain characters filtered out of the data asit isread, use the Filters
keyword to specify these characters. Each character (or sequence of digits that
representsthe ASCI| codefor acharacter) must be enclosed with single quotes. For
example, either of the following is avalid specification:

,tor a4

Furthermore, the two specifications shown above are equival ent to one another. For
another example of using the Filters keyword, see Example 4 on page 227.

DC_READ_FREE Function 223

TIP Besure not to filter characters that were used in the file as delimiters. The
delimiters enable DC_READ_FREE to discern where one data value ends and
another one begins.

Characters that match one of the valuesin Filters are treated asif they aren’t even
there; in other words, these characters are not treated as data and do not contribute
to the size of the logical record, if one has been defined using the Vals Per_Rec

keyword.

NOTE If you want to supply multi-character strings instead of individual charac-
ters, you can do this with the Ignore keyword. However, keep in mind that a
character that matches Filtersis simply discarded, and filtering resumes from that
point, while a string that matches Ignore causes that entire line to be skipped.

So if you are reading a data file that contains a value such as #$* 10.00**, but you
don’t want the entire line to be skipped, filter the characters individually with
Filters= ['#,'$, '] instead of collectively with Ignore = ['#$*', "**'].

Missing Data Substitution

PV=WAVE expectsto substitute a value from Miss_Vals whenever it encounters a
string from Miss_Str in the data. Consequently, if the number of elementsin
Miss_Str does not match the number of elementsin Miss_Vals, anonzero statusis
returned and no dataisread. The maximum number of valuespermittedin Miss_Str
and Miss Valsis 10.

If the end of thefileisreached before all variables are filled with data, the
remainder of each variableis set to Miss Vals(0) if it was specified, or O (zero) if
Miss_Vals was not specified. In this case, statusis returned with avalue less than
zero to signify an unexpected end-of-file condition.

Delimiters in the Input File

Valuesin the file can be separated by commas, spaces, and any other delimiter
characters specified with the Delim keyword. If you use any other delimiter, the
delimiter character is treated as data and type conversion is attempted. If type
conversion is not possible, statusis set to less than zero to signify an error
condition.

NOTE Useadifferent delimiter to separate data values in the file than you use to
separate the different fields of dates and times, such as months, days, hours, and

224 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

minutes. Otherwise, your date/time datamay not beinterpreted correctly. The only
delimitersthat can be used inside date/time data are: slash (/), colon (:), hyphen
(=), and commal(,).

Reading Row-Oriented Files

If you include the Row keyword, each variable in var_list is completely filled
before any datais transferred to the next variable.

When reading row-oriented data, only the dimensionality of the last variable in
var_list can be unknown; avariable of length nis created, where n is the number
of valuesremaining in thefile. All other variablesin var_list must be pre-
dimensioned.

If you include the Resize keyword with the call to the function DC_READ_FREE,
the last variable can be redimensioned to match the actual number of values that
were transferred to the variable during the read operation.

If you areinterested in anillustration showing what row-oriented data can look like
inside afile, see the PV=-WAVE Programmer’s Guide.

Reading Column-Oriented Files

If you include the Column keyword, DC_READ_FREE viewsthe datafilesasa
series of columns, with a one-to-one correspondence between columnsin the file
and variablesin the variable list. In other words, one value from the first record of
thefileistransferredinto each variablein var_list, then another value from the next
record of thefileistransferred into each variablein var_list, and so forth, until all
the datain the file has been read, or until the variables are completely filled with
data.

If avariableinvar_list isundefined, afloating-point variable of length nis created,
where nisthe number of records read from the file. To get asimilar effect in an
existing variable, include the Resize keyword with the function call.

All variables specified with the Resize keyword are redimensioned to the same
length — the length of the longest column of datain the file. The variables that
correspond to the shortest columns in the file will have one or more values added
to the end; either Miss_Vals(0) if it was specified, or O (zero) if Miss_Valswas not
specified.

If you areinterestedin anillustration demonstrating what column-oriented datacan
look likeinside afile, see the PV=WAVE Programmer’s Guide.

DC_READ_FREE Function 225

For more information about how column-oriented data in afileisread into multi-
dimensional variables, see Multi-dimensional Variables on page 211.

Example 1

The datafile shown below is a freely-formatted ASCI|I file named
monotonic.dat:

12345

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

The function call:

status = DC_READ FREE (’'monotonic.dat’, wvarl, $
/Column, Get Columns=[3])

resultsinvarl=[3.0, 8.0, 13.0, 18.0].Becausevarl wasnot
predefined, DC_READ_FREE createsit as aresizable one-dimensional floating-
point array.

On the other hand, the commands;

INTARR(2)
var2 INTARR(2)

status = DC_READ FREE (’'monotonic.dat’, varl, §
var2, /Column, Get Columns=[2, 4], Nskip=2)

varl

resultinvarl=[12, 17] andvar2=[14, 19].

Example 2

Thedatafile shown below isafreely-formatted ASCII filenamed measure . dat:

0 5 10 15 20 25 30 35 40 45 50 56 61 66 71
76 81 86 91

96 101 107 112 117 122 127 132 137 142 147 152 158 163 168 173
178 183 188

193 198 203 209 214 219 224 229 234 239 244 249 255 255 255 255
255 255 255
255 255 255 255 255

The commands;

varl = INTARR(5)
var2 = INTARR(5)

226 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

status = DC_READ FREE (’'measure.dat’, §
varl, var2, Ignore=["$BLANK LINES"])

resultinvarl = [0, 5, 10, 15, 20] andvar2 = [25, 30, 35,

40, 45].Notethat thefilewasinterpreted asrow-oriented data, since neither the
Row or Column keyword was specified. All totally blank lines are ignored

NOTE |If the Resize = [2] keyword had been provided, var2 would have been
resizable and would have ended up having many more elements. Specifically,
var2 would have ended up with 57 elementsinstead of just 5.

Example 3

The data file shown below is afreely-formatted ASCII file named intake.dat:

151-182-BADY-214-515
316-197-BADX-199-206

The commands:

valve = INTARR(30)

status = DC_READ_FREE(’intake.dat’, S
valve, Miss Str=["BADX","BADY"], S
Miss Vals=[9999, -9999], Resize=[1], S
Delim=['-"])

resultsinvalve=[151, 182, -9999, 214, 515, 316, 197, 9999,
199, 206]. Thehyphensin the dataarefiltered out. Because valve is
resizable, it endsup with 10 elementsinstead of 30. Thetwo valuesfrom Miss Vals
are substituted for the two stringsin thefile, "BADX" and "BADY".

Example 4

The data file shown below is afreely-formatted ASCII file named 1evel . dat.
Thisdatafile uses the semi-colon (;) and the slash (/) as delimiters, and the comma
(,) to separate the thousands digit from the hundreds digit. Thisfile hasthreelogical
records on every line; at the end of each logical record isaslash:
5,992;17,121/8,348;17,562/5,672;19,451/

5,459;18,659/7,088;17,052/8,541;13,437/
6,362;15,894/8,992;17,509/7,785;14,796/

The commands;

gap = INTARR(20)
INTARR(20)
status = DC_READ FREE(’level.dat’, gap, bar, $

bar

DC _READ_FREE Function 227

/Column, Delim=[';’, ’/']1, Filter=[','1, $

Resize=[1, 2], Vals_ Per Rec=2)
result in:
gap = [5992, 8348, 5672, 5459, 7088,
6362, 8992, 7785] and bar = [17121,

19451, 18659, 17052, 13437, 15894, 17509,

14796] .

8541,

17562,

The commas have been filtered out of the data because of the value of the string

that was provided with the Filter keyword.

Suppose you wanted gap and bar to be dimensioned as 3-by-3 arrays instead of
1-by-9 vectors. The best way to do thisis by reading the data with the commands
shown above, and then using the REFORM command to redimension the variables:

gaparr = REFORM(gap, 3, 3)
bararr = REFORM (bar, 3, 3)

By approaching the datatransfer inthisway, DC_READ_FREE does not expect to
transfer two columns of data into the same multi-dimensional variable.

For example, the following commands demonstrate the problem:

gap = INTARR(3, 3)
bar = INTARR(3, 3)

status = DC_READ FREE(’level.dat’, gap, bar, $

/Column, Delim=[’;’, ’/'], Filter=[',’'], $
Resize=[1, 2], Vals Per Rec=2)
resultsin:

5992 17121 0
8348 17562 0
5672 19451 0
5459 18659 0
gap = | 7088 17052 0
8541 13437 0
6362 15894 0
8992 17509 0
7785 14796 0|

228 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

and

000
bar = |poo0
000

The dataistransferred into gap using therule, “ Thefirst subscript varies fastest.”
With Vals Per Rec set to “2”, no valueis available for the third column—nhence,
every element in the third column is set equal to “0” (zero). Furthermore, notice
that gap getsal the data (it is resizable) and bar gets hone of the data.

Example 5

Assume that you have afile, events . dat, that contains some data values and
also some chronological information about when those data values were recorded:

01/01/92 5:45:12 10 01-01-92 3276
02/01/92 10:10:10 15.89 06-15-91 99
05/15/91 2:02:02 14.2 12-25-92 876

The date/time templates that will be used to transfer this data have the following
definitions:

Number Template Description
1 MM*DD*YY (* = any delimiter)
-1 HH*MM*SS (* = any delimiter)

To read the date and time from the first two columns into one date/time variable
and read the third column of floating point datainto another variable, use the
following commands:

datel = REPLICATE({!DT},3)
; The system structure definition of date/time is |DT. Date/time
; variables must be defined as DT structure arrays before being
; used if the date/time data is to be read as such.

status = DC_READ FREE ("events.dat", datel, $
datel, floatl, /Column, $
Dt _Template=[1,-1], Delim=[’ ’])
; The variable date1 is listed twice; this way, both the date data
; and the time data can be stored in the same variable, date1.

To see the values of the two variables, you can use the PRINT command:

DC_READ_FREE Function 229

FOR I = 0,2 DO BEGIN
PRINT, datel(I), floatl(I)
; Print one row at a time.
ENDFOR

Executing these statements results in the following output:

{ 1992 01 01 05 45 12.00 87402.240 0}
10.0000 { 1992 02 01 10 10 10.00 87433.424
0} 15.8900 { 1992 05 15 02 02 02.00
87537.035 0} 14.2000

Because datel isastructure, curly braces, “{” and “}”, are placed around the
output. When displaying the value of datel and £1oat1, PV=WAVE uses
default formats for formatting the values, and attempts to place as many items as
possible onto each line.

TIP Another alternative to view the contents of datel and £1loatl isto usethe
DT_PRINT command instead of PRINT.

For more information about the internal organization of the IDT system structure,
see the PV=WAVE Programmer’s Guide.

To read the first, second, fourth, and fifth columns, define an integer array and
another date/time variable, and change the call to DC_READ_FREE as shown
below:

calib = INTARR(3)

date2 = REPLICATE ({!DT},3)

status = DC_READ FREE ("events.dat", datel, S
datel, date2, calib, /Column, Delim=[’ ‘], $
Get Columns= [1, 2, 4, 5], Dt Template = $
[1, -1], Ignore=["$BAD DATE TIME"])

Notice how the date/time templ ates are reused. For each new record, Template 1is
used first to read the date datainto date1. Next, Template —1 is used to read the
time datainto datel. Finaly, since thereis another date/time variable to be read
(date2) and there are no more templates left, the template list is reset and
Template 1 isused again. The template list is reset for each record.

NOTE Because of theinternal conversion that DC_READ_FIXED performsto
convert the date strings to PV=WAV E's date/time internal structure, the date and
time data must be read with the A8 (FORTRAN) or $8s (C) format string.

Normally an error would be reported if the input text to be read as date/timeis
invalid and cannot be converted. But because the Ignore=["$BAD_DATE_TIME"]

230 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

keyword was provided, any record containing this type of error isignored and no
error is reported.

See Also
DC_ERROR_MSG, DC READ FIXED, DC_WRITE_FREE

See the PV=WAVE Programmer’s Guide for more information about free format
[/0in PV=-WAVE.

DC READ TIFF Function
Reads a Tag Image File Format (TIFF) file.

NOTE Thisfunction was retired with version 6.1, because the new
IMAGE_READ function provides the same capability. Although
DC_READ_TIFFisstill availablefor backward compatibility, we strongly recom-
mend that you use IMAGE_READ instead.

Usage
status= DC_READ_TIFF(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the TIFF file.

Output Parameters

imgarr — The variableinto which the TIFF image dataisread. May be an array of
any dimension and type; imgarr’s datatype is changed to byte and then imgarr is
re-dimensioned using information in the TIFF file. Variables of type structure are
not supported.

Returned Value
status — Value returned by DC_READ_TIFF; expected values are:

<0 Indicatesan error, such as an invalid filename or image number.
0 Indicates a successful read.

DC_READ_TIFF Function 231

Keywords

BitsPer Sample— The number of bitsthat comprise each sampleinthe TIFFimage
isreturned; apixel consists of one or more “samples’. BitsPer Sample is returned
as an integer; typical valuesare 2, 4, and 8.

Colormap — The TIFF image colormap. If present, the colormap associated with
the TIFF imageisreturned. Colormap is returned as a 2-dimensional array of long
integers.

Compression — The compression style used in the TIFF image. Compression is
returned as an integer; expected values are:

1 None (no compression)
2 CCITT Group 3
5 LzZwW

32733 PackBits

I magelength — The TIFF image length. If present, the TIFF image length is
returned. Imagelength is returned as along integer value.

I magewidth — The TIFF image width. If present, the TIFF image width is
returned. Imagewidth is returned as along integer value.

I mgnum — The number of theimageto read from thefile. If not provided, thefirst
image (image number 0) isread.

Order — If nonzero, Order reversesthe y-axis direction of the original image. In
other words, if the original imageis stored from top to bottom, the returned image
is stored from bottom to top.

Photometricl nterpretation — The class of the TIFF image. If present, retrieves
photometric information from the TIFF image header. Photometriclnter pretation
is returned as an integer; expected values are:

0 Bilevel/Grayscale

2 Full RGB color

3 Palette color

4 Transparency maskt

T Transparency mask indicates the image is used to define an irregularly shaped
region of another image in the same TIFF file. Photometriclnterpretation=4 is not
supported by PV=-WAVE.

232 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Thefirst four classes of TIFF images are explained in more detail in the PV=WAVE
Programmer’s Guide.

Planar Config — The arrangement of the RGB information. If present, retrieves
RGB configuration information from the TIFF image header. PlanarConfig is
returned as an integer; expected values are:

1 RGB triplets (pixel interleaving)

2 Separate planes (image interleaving)
The methodsfor interleaving image dataare explained morefully in the PV=WAVE
Programmer’s Guide.

ResolutionUnit — Thetype of resolution units specified in the TIFF image header.
If present, retrieves unit information from the TIFF image. ResolutionUnit is
returned as an integer; expected values are;

1 None (no absolute units)
2 Inches
3 Centimeters

Sampl esPerPixel — The number of samplesassociated with each pixel inthe TIFF
image is returned. SamplesPer Sampleis returned as an integer; expected values
are:

1 Bilevel, Grayscale, Palette color
3 RGB images

XResolution — The number of pixels per ResolutionUnit in the X direction. If
present, retrieves information about the number of X pixels from the TIFF image
header. XResolution is returned as a floating-point value.

YResolution — The number of pixels per ResolutionUnit inthe Y direction. If
present, retrieves information about the number of Y pixels from the TIFF image
header. YResolution is returned as a floating-point value.

For more information about the output keywords described in this section, see the
Technical Memorandum, Tag Image File Format Specification, Revision 5.0
(FINAL), published jointly by Aldus™ Corporation and Microsofte Corporation.

DC_READ_TIFF Function 233

Discussion

DC_READ_TIFF enables you to import TIFF imagesinto PV=WAVE. It also
handles many steps that you have to do yourself when using other PV=WAVE
functions and procedures. These stepsinclude: 1) opening the file, 2) assigning it
alogical unit number (LUN), and 3) closing the file when you are done reading the
data.

DC_READ_TIFF setsthe dimension and type (byte array) of imgarr
automatically, depending on the width and height of the image. For 24-bit images,
the interleaving method (see description of Planar Config keyword) is considered,
aswell. PV=WAVE uses the following guidelines to dimension imgarr:

Interleaving M ethod Dimensions of Image Variable

Pixel (RGB triplets) Dimensionimgarr as 3 x w x h, wherew and h are the
width and length of the imagein pixels.

Image (separate Dimensionimgarr asw x h x 3, wherew and h are the
planes) width and length of the imagein pixels.

The difference between pixel-interleaved and image-interleaved image datais
discussed in the PV=WAVE Programmer’s Guide.

NOTE Compressed TIFFimagesare uncompressed before being transferred tothe
named variable.

Example 1

The function call:
status = DC_READ TIFF (’'oxford.tif’, oximage)

readsthefileoxford. tif andreturnsthe TIFF image data contained in the first
image of that file. The datais transferred to the variable oximage.

Example 2

The function call:

status = DC_READ TIFF(’shamu.tif’, shamu, S
Imagewidth=xsz, Imagelength=ysz, $
PlanarConfig=planar, Photometric=photo)

reads a complete description of the first TIFF imagein thefile shamu.tif. The
width and length of the image are returned in xsz and ysz, respectively.

234 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Planar Config and Photometriclnterpretation arereturnedinplanar and photo,
respectively.

The fact that the Planar Config keyword is being returned with the function call
suggests that theimage in shamu . tif isafull-color RGB (24-hit) image. The
Planar Config keyword is used to return the image interleaving method for 24-bit
images.

See Also

DC_ERROR_MSG, DC_WRITE_TIFF, IMAGE_READ

See the PV=WAVE Programmer’s Guide for more information about TIFF image
1/0.

DC_SCAN_CONTAINER Function

Determines the number and location of defined variablesin an HP V EE Container
by scanning thefile.
Usage

status= DC_SCAN_CONTAINER(filename, num variables, start records,
end_records)

Input Parameters

filename — A string containing the path name and filename of the Container file.

Output Parameters

num_variables — The number of variables described within the specified
Container file.

start_records— A long array containing the starting position of each variable
within the Container file. Thisinformation can be used as input to the
DC_READ_CONTAINER function to extract a given variable.

end_records— A long array containing the ending position of each variablewithin
the Container file. Thisinformation can be used asinput to
DC_READ_CONTAINER to extract a given variable.

DC_SCAN_CONTAINER Function 235

Returned Value

status— The value returned by DC_READ_CONTAINER indicating the validity
of the returned output parameter information.

<0 Indicatesan error, such asan invalid filename or incorrect file format.
0 Indicates a successful read.

Keywords

None.

Discussion

HP VEE is Hewlett-Packard’s Visual Engineering Environment, a graphical
programing language for creating test systems and solving engineering problems.

The Container file format is a proprietary HP ASCII file format which contains a
header description of the enclosed data. PV=WAV E reads this header information
and createsa PV=WAV E variabl e of the appropriate type and dimension to hold the
enclosed data.

DC_SCAN_CONTAINER enables you to determine the number of variables
described within an HP VEE Container file. The returned parameter arrays
start_records and end_records can be used as inputs to the
DC_READ_CONTAINER function to extract individual variables.

An HP VEE Container fileis created in HP VEE by using the Write Container
transaction in the To File object. Please refer to your HP VEE documentation for
more details.

Example

This example shows how to scan a Container file for multiple containers. Then, a
loop is created that reads each container found in the file.
status = DC_SCAN CONTAINER(!Data dir+’hpvee multi.con’, $

num vars, start recs, end recs)

; Scan the container file for multiple containers. Next, loop for every
; container in the file. At this point, you could check num_vars.
; The DC_READ_CONTAINER function can only read 1 container at a time.

FOR I=0, num vars-1 DO BEGIN
; Make a new name for each variable. There are other ways to do this as well.

var = ‘var’+STRCOMPRESS (STRING(I), /Remove All)

236 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

rc= EXECUTE (“status = $

DC _READ CONTAINER (!Data dir+’hpvee multi.con’, ” + $
var+ ”,Start Record=start recs(I), End Record=end recs(I))”)
ENDFOR

; At the WAVE> prompt, use INFO to show the new variables.

INFO
VARO FLOAT = 18.0000
VAR1 COMPLEX = Array(4)
VAR2 FLOAT = Array (10)
See Also

DC_READ_CONTAINER

DC WRITE_8 BIT Function
Writes 8-bit image data to afile.

Usage
status=DC_WRITE_8 BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the file where the 8-
bit image datais to be stored.

imgarr — The 2D byte array variable from which the 8-bit image datais
transferred.

Returned Value
status — The value returned by DC_WRITE_8 BIT, expected values are:

<0 Indicatesan error, such as an invalid filename.

0 Indicates a successful write.

Keywords

None.

DC_WRITE_8_BIT Function 237

Discussion

DC_WRITE_8 BIT handles many steps that you have to do yourself when using
other PV=WAV E functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done writing the data.

NOTE Only one 8-bit image can be stored at atime when using the
DC_WRITE_8 BIT function.

If imgarr isnot a2D bytearray, DC_WRITE_8 BIT returnsan error status and no
datais written to the output file.

Example
If ££t flow isa600-by-800 byte array containing image data, the function call:
status = DC_WRITE 8 BIT(’'fft flowl.img’, fft flow)

createsthefile £t flowl.img and usesit to store the image data contained in
thevariable fft flow. Thefilethat is created contains raw binary data, and is
easily read with DC_READ_8 BIT.

See Also
DC_ERROR_MSG, DC READ 8 BIT, DC WRITE_24 BIT

See the PV=WAVE Programmer’s Guide for more information about 8-bit (binary)
data.

DC WRITE_24 BIT Function
Writes 24-bit image datato afile.

Usage
status = DC_WRITE_24 BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the file where the
24-bit image datais to be stored.

238 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

imgarr — The 3D byte array from which the 24-bit image datais transferred.
Either thefirst or last dimension of imgarr must be 3; see the Discussion section
for more details.

Returned Value
status— The value returned by DC_WRITE_24 BIT; expected values are;

<0 Indicates an error, such as an invalid filename.

0 Indicates a successful write.

Keywords
Org — Organization of the 24-bit image data. Allowed values are:

0 Pixel interleaving (RGB triplets).
1 Image interleaving (separate planes).

If not provided, O (pixel interleaving) is assumed.

Discussion

DC WRITE 24 BIT handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done writing the data.

NOTE Only one 24-bit image can be stored at atime when using the
DC WRITE 24 BIT function.

If imgarr isnot a3D byte array, DC_WRITE_24 BIT returns an error status and
no dataiswritten to the output file. Either thefirst or last dimension of imgarr must
be equal to 3, as shown in the following table:

Interleaving M ethod Dimensions of Image Variable

Pixel (RGB triplets) Dimension imgarr as 3 x w x h, wherew and h are the
width and length of the image in pixels.

Image (separate Dimensionimgarr asw x h x 3, wherew and h are the
planes) width and length of the image in pixels.

DC_WRITE_24_BIT Function 239

The difference between pixel-interleaved and image-interleaved datais discussed
in the PV=WAVE Programmer’s Guide.

Example

If hi glow isa400-by-400-by-3 byte array containing 24-bit image data, the
function cal:
status = DC_WRITE 24 BIT('hi_glow.img’, hi_glow, Org=1)

createsthefilehi glow.img and usesit to store theimage datacontained in the
variablehi glow, using imageinterleaving. Thefilethat is created contains raw
binary data, and is easily read with the function DC_READ_24 BIT.

See Also
DC_ERROR_MSG, DC READ 24 BIT, DC WRITE 8 BIT

See the PV=WAVE Programmer’s Guide for or more information about 24-bit
(binary) data.

Windows USERS For an example showing how to use DC_WRITE_FREE to
export data from PV=WAVE into a Microsoft® Excel spreadshest, see the
PV=-WAVE Programmer’s Guide.

DC_WRITE_DIB Function (Windows)

Writes image data from avariable to a Device Independent Bitmap (DIB) format
file.

Usage
status= DC_WRITE_DIB(filename, imgarr)

Input Parameters
filename — A string containing the pathname and filename of the DIB file.

imgarr — The variable containing the image data to be saved as a DIB file.

240 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value
status — Value returned by DC_WRITE_DIB; expected values are:

<0 Indicatesan error, such as an invalid filename.

0 Indicates a successful write.

Keywords

ColorClass— An integer specifying the DIB color class level. If not provided,
ColorClass=2 isassumed. Valid values are 2, 16, and 256.

ColorsUsed — The number of colors that the bitmap image uses. If this keyword
isnot provided, it is set to the number of el ementsin SystemPal ette or Paletteif one
of them is provided; otherwise, ColorsUsed defaultsto 2.

Compression — A string that specifies the kind of image data compression to use
asthe datais written to thefile. Thiskeyword isvalid only if ColorClassis
specified as 16 or 256. If this keyword is not provided, no compression is
performed. Valid values are:

'None’ — None (no compression)
"RLE4 ' — Run-length encoded format for bitmaps with 4 bits per pixel
'RLE8’ — Run-length encoded format for bitmaps with 8 bits per pixel

I mportantColors — The number of important colors that the bitmap image needs
to display. If not provided, ImportantColors defaults to O.

Palette — Specifiesacolor table to be saved with the DIB file. Palette must be a 3-
by-n array of integers, where niseither 1, 16, or 256. n specifies the number of
colors associated with the bitmap. If the ColorClass keyword is set to 2, then the
Palette keyword is ignored and a monochrome color table is saved.

SystemPalette — If set to a nonzero value, this keyword causes the system color
tableto be saved with the DIB file. SystemPal ette always takes precedence over the
Palette keyword.

Discussion

Device Independent Bitmap (DIB) isabitmap format that is useful for transporting
graphics and color table information between different devices and applicationsin
the Windows environment. DIB files can be produced by graphics applications
such as Microsoft Image Editor, Microsoft Paintbrush, and PV=WAVE.

DC_WRITE_DIB Function (Windows) 241

You must specify acolor tableto be saved with the DIB file, or an error isreturned.
The Palette and SystemPal ette keywords | et you specify a color table.

DC_WRITE_DIB exports DIB imagesfrom PV=WAVE. It handles: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done writing the data.

If imgarr isnot a 2- or 3-dimensional byte array, the function DC_WRITE_DIB
returns an error status and no data is written to the output file.

Example
If the variablemaverick isa512-by-512 byte array, the function call:

status = DC_WRITE DIB(’mav.bmp’, maverick, $
ColorClass = 256, Compression = None’, S
/SystemPalette)

createsthefilemav . bmp and usesit to store the system color table and the image
datacontained in the variablemaverick. The created DIB fileis not compressed
and has a color class of 256.

See Also
DC_READ_DIB, WREAD_DIB, WWRITE_DIB

For more information, see the PV=WAVE Programmer’s Guide.

DC_WRITE_FIXED Function

Writes the contents of one or more variables (in ASCI| fixed format) to afile using
aformat that you specify.

Usage

status= DC_WRITE_FIXED(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file where the
datawill be stored.

var_list — Thelist of variables containing the values to be written. Note that
variables of type structure are not supported. An exception to thisisthe !DT, or
date/time, structure. It is possible to transfer date/time data using this routine.

242

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value
status — The value returned by DC_WRITE_FIXED; expected values are:

<0 Indicatesan error, such as an invalid filename or an 1/O error.

0 Indicates a successful write.

Keywords
Column — A flag that signifiesfilenameisto be written as a column-organized file.

Dt_Template— An array of integers indicating the data/time templates that areto
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see
DC_WRITE_FREE, Example 4 on page 254. To see acomplete list of date/time
templates, see the PV=WAVE Programmer’s Guide.

Format — A string containing the C- or FORTRAN-like format statement that will
be used to write the data. The format string must contain at least one format code
that transfers data; FORTRAN formats must be enclosed in parentheses. If not
provided, C format(s) that match the data type(s) of the variablesin var_list are
assumed; for example $1£ for float, $i for integer, and %s for string.

Miss Str — An array of strings that specifies strings that are substituted in the
output file (to represent missing data) for each valuein Miss_Vals. If not provided,
no strings are substituted for missing data.

Miss Vals— An array of integer or floating-point values, each of which
correspondsto astring in Miss_Str. As PV=WAV E writes the data, it checks for
values that match Miss_Vals; whenever it encounters one, it substitutes the
corresponding value from Miss_Str.

Row — A flag that signifies filename is to be written as arow-organized file. If
neither Row nor Column is present, Row is the default.

Discussion

DC_WRITE_FIXED iscapable of interpreting either FORTRAN-or C-style
formats, and is very adept at storing data in a column-oriented manner. Also,
DC_WRITE_FIXED handles many steps that you have to do yourself when using
other PV=WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it alogical unit number (LUN), and 3) closing the file when you
are done writing the data.

If neither the Row or Column keywords are provided, the datais stored in rows. If
both keywords are used, the Row keyword is assumed.

DC_WRITE_FIXED Function 243

NOTE This function can be used to write data from date/time structures, but not
from any other kind of structures.

How the Data is Written to the File

As many as 2048 variables can be included in the output argument var_list. You
can use the continuation character ($) to continue the function call onto additional
lines, if needed. The entire contents of each variablein var_list iswritten to the
specified file. If an error occurs, a nonzero status is returned.

NOTE Any variable you includein var_list must have been previously created;
otherwise, an error occurs.

Asdatais being transferred from multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the export
variable varies the fastest. For two-dimensional export variables, thisimplies that
the column index varies faster than the row index. In other words, datatransfer is
row major; it occurs one row at atime. For more details about storing multi-
dimensional variablesin a column-oriented manner, see Writing Column-Oriented
Data on page 245.

The format string is processed from left to right. Record terminators and format
codes are processed until no variablesareleftinvar_list or until an error occurs. In
aFORTRAN format string, when a slash record terminator (/) is encountered, a
new output record is started.

Format codes that transfer data are matched with the next available variable (or
element of amulti-dimensional variable) inthevariablelist var_list. Dataiswritten
to the file and formatted according to the format code. If the datain the variable
does not agree with theformat code, or the format code does not agree with thetype
of the variable, atype conversion is performed. If no type conversion is possible,
an error results and a nonzero status is returned.

Once al variablesin the variable list have been stored in thefile,
DC_WRITE_FIXED stopswriting data, and returns a status code of zero (0). This
istrue even if there are format codes in Format that did not get used. Even if an
error occurs, and status is nonzero, the data that was written successfully (prior to
the error) isleft intact in thefile.

244 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP If an error does occur, view the contents of thefile (using an operating system
command) to see how much data was transferred. Thiswill enable you to isolate
the portion of the variable list in which the error occurred.

If the format string does not contain any format codes that transfer data, an error
occurs and a nonzero status is returned. The format codes that PV=WAV E
recognizes are listed in the PV=WAVE Programmer’s Guide If aformat code that
does not transfer datais encountered, it is processed as discussed in that appendix.

Format Reversion when Writing Data

If the last closing parenthesis of the format string is reached and there are still
variablesin var_list whose contents have not been written to the file, format
reversion occurs. |nformat reversion, the current output record isterminated, anew
oneis started, and format string processing revertsto the first group repeat
specification that does not have an explicit repeat count. If the format does not
contain agroup repeat specification, format processing revertsto theinitial opening
parenthesis of the format string.

For more information about format reversion and group repeat specifications, see
the PV=WAVE Programmer’s Guide

Missing Data String Substitution while Writing Data

PV=WAV E expects to substitute a string from Miss_Str whenever it encounters a
value from Miss_Valsin the data. Conse-quently, if the number of elementsin
Miss_Str does not match the number of elementsin Miss_Vals, anonzero statusis
returned and no data is written to the file. The maximum number of values
permitted in Miss_Str and Miss_Valsis 10.

Writing Row-Oriented Data

If the Row keyword has been provided, each variable in var_list iswritten to the
fileinits entirety before any datais transferred from the next variable.

If you areinterested in anillustration showing what row-oriented data can look like
inside afile, see the PV=-WAVE Programmer’s Guide.

Writing Column-Oriented Data

The following table shows how variables of any dimensions are stored in a
columnar format:

DC_WRITE_FIXED Function 245

Dimensions Organization of Saved File

of Variable

One-dimensional One value from each variable written to each record
(Ixn) (repeated n times)

Two-dimensiona m values from each variable written to each record
(mcolumnsby nrows) (repeated n times)

Three-dimensional m values from each variable written to each of n
(mxnxp) records (entire process repeated p times)
g-dimensional m values from each variable written to each of n
(mxnxpxaq) records (above process repeated p times)

(entire process repeated q times)

If you areinterested in anillustration demonstrating what column-oriented datacan
look likeinside afile, see the PV=WAVE Programmer’s Guide.

Example 1

If variable sara isafloating-point array with 10 elements all equal to 1.0, tana
is afloating-point array with 5 elements all equal to 2.0, and cora isafloating-
point array with 8 elements al equal to 3.0, the function call:

status = DC_WRITE FIXED(’outfile.dat’, sara, $
tana, cora, Format="(5(1X, F7.4))")

createsoutfile.dat containing the following values:

..1.0000..1.0000..1.0000..1.0000..1.0000
..1.0000..1.0000..1.0000..1.0000..1.0000
..2.0000..2.0000..2.0000..2.0000..2.0000
..3.0000..3.0000..3.0000..3.0000..3.0000
..3.0000..3.0000..3.0000

The periods are used to represent blank spacesin thefile.

Example 2

If variable bogus isa2-by-4 integer array with values 1 through 4 in the first
column and values 5 through 8 in the second column, the following function call:

status=DC_WRITE FIXED(’'intfile.dat’,/Column, bogus, Format=' (I5)")

replicates that structure in the created file int file . dat, as shown below:

246 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

s ow N F
o 3 o U

The periods are used to represent blank spacesin thefile.

On the other hand, the following function call:

status = DC_WRITE_FIXED(’intfile.dat’, S
bogus (1, *), Format=' (4I5)"')

with adlightly different format string, resultsin four values all being writtenin the
same record, using arow orientation:;
..5....6.0...7....8

Because of the array subscripting notation used in thefunction call, only the second
column of datavaluesiswritten to the file. Without the “4” inside the parentheses
of the format string, each value would have been written on a separate linein the
file.

Example 3

If variable foo isafloating-point array with 6 elements all equal to 1.0, hoo isa
floating-point array with 6 elements all equal to 2.0, doo is afloating-point array
with 6 elements all equal to 3.0, and boo isafloating-point array with 6 elements
al equal to 4.0, the function call:

status = DC_WRITE FIXED(’omni.dat’, foo, S
hoo, doo, boo, Format="%f, %$f, %f, %f", $
/Column)

creates an output file omni . dat that is organized as shown below:

1.0000, 2.0000, 3.0000, 4.0000
1.0000, 2.0000, 3.0000, 4.0000
1.0000, 2.0000, 3.0000, 4.0000
1.0000, 2.0000, 3.0000, 4.0000
1.0000, 2.0000, 3.0000, 4.0000
1.0000, 2.0000, 3.0000, 4.0000

Thedatais arranged in columns. The C format code "$f, " causesacomma
followed by a space to be inserted after every value written to thefile.

TIP An even easier way to write this dataisto use another “DC” function,
DC_WRITE_FREE. The DC_WRITE_FREE function writes CSV (Comma Sep-

DC_WRITE_FIXED Function 247

arated Values) data by default, or you can use the Delim keyword to specify some
other delimiter besides the comma.

Example 4

Assume that you have two variables, f1oat and date, that contain some data
valuesand also some chronol ogical information about when those datavalueswere

recorded:
date = STR_TO_DT([’10/10/92’, r11/11/92", '12/12/92"]
float = [1.2, 3.4, 5.6]

The STR_TO_DT function creates a date/time variable date. For more
information on the internal structure of date/time structure variables, see the
PV=-WAVE Programmer’s Guide.

In this example, date/time Template 1 (MM/DD/YY) is used to transfer this data,
which means the month, day, and year will be written as adjacent val ues separated

by adlash (/).
If you enter the following command:

status = DC_WRITE FIXED("thymus.dat", $
date, float, /Column, Dt_Template=[1], $
Format=" (A10, 1X, F4.2)")

you create afile that looks like this:

10/10/1992 1.20

11/11/1992 3.40

12/12/1992 5.60

Noticethat date dataiswritteninto thefile thymus . dat asaseriesof strings. In

each new output record, Template 1 is used to writethe datafrom date, using the
A10 character format, and avalue from £1oat iswritten, using the F4.2 format.

NOTE If you have date and timedatastored in the samevariable, the variable must
belisted twiceinthevariablelistin order to extract both the date and time data. For
more details, see DC_READ_FREE, Example 4 on page 254.

Example 5

Suppose you have a number of variables that contain data about recent phone
activity. Thenamesof thesevariablesaredate, t ime, mins, type, ext, cost,

248 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

and num_called. Thefollowing command writes this information to afile and
organi zes the values by columns;

status = DC_WRITE FIXED (’'phonedata.dat’, $
date, time, mins, type, ext, cost, $
num _called, /Column, $
Format="%s %s %5.2f %i %i %5.2f %s")

Inthisexample, date and t ime are variables with a datatype of string. Because
they are not defined as a date/time structure, such as the variable date that was
part of the previous example, date and t ime are not stored using any of the date
or time templates. Thus, thereis no need to include the Dt_Template keyword as
part of the function call.

Theresult isafilephonedata . dat that isorganized as shown below:

901002 093200 21.40 1 311 5.78 2158597430
901002 093600 51.56 1 379 13.92 2149583711
901002 093700 61.39 2 435 16.58 9137485920

The following function call could be used instead of the one shown above if you
prefer to use a FORTRAN-style format string:

status = DC_WRITE FIXED (’phonedata.dat’, §
date, time, mins, type, ext, cost, $
num_called, /Column, Format="(A6,1X,A6,"+ $
"2X,F5.2,4X,I2,4X,I3,2X,F5.2,1X,A12)")

NOTE |If you wish to enter aformat string similar to the FORTRAN one shown
above, try to get the entire format string on the same line. Otherwise, use the string
concatenation operator (+), as shown in the above example, to split the format
string into two shorter strings.

See Also
DC_ERROR_MSG, DC _READ FIXED, DC WRITE_FREE

See the PV=WAVE Programmer’s Guide for more information about fixed format
[/0in PV=WAVE.

DC_WRITE_FIXED Function 249

DC_WRITE_FREE Function

Writes the contents of one or more variablesto afilein ASCI| free format.

Usage
status = DC_WRITE_FREE(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file where the
datawill be stored.

var_list — Thelist of variables containing the values to be written. Note that
variables of type structure are not supported. An exception to thisisthe !DT, or
date/time, structure. It is possible to transfer date/time data using this routine.

Returned Value
status— The value returned by DC_WRITE_FREE; expected values are:

<0 Indicatesan error, such as an invalid filename or an |/O error.

0 Indicates a successful write.

Keywords
Column — A flag that signifiesfilenameisto be written asacolumn-organized file.

Delim— A single-character string that will be placed between valuesin the output
datafile. If you provide an array of strings, only thefirst string in the array will be
used. If not provided, commas are used as delimitersin thefile.

Dt _Template— An array of integers indicating the data/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 4 on page
254. To seeacompletelist of date/timetemplates, seethe PV=WAVE Programmer’s
Guide.

Miss_Str — An array of stringsthat are substituted in the output file (to represent
missing data) for each value in Miss_Vals. If not provided, no strings are
substituted for missing data.

Miss Vals— An array of integer or floating-point values, each of which
correspondsto astring in Miss_Str. As PV=WAV E writes the data, it checks for

250 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

values that match Miss_Vals; whenever it encounters one, it substitutes the
corresponding value from Miss_Str.

Row — A flag that signifies filename isto be written as a row-organized file. If
neither Row nor Column is present, Row is the default.

Discussion

DC WRITE_FREE isvery adept at storing data in a column-oriented manner.
Also, DC_WRITE_FREE handles many steps that you have to do yourself when
using other PV=WAV E functions and procedures. These stepsinclude: 1) opening
thefile, 2) assigning it alogical unit number (LUN), and 3) closing the file when
you are done writing the data.

DC_WRITE_FREE relieves you of the task of composing aformat string to
describe the organization of the datain the output file. By defaullt,
DC_WRITE_FREE generates CSV (Comma Separated Values) files. However,
you can override this default by using the Delim keyword to provide a different
delimiter, if you wish.

If neither the Row or Column keywords are provided, the datais stored in rows. If
both keywords are used, the Row keyword is assumed.

NOTE This function can be used to write data from date/time structures, but not
from any other kind of structures.

How the Data is Written to the File

As many as 2048 variables can be included in the output argument var_list. You
can use the continuation character ($) to continue the function call onto additional
lines, if needed. The entire contents of each variablein var_list iswritten to the
specified file. If an error occurs, a nonzero status is returned.

NOTE Any variable you includein var_list must have been previously created;
otherwise, an error occurs.

The values in the output file are separated with the character specified with the
Delimkeyword. If no Delim keyword is provided, a comma delimiter is used by
default.

Asdatais being transferred from multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the export
variable varies the fastest. For two-dimensional export variables, thisimplies that

DC_WRITE_FREE Function 251

the column index varies faster than the row index. In other words, datatransfer is
row major; it occurs one row at atime. For more details about storing multi-
dimensional variablesin acolumn-oriented manner, see Writing Column-Oriented
Data on page 245.

Once all variablesin the variable list have been stored in thefile,
DC_WRITE_FREE stops writing data, and returns a status code of zero (0). Even
if an error occurs, and statusis nonzero, the data that has been written successfully
(prior to the error) isleft intact in thefile.

TIP If an error does occur, view the contents of thefile (using an operating system
command) to see how much data was transferred. This will enable you to isolate
the portion of the variable list in which the error occurred.

Formatting in the Output File

When writing row-organized files, output lines are formatted to be no more than 80
characters. When writing column-organi zed fil es, the output linelength dependson
the number, type, and dimensions of the variablesin var_list.

The various datatypes are stored using the default formats shown in the following

table:

Data Type Output Formatsused by DC_ WRITE_FREE
Byte 14

Integer 18

Long Integer 112

Float G136

Double G16.8

Complex '(,G136,', G136,

Double Complex (", G16.8, "), G16.8, "'

String A (character datd)

NOTE When writing data of type string, each string is written to the file, flanked
with adelimiter on each side. Thisimplies that the strings should not contain
delimiter charactersif you intend to read thefile later with the DC_READ_FREE
function.

252 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Writing Row-Oriented Data

If the Row keyword has been provided, each variablein var_list iswritten to the
fileinits entirety before any datais transferred from the next variable,

If you areinterested in anillustration showing what row-oriented data can look like
inside afile, see the PV=-WAVE Programmer’s Guide.

Writing Column-Oriented Files

PV-WAVE Programmer’s Guidd-or more information about how data from multi-
dimensional export variablesis stored in a columnsin the output file, see Writing
Column-Oriented Data on page 245.

If you areinterested in anillustration demonstrating what column-oriented datacan
look likeinside afile, see the PV=WAVE Programmer’s Guide.

Example 1

If variable sara isafloating-point array with 10 elements all equal to 1.0, tana
is afloating-point array with 5 elements all equal to 2.0, and cora is afloating-
point array with 8 elements al equal to 3.0, the function call:

status = DC _WRITE FREE('outfile.dat’, sara, tana, cora, /Row)
createsoutfile.dat containing the following values:

1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

2.0000, 2.0000, 2.0000, 2.0000, 2.0000,

3.0000, 3.0000, 3.0000, 3.0000, 3.0000,
3.0000, 3.0000, 3.0000,

A commais used by default to separate the values in the output file.

Example 2

If variable bogus isa4-by-4 integer array with values 1 through 4 in the first
column, values 5 through 8 in the second column, values 9 through 12 in the third
column, and values 13 through 16 in the fourth column, the following function call:

status = DC_WRITE FREE('intfile.dat’, bogus, Delim=[’,’], /Column)

createsafileintfile.dat, asshown below:

1, 5, 9, 13
2, 6, 10, 14
3, 7, 11, 15
4, 8, 12, 16

DC_WRITE_FREE Function 253

Notice that the organization of valuesin the output file mimicsthat of the variable,

bogus.
On the other hand, the function call:
status = DC_WRITE_FREE (’intfile.dat’,

bogus(1,*), /Row, Delim='*')
resultsin the following organizationin intfile.dat, asshown below:
5* 6% 7* 8

Because of thearray subscripting notation used in thefunction call, only the second
column of data valuesiswritten to thefile.

Example 3

Suppose you havethree variables that contain datataken from an el ectronic sensor.
The names of these variablesare date, time, and phase shift.date and
time arelonginteger vectors, and phase shift isavector of complex
(floating-point) values. The function call:

status = DC_WRITE FREE(’day539.dat’, date, $
time, phase shift, Delim=’/’, /Column)

resultsin afileday539.dat that isorganized as shown below:

921002/ 091200/ (-0.139528, 0.983407)
921002/ 091205/ (-0.1499%962, 0.407378)
921002/ 091210/ (1.002340, -0.039187)
921002/ 091215/ (1.130523, 0.983482)
921002/ 091220/ (-0.947966, 0.171492)
921002/ 091225/ (1.275390, 0.789446)

The complex numbers are stored as two floating-point values, separated with a
comma and enclosed in parentheses.

Example 4

Assume that you have two variables, £1oat and date, that contain some data
valuesand also some chronol ogical information about when those datavalueswere
recorded:

date = [10/10/92 05:45:12,

11/11/92 10:10:51,
12/12/92 23:03:19]

float = [1.2, 3.4, 5.6]

254 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE The variable date is shown above as a series of strings, even though it is
actually stored in adate/time structure as a series of integer and floating-point
values.

Thevariable date isadate/time structure, and holds both date and time data. For
more information on the internal structure of date/time structure variables, see the
PV=WAVE Programmer’s Guide.

When you have date and time data stored in the same variabl e, the variable must be
listed twice in the variable list in order to extract both the date and time data. The
date/time templates that will be used to transfer this data have the following
definitions;

Number Template Description
1 MM/DD/YY (/ = delimiter)
-1 HH:MM:SS (: = delimiter)

If you enter the following command:

status = DC_WRITE FREE ("thymus.dat", date, S
float, date, /Column, Dt Template=[1,-1])

you create afile that looks like this:

10/10/92 1.2 5:45:12
11/11/92 3.4 10:10:51
12/12/92 5.6 23:03:19

Notice that data is written from date two different times. In each new output
record, Template 1 is used first to write the date data from date. Next, avaue
from £1oat iswritten, and finally, Template—1 isused to write the time datafrom
date.

See Also
DC_ERROR_MSG, DC_READ_FREE, DC_WRITE_FIXED

See the PV=WAVE Programmer’s Guide for more information about free format
[/0 in PV=WAVE.

DC_WRITE_FREE Function 2595

DC _WRITE_TIFF Function
Writes image data to afile using the Tag Image File Format (TIFF) format.

NOTE Thisfunction wasretired with version 6.1, sincethe new IMAGE_WRITE
function providesthe same capability. AlthoughDC_READ_TIFFisstill available
for backward compatibility, we strongly recommend that you useIMAGE_WRITE
instead.

Usage
status= DC_WRITE_TIFF(filename, imgarr)

Input Parameters
filename — A string containing the pathname and filename of the TIFF file.

imgarr — The 2 or 3-D byte array from which the image dataistransferred. Note
that variables of type structure are not supported.

Returned Value
status — The value returned by DC_WRITE_TIFF; expected values are:

<0 Indicatesan error, such as an invalid filename or image number.

0 Indicates a successful write.

Keywords

Class— TIFF class conformance level; supplied as a string. If not provided,
Class='Bilevel' is assumed. Valid values are:

'Bilevel’
'Grayscale’
'Palette Color’

"RGB Full Color’
The strings can be abbreviated to one letter, if you wish.

256 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The four classes of TIFF image conformance are explained in more detail in the
PV-WAVE Programmer’s Guide.

Compress— A string that signifies the kind of image data compression to use as
thedataiswrittentothefile(if TIFF class'B' (Bilevel) isspecified). If not provided,
no compression is performed. Valid values at thistime are:

'None'’

'PackBits’

Negative — If set, the dithering function isreversed so that al pixelsin theimage
that are less than or equal to the threshold are set to 255. All other pixels are set to
0. This keyword is only valid when the Class keyword issetto Bilevel. The
default threshold is 128.

Order — If nonzero, returnstheimage mirroredin they-direction. (Default: Do not
mirror the image.)

Palette — The color table to store with the image dataif TIFF class P (Palette
Color) is specified. Palette must be a 3-by-256 array of integers.

Threshold — An integer specifying the threshold value for dithering a grayscale

image to abinary image. When the Class keyword isset to Bilevel, theimage
is converted to a binary image before being stored to disk. Pixelsin the image that
are greater than the threshold level are set to 255. All other pixelsare set to 0. This
keyword isonly valid when the ClasskeywordissettoBilevel.lf Bilevel is
specified and no threshold is given, the threshold value defaults to 128.

Discussion

DC_WRITE_TIFF facilitates the exporting of TIFF images from PV=WAVE. It
also handles many stepsthat you have to do yourself when using other PV=WAVE
functions and procedures. These steps include: 1) opening the file, 2) assigning it
alogical unit number (LUN), and 3) closing the filewhen you are done writing the
data.

Ifimgarrisnota?2 or 3-D bytearray, DC_WRITE_TIFF returnsan error status and
no data is written to the output file.
Requirements of the Various TIFF Classes

If TIFF class'B’ (Bilevel) isspecified, you can use the Compress keyword to create
compressed TIFF imagefiles.

DC_WRITE_TIFF Function 257

If TIFF class'P (Palette Color) is specified, you must use the Palette keyword to
specify a palette array.

If TIFF class'RGB' (RGB Full Color) isspecified, imgarr must bea 3-D byte array
with the last dimension equal to 3. In other words, imgarr must be an image-
interleaved image; pixel-interleaved images cannot be stored in a TIFF file when
using the DC_WRITE_TIFF function. The difference between pixel-interleaved
and image-interleaved datais discussed in the PV=WAVE Programmer’s Guide.

Example 1
If the variablemaverick isa512-by-512 byte array, the function call:

status = DC_WRITE TIFF('mav.tif’, maverick, $
Class='Bi’, Compress='Pack’)

createsthefilemav. tif and usesit to store the image data contained in the
variable maverick. The created TIFF fileis compressed and conformsto the
TIFF 'Bilevel' classification.

Example 2
If thevariable t rue isa400-by-400-by-3 true-color 24-bit image (byte array), the
function call:

status = DC_WRITE TIFF(’'true c.tif’, true, $
Class='RGB’)

createsthefile true c.tif and usesit to store the RGB color image data
contained in the variable t rue; imageinterleaving is used because the variable is
400-by-400-by-3. The created TIFF file conforms to the TIFF RGB Full Color
classification.

See Also
DC_ERROR_MSG, DC_READ_TIFF, IMAGE_WRITE

See the PV=WAVE Programmer’s Guide for more information about TIFF image
I/0.

258 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DEFINE KEY Procedure

Programs afunction key with astring value or with an action. Also programsacon-
trol key with an action (UNIX only).

Usage

DEFINE_KEY, key [, value]

Input Parameters

key — The name of afunction key to be programmed. Must be a scalar string.
PV=WAVE maintains an internal list of function key names and the escape
sequences they send.

UNIX USERS Under UNIX, if keyisnot already on PV=WAVE'sinterna list, you
must use the Escape keyword to specify the escape sequence; otherwise, key alone
will suffice. The section Standard Function Keys Under UNIX on page 262
describes the standard key definitions; however, available function keys and the
escape sequences they send vary from keyboard to keyboard.

OpenVMS USERS Under OpenVMS, key names are defined by the Screen
Management utility (SMG). The section Standard OpenVMS Function Keys on
page 263 describes some of these keys. For a compl ete description, see the Open-
VMSRTL Screen Management (SMG$) Manual.

value— (optional) The scalar string that key will be programmed with. Afterwards,
pressing the programmed key resultsin value being entered asif it had been typed
manually at the keyboard. If valueis not present, and no function is specified for
the key with one of the keywords, the key iscleared, and nothing will happen when
itispressed.

Keywords

NOTE Most of the following keywords work under UNIX only.

Back_Character —(UNIX only) Programskey to move the current cursor position
left one character.

Back_Word — (UNIX only) Programs key to move the current cursor position | eft
one word.

DEFINE_KEY Procedure 259

Delete Character —(UNIX only) Programs key to delete the character to the left
of the current cursor.

Delete Forward_Char — (UNIX only) — Programs key to del ete the character to
the right of the cursor.

Delete_ Line—(UNIX only) Programs key to delete all charactersto the left of the
current cursor.

Delete To EOL — (UNIX only) Programs key to delete all charactersto the right
of the cursor.

Delete Word — (UNIX only) Programs key to delete the word to the left of the
current cursor.

End_of_Line— (UNIX only) Programs key to move the current cursor to the end
of theline.

Enter_Line— (UNIX only) Programs key to enter the current line. Thisisthe
action normally performed by the <Return> key.

Escape — (UNIX only) Specifies the escape sequence that corresponds to key.
Escapemust beascalar string. See Defining New UNIX Function Keys on page 262
for further details.

Forward_Character —(UNIX only) Programs key to move the current cursor
position right one character.

Forward_Word — (UNIX only) Programs key to move the current cursor position
right one word.

Insert_Overstrike_Toggle — (UNIX only) Programs key to toggle between insert
and overstrike mode. When characters are typed into the middle of aline, insert
mode causes the trailing characters to be moved to the right to make room for the
new ones, while overstrike mode causes the new characters to overwrite the
existing ones.

Match_Previous— Programs key to prompt the user for a string, and then search
the saved command buffer for the most recently issued command that contains that
string. If amatch isfound, the matching command becomes the current command;
otherwise the last command entered is used.

UNIX USERS Under UNIX, the default match key isthe up caret “” key when
pressed in column 1.

OpenVMS USERS Under OpenVMS, the default match key is <PF1>.

260 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Next_Line—(UNIX only) Programs key to move forward one command in the
saved command buffer and make it the current command.

Noecho — If nonzero, and value is present, Noecho specifies that when key is
pressed, its value should be entered without being echoed. Thisis useful for
defining keys that perform actions such as erasing the screen. If Noecho is
specified, the Terminate keyword is assumed to be present and nonzero also.

Previous Line—(UNIX only) Programs key to move back one command in the
saved command buffer and make it the current command.

Redraw — (UNIX only) Programs key to redraw the current line.

Start_of _Line—(UNIX only) Programs key to move the current cursor to the start
of theline.

Terminate—If nonzero, and valueis present, Terminate specifiesthat pressing key
terminatesthe current input operation after itsvalueis entered. It actsasanimplicit
<Return> added to the end of value.

Discussion

The SETUP_KEY S procedure should be used once at the beginning of the session
to enter the keys for the current keyboard.

It is convenient to include commonly used key definitions in a startup file so that
they will always be available.

NOTE For adiscussion of startup files, see the PV=WAVE User’s Guide.

To seeinformation on the currently defined keys, enter:

INFO, /Keys

Defining Control Keys

To define a control key, use the circumflex character () before any character A
through Z, either upper or lowercase. For example:

A

DEFINE KEY, '"F', /Forward_key
This command defines <Control>-F to move the cursor one character to the right.

You cannot bind a control key to a string, and some control keys are used for
process management. For example, <Control>-C is usually used to interrupt a
UNIX process and <Control>-Z is used to suspend aUNIX process. These specia
characters are listed in Chapter 2, Getting Sarted, in the PV=WAVE User’s Guide.

DEFINE_KEY Procedure 261

UNIX USERS The UNIX stty command can be used to rebind t ty control
characters or to eliminate them altogether. Refer to the st ty man page for more
information.

Defining New UNIX Function Keys

To add adefinition for afunction key that is not built into PV=WAVE’s default list
of recognized keys, use the Escape keyword to specify the escape sequence it
sends. For example, to add afunction key named <HEL P> which sends the escape
segquence <Escape> [28~, use the command:

DEFINE KEY, 'HELP’, Escape = ’'\033[28~'

Thiscommand addsthe <HEL P> key to thelist of keys understood by PV=WAVE.
Since only the key name and escape sequence were specified, pressing the

<HEL P> key will do nothing. The value parameter, or one of the keywords
provided to specify command line editing functions, could have been included in
the above statement to program it with an action.

Once akey is defined using the Escape keyword, it is contained in the internal list
of function keys. It can then be subsequently re-defined without specifying the
escape sequence.

However, if the SETUP_KEY S procedureis used to define the function keysfound
on the keyboard, it is not necessary to specify the Escape keyword. For example,
the following statements program the <F2> key on a Sun keyboard to redraw the
current line:

SETUP_KEYS

DEFINE KEY, 'F2’, /Redraw

Standard Function Keys Under UNIX

Under UNIX, PV=WAVE can handle arbitrary function keys. Standard UNIX key
definitions are listed in the following table.

NOTE SunOSusers, thefunction keysR8, R10, R12, and R14 (the arrow buttons)
are reserved and cannot be set with DEFINE_KEY. Also, the L1—L10 keys are
reserved for use by the window manager and cannot be set with DEFINE_KEY.

262 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

UNIX Line Editing Keys

Editing Key

Function

<Control> <A>
<Control>
<Control> <D>
<Control> <E>
<Control> <F>
<Control> <N>
<Control> <R>
<Control> <U>
<Control> <W>

<Backspace>,
<Delete>

<Escape> <I>
<Escape> <Delete>
Up Arrow

Down Arrow

Left Arrow

Right Arrow
<R13>

<R15>

text

other characters

Move cursor to start of line.

Move cursor left one word.

EOF if current line is empty, EOL otherwise.
Moveto end of line.

Move cursor right one word.

Move back onelinein recall buffer.

Redraw current line.

Delete from current position to start of line.
Delete previous word.

Delete previous character.

Overstrike/l nsert mode toggle.

Delete previous word.

Move back onelinein recall buffer.

Move forward one line in recall buffer.
Move left one character.

Move right one character.

Move cursor left one word (Sun keyboard).
Move cursor right one word (Sun keyboard).

If first character, recall first line containing text; if text
isblank, recall previous line.

Insert the character at the current cursor position.

Standard OpenVMS Function Keys

Under OpenVMS, PV=WAV E uses the SMG screen-management package, which
ensures that PV=WAV E command editing will behave in the standard OpenVM S
way. Therefore, it is not possible to use akey SMG does not understand. Some of
the most commonly used SMG-defined keys are listed in the following table:

DEFINE_KEY Procedure 263

OpenVMS Line Editing Keys

Key Name Comment
<DELETE>
<PF1> Recall most recent command that matches supplied

<PF2> — <PF4>
<KPO> — <KP9>
<ENTER>
<MINUS>
<COMMA>
<PERIOD>
<FIND>
<INSERT_HERE>
<REMOVE>
<SELECT>
<PREV_SCREEN>
<NEXT_SCREEN>

string.

Top row of keypad.

Keypad 0-9 keys.

Keypad ENTER key.

Keypad “—" key.

Keypad “,"key.

Keypad “." key.

Editing keypad FIND key.

Editing keypad INSERT_HERE key.
Editing keypad REMOVE key.
Editing keypad SELECT key.

Editing keypad PREV_SCREEN key.
Editing keypad NEXT_SCREEN key.

Standard Function Keys Under Windows
Standard key definitions for PV=WAVE running under Windows are listed in the

following table:

Windows Function Keys

Editing Key

Function

<Control> <A>
<Control>
<Control> <D>
<Control> <E>

<Control> <F>

Move cursor to start of line.

Move cursor left one word.

EOF if current line is empty, EOL otherwise.
Moveto end of line.

Move cursor right one word.

264 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Windows Function Keys (Continued)

Editing Key

Function

<Control> <N>
<Control> <R>
<Control> <U>
<Control> <W>

<Backspace>,
<Delete>

Escape <Delete>
<Control>text

Up Arrow
Down Arrow
Left Arrow
Right Arrow

Insert/Overstrike

Move back oneline.

Redraw current line.

Delete from current position to start of line.
Delete previous word.

Delete previous character.

Delete previous word.

If the line is empty, find the last command
matching text.

Move back one line.
Move forward one line.
Move |eft one character.
Move right one character.

Toggle between insert and overstrike mode.

Page Down Move forward one line.

Page Up Move back oneline.

End Move to the end of the current line.

Home Move to the start of the current line.

Insert Toggle between insert and overstrike mode.
<F3> Execute the INFO command.

<F2> Run the PV=WAVE Gallery.

<F1> Run the online help system.

Example

You can define the <F12> key to execute INFO, /Keys with the statement:

DEFINE KEY, /Terminate, ’'F12’, 'INFO, /Keys’

the INFO, /Keys command produces output that includes the line:

F12 <\03[P> =

INFO, /Keys <Terminate>

DEFINE_KEY Procedure 265

showing the new key definition.

See Also
SETDEMO, SETUP_KEYS

DEFROI Function

Standard Library function that defines an irregular region of interest within an
image by using the image display system and the mouse.

Usage

result = DEFROI (sizex, sizey [, xverts, yverts])

Input Parameters
sizex — The size of theimage, in pixels, in the x direction.

Sizey —The size of the image, in pixels, in they direction.

Output Parameters
xverts — (optional) The x-coordinates of the vertices enclosing the region.

yverts — (optional) The y-coordinates of the vertices enclosing the region.

Returned Value

result — A vector containing the subscripts of the pixelsinside the region.

Keywords
Noregion — If nonzero, inhibits the return of the pixel subscripts.

Xo— Thex-coordinate of thelower-left corner of theimagein thewindow. Screen
device coordinates are used.

Yo — They-coordinate of the lower-l€eft corner of theimage in the window. Screen
device coordinates are used.

Zoom — The zoom factor to be used for displaying the image. If omitted, 1is
assumed.

266 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

DEFROI letsyou interactively select aportion of animagefor further processing—
simply point with the mouse to the vertices of an irregular polygon containing the
region of interest inside the image.

The write mask for the display is set so that only bit 0 may be written. Bit Ois
erased for al pixels and is used to draw the outline of the region. (This may have
to be changed to fit the capabilities and procedures of your device.) The common
block COL ORSisused to obtain the current color table, which ismodified and then
restored. The color tables are loaded with odd values complemented and even
values unchanged.

A message is printed to assist you in selecting the region with the mouse. The
POLYFILLYV function is used to compute the subscripts within the region.

Example

This example uses DEFROI to define aregion of interest within an image. The
subscripts of pixelswithin the region, which are returned by DEFROI, are used to
invert the colors within the region of interest. The pixels outside the region are not
altered.

OPENR, unit, FILEPATH(’whirlpool.img’, $
Subdir = ’data’), /Get_ Lun
; Open the whirlpool.img file.

a = ASSOC(unit, BYTARR(512, 512))
; Associate a 512-by-512 byte array with the file unit number
; of whirlpool.img.
g = a(0)
; Read the galaxy image into the variable g.
FREE_LUN, unit
; Free the file unit number in unit.

!0rder = 1

LOADCT, 3
; Load the red temperature color table. Scale the array containing
; the image so that the maximum color used is !D.N_Colors.

g = BYTSCL(g, Top = !D.N Colors)
; Display the image.

WINDOW, 0, Xsize = 512, Ysize = 512

TV, g

DEFROI Function 267

subs = DEFROI (512, 512)
; Define a region of interest using DEFROI.

Figure 2-16 Galaxy image with region of interest defined by DEFROI.

g(subs) = !D.N_Colors - g(subs)

; Invert the colors of pixels that lie within the specified region.
v, g

; Display the resulting image.

268 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-17 Galaxy image with region of interest inverted.

See Also
POLYFILLV

DEFSYSYV Procedure
Creates a new system variable initialized to the specified value.

Usage
DEFSY SV, name, value[, read_only]

Input Parameters

name — A scalar string containing the name of the system variable to be created.
All system variables must begin with the ! character.

value—An expression from which the type, structure, and initial value of the new
system variable istaken. May be a scalar, array, or structure.

DEFSYSV Procedure 269

read_only—(optional) If present and nonzero, causestheresulting system variable
to be read-only. Otherwise, the value for name may be modified.

Keywords

None.

DiIscussion

System variables can be defined at any program level (in functionsand procedures,
and at the main program level).

Example

This example uses procedure DEFSY SV to create read-only system variables to
hold the constant e, which is the base of the natural logarithm, in both single-
precision and double-precision forms.

DEFSYSV, ’le’, 2.71828, 1
; Create the single-precision system variable containing e.

DEFSYSV, ’!de’, 2.718218D, 1
; Create the double-precision system variable containing e.

INFO, /System Variables
; Use the INFO procedure to display all system variables.

!DE = 2.7182180

'E = 2.71828

270 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DELETE_SYMBOL Procedure (OpenVMS)

Deletesa DCL (Digital Command Language) interpreter symbol from the current
process.

Usage
DELETE_SYMBOL, name

Input Parameters

name —A scalar string containing the name of the symbol to be deleted.

Keywords
Type —Indicates the OpenVMS table from which name will be deleted:

1 Specifies the local symbol table (the default).
2 Specifies the global symbal table.

Example
DCL COMMAND LINE> my sym :== dev: [mydirlmy.exe
DCL COMMAND LINE> wave

WAVE> DELETE_SYMBOL, 'my sym’, Type=2

See Also
DELLOG, GET SYMBOL, SETLOG, SET _SYMBOL, TRNLOG

DELETE_SYMBOL Procedure (OpenVMS) 271

DEL FILE Procedure

Deletes a specified file on your system.

Usage
DEL_FILE, filename

Input Parameters
filename — A string containing the full pathname of the file to be deleted.

Keywords

None.

Discussion

This function uses SPAWN to execute a platform-specific command to delete the
specified file.

OpenVMS USERS On OpenVMS systems this function deletes all versions of
the specified file.

UNIX Example 1

full name = FILEPATH(’'myproc.pro’, Subdirectory=’lib/user’)
PRINT, full name

/usr/local/vni/wave/lib/usr/myproc.pro
DEL FILE, full name

UNIX Example 2

DEL_FILE, FILEPATH('scratchl0’,/Tmp)

OpenVMS Example 1

full name = FILEPATH('myproc.pro’, Subdirectory=’1lib.user’)
PRINT, full name

WAVE DIR: [lib.user]myproc.pro
DEL FILE, full name

272

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

OpenVMS Example 2

DEL_FILE, FILEPATH('scratchl0’, /Tmp)

Windows Example 1

full name = FILEPATH(’'myproc.pro’, Subdirectory=’lib\user’)
PRINT, full name

d:\vni\wave\lib\user\myproc.pro
DEL FILE, full name

Windows Example 2

DEL_FILE, FILEPATH(’'scratchl0’,/Tmp)

See Also
FINDFILE, SPAWN (UNIX/OpenVMS), SPAWN (Windows)

DELFUNC Procedure

Deletes one or more compiled functions from memory.

Usage
DELFUNC, function, ,..., function,

Input Parameters

function; — (string) The name of a compiled function to delete.

Keywords

All — When present and nonzero, deletes all currently compiled functions. When
this keyword is used, al other parameters are ignored.

Discussion

Usethis procedureto free the memory taken by compiled functions. You can obtain
alist of compiled functions by entering: INFO, /Routines.

DELFUNC Procedure 273

Example

INFO, /Routines
Saved Procedures:
LOADCT table number "SILENT"
Saved Functions:
DIST n
FILEPATH filename "SUBDIRECTORY"

DELFUNC, "Filepath", "Dist"
; Deletes compiled FILEPATH and DIST functions from memory.

See Also
DELPROC, DELSTRUCT, DELVAR

DELLOG Procedure (OpenVMS)
Deletesalogical name.

Usage
DELLOG, logname

Input Parameters
logname — A scalar string containing the name of the logical to be deleted.

Keywords

Table — A scalar string giving the name of the logical table from which to delete
logname. If Table is not specified, the system LNMSPROCESS_TABLE is used.
See Also

DELETE_SYMBOL, GET_SYMBOL, SETLOG, SET_SYMBOL, TRNLOG

274 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DELPROC Procedure

Deletes one or more compiled procedures from memory.

Usage
DELPROC, procedure, ,..., procedure,

Input Parameters
procedure; — A string containing the name of a compiled procedure to be del eted.

Keywords

All — When present and nonzero, deletesall currently compiled procedures. When
this keyword is used, al other parameters are ignored.

Discussion

Use this procedure to free the memory taken by compiled procedures. You can
obtain alist of compiled procedures by entering: INFO, /Routines.

Example

INFO, /Routines
Saved Procedures:
LOADCT table number "SILENT"
Saved Functions:
DIST n
FILEPATH filename "SUBDIRECTORY"

DELPROC, "Loadct"
; Deletes the compiled LOADCT procedure from memory.

See Also
DELFUNC, DELSTRUCT, DELVAR

DELPROC Procedure 275

DELSTRUCT Procedure

Deletes one or more named structure definitions from memory.

Usageh
DELSTRUCT, { structure;} ,..., { structure,}

Input Parameters

structure; — The name of the structure definition to be deleted. The name can be
specified as { structure}, "structure”, or X, where x is a variable of type structure.

Keywords

All — If nonzero, deletes all named structure definitions not currently being
referenced by avariable.

Rename — If present and nonzero, this keyword causes the structure definition to
be re-named. DELSTRUCT cannot delete a structure definition if it is currently
being used (referenced) by avariable, common block, or other structure definition.
If astructure is being used and Rename is given, then the structure definition will
be renamed. If the structure is not being used, it will be deleted.

Unnall — If nonzero, deletes al unnamed structure definitions not currently being
referenced by avariable.

Discussion

DELSTRUCT isuseful for freeing memory that is currently taken by unused
structure definitions. In addition, this procedure can be used if you need to correct
an existing structure definition. To do this, delete the incorrect definition and then
create anew, correct structure definition.

If the structure definition is not currently referenced by any variables, other
structure definitions, or common blocks, then the structureis deleted. If any
referencesto structure exist, then, by default, you receive an error message and the
structure is not deleted. The Rename keyword overrides this default, and renames
the existing structure so that the structure name can be reused. When the Rename
keyword is used, the original variables remain valid (continue to reference the
renamed structure definition); however, no memory is freed.

Use the STRUCTREF function to determineif a structure is currently referenced
by any variables, common blocks, or other structure definitions.

276 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP You cannot delete structure definitions that are system structure definitions,
such as!Axisand !'Plot, or any structures that begin with an exclamation mark (1).
Therefore, if you want to create a new structure that cannot be deleted, begin its
name with an exclamation mark (!).

Example

x = {structl, a:float(0)}
; Create a structure.
DELVAR, x
; Delete the variable.
DELSTRUCT, {structl}
x = {structl, a:double(0)}

; Now delete and recreate the structure, changing the data
; type of x.a.

See Also
DELFUNC, DELPROC, DELVAR, STRUCTREF
For more information on structures, see the PV=WAVE Programmer’s Guide.

DELVAR Procedure

Deletes variables and their symbols from $MAINS, the main program level of
PV=-WAVE.

Usage
DELVAR, vary, ... ,var,,

Input Parameters

var; — One or more named variables to be deleted.

Keywords
All — If specified, deletes all variables and their symbols on the main program
level.

DELVAR Procedure 277

Discussion

DELVAR may be called from any program level to delete a variable from the main
program level. If DELVAR is caled from the main program level, the variableis
directly deleted.

When DELVAR isused to delete alocal variable, the variableis also deleted from

the main program level. If DELVAR is called from a procedure, one of the two

following requirements applies:

* UPVAR must be used to bind the local variable on the procedure level to the
variable on the main program level.

» Thevariable on the main program level must be passed as a parameter to the
procedure or function from which DELVAR is called.

Example
This example creates three variables of differing type and structure, then deletes
them using DELVAR.

a = FINDGEN (3)
; Create a single-precision, floating-point vector, a.

b = {structb, fieldil:1.0, field2:[5, 6, 71, $
field3:"pv-wave"}
; Create an anonymous structure, b.

c = 6L
; Create a longword scalar, c.

INFO, a, b, c

A FLOAT = Array(3)
B STRUCT = -> STRUCTB Array (1)
C LONG = 6

DELVAR, a, c
; Delete variables a and c.

INFO, a, b, ¢

A UNDEFINED = <Undefined>
B STRUCT = -> STRUCTB Array (1)
C UNDEFINED = <Undefined>

DELVAR, b
; Delete variable b.

INFO, a, b, c

A UNDEFINED = <Undefined>

278 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

B UNDEFINED
C UNDEFINED = <Undefined>

<Undefined>

See Also
DELFUNC, DELPROC, DELSTRUCT

For more information on releasing memory to the operating system, see the
PV=WAVE Programmer’s Guide.

DERIV Function

Standard Library function that calculatesthefirst derivative of afunctioninxandy.

Usage
result = DERIV([X,] ¥)

Input Parameters

x — (optional) The vector of independent x-coordinates of the data (i.e., the
variable with respect to which the function should be differentiated). Must be a
one-dimensional array (avector).

y — Thevector of dependent y-coordinates at which the derivative of function f is
evaluated. Must be a one-dimensional array (a vector).

Returned Value
result — Thefirst derivative of the vector y, with respect to the independent

variable x. The result hasthe same size asy.

Keywords

None.

Discussion

NOTE DERIV does not support complex numbers.

DERIV Function 279

The numerical differentiation algorithm for DERIV uses athree-point Lagrangian
interpolation.

The vector of x-coordinates, X, is optional. The conditions set on this vector are
given below:

» |If you specify x, then both x and y must be one-dimensional and have the same
number of elements. Selecting this option allows you to define the spacing
along the x-axis, for the case where the independent dataiis not monotonically
increasing.

« If you don't specify x, then it is automatically provided with even spacing,
using a unit of one, along the x-axis. (In other words,
x(i) =i,wherei=0,1,2,3,..n)

Example 1

X = FINDGEN(10)

xx = x72

d = DERIV (xx)

PRINT, d

PLOT, xx

OPLOT, d, Linestyle=2

Example 2
X = FINDGEN(100) * 10 * !Dtor

; Create an array that contains values 0, 10, 20 ... and multiply these
; by IDtor (which equals 0.0174533) to convert the values from
; degrees to radians.

sin x = SIN(x)

d_sin x = DERIV(x, sin_x)
PLOT, sin x

OPLOT, d sin x, Linestyle=2

See Also
DERIVN

For an exampl e of the three-point Lagrangian interpolation used in DERIV, seethe
Introduction to Numerical Analysis by F. B. Hildebrand, Dover Publishing, New
York, 1987.

280 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DERIVN Function
Standard Library function that differentiates a function represented by an array.

Usage
result = DERIVN(a, n)

Input Parameters
a— An array of values of the dependent variable.

n — Aninteger (> 0) designating which dimension to differentiate.

Returned Value

result — An array of the same dimensions as a, representing the derivative with
respect to the n'th independent variable.

Keywords

X — A vector defining the independent variable of differentiation. x defaultsto the
indices into dimension n of a.

Examples

pm, derivn([0,2,1,0,1], 0)

pm, derivn([[O0,2,1,0,1],[2,1,0,2,0],([1,0,2,1,2]], O)
pm, derivn([[0,2,1,0,11,(2,1,0,2,0],(1,0,2,1,2]11, 1)
See Also

DERIV, JACOBIAN

DERIVN Function 281

DETERM Function

Standard Library function that cal cul ates the determinant of a square, two-dimen-
sional input variable.

Usage
result = DETERM(array)

Input Parameters
array —An array with two equal dimensions. Can be any data type except string.

Returned Value

result —The determinant of the square matrix of array. Theresultisascalar value,
of either single- or double-precision floating-point data type.

Keywords

None.

Discussion

Determinants can be used to evaluate systems of linear equations.

Example
a = INTARR(4,4)
FOR 1=0,3 DO a(i,*)=[1,i+2, (i+2)"2, (1i+2) 73]
PRINT, a
PRINT, DETERM(a)
12.0000

282 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DEVICE Procedure

Providesdevice-dependent control over the current graphics device (as specified by
the SET_PLOT procedure).

Usage
DEVICE

Parameters

None.
Keywords
Each type of device usesits own unique set of keywords. For adescription of these

keywords, see Appendix B, Output Devices and Window Systems.

Discussion

CAUTION Do not use the DEVICE command when VDA Tools or the Navigator
arerunning. To do so can cause PV=WAVE to crash. VDA Tools and the Navigator
expect to be running under the X Window system or Microsoft Windows. Using
DEVICE to switch to another deviceis not supported. VDA Tools set the device
internaly, e.g., when printing. If you are on a 24-bit display, but are not using the
VDA Toolsfor real 24 bit applications, then set your display to 8-bit before starting
any VDA Tools. Issuing the command DEVICE, Pseudo=8 cancause
PV=WAVE to crash under these circumstances.

The graphics procedures and functions are device-independent. This means that
PV=WAVE presents you with a consistent interface to all devices.

However, most devices have extra ahilities that are not directly available through
thisinterface. Use DEVICE with the appropriate keywords to control these
additional capabilities.

See Also
SET_PLOT
System Variables: 'D

DEVICE Procedure 283

DIAG Function
Makes a diagonal array or extracts the diagonal of an array.

Usage
d=DIAG(a)

Input Parameters
a— An array.

Returned Value

d — If aisone-dimensional then d is the n-dimensional diagonal array with
diagona a; otherwise, d isthe diagonal of a.

Keywords

n — The dimensionality of d when a is one-dimensional. (Default: 2)

Example

a = DIAG([1,1,1]1) & PM, a
1 0 0
0 1 0
0 0 1

PM, DIAG(a)
1
1
1

284 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DICM_TAG_INFO Function

Extracts Digital Imaging and Communicationsin Medicine (DICOM) tags infor-
mation from an image associative array.

Usage
result = DICM_TAG_INFO (filename, image)

Input Parameters

filename— On input, a string containing the name of the file which contains the
descriptions for the DICOM tags.

image— An associative array in image format.

Returned Value

result— An associative array containing DICOM tags information.

Discussion

The DICM_TAG_INFO function extracts the tag information from an image
associative array that contains a DICOM image. The tag information is returned
as an associative array. The following table describes each key of the associative

array:

Array Key Name Variable Type Description

tag STRING A 1-dimensional array containing
the DICOM tags

description STRING A 1-dimensional array containing
the DICOM tag descriptions

value STRING A 1-dimensional array containing

the DICOMtag values

The DICM_TAG_INFO function needs afile containing the tag description as
input. Thisfile contains atag followed by adescription for thistag. Thetagsin
thisfile must bein ascending order. For example:

DICM_TAG_INFO Function 285

(0002,0000) Group Length UL 1
(0002,0001) File Meta Information Version OB 1

Example

This example uses IMAGE_READ to read aDICOM imagefile. Thenit extracts
the DICOM tags and displays the information of the result variable.

image = IMAGE READ('test.dicm',6 File type='dicm')

tags = DICM_TAG INFO('dict.txt', image)

INFO, tags, /Full

TAGS AS. ARR = Associative Array(3)
tag STRING = Array (36)
description STRING = Array(36)
value STRING = Array(36)

See Also

IMAGE_READ, IMAGE_WRITE

DIGITAL_FILTER Function

Standard Library function that constructs finite impul se response digital filtersfor
signal processing.

Usage
result = DIGITAL_FILTER(flow, fhigh, gibbs, nterm)

Input Parameters

flow —The value of the lower frequency of thefilter, expressed as afraction of the
Nyquist frequency. Must be between 0 and 1.

fhigh — The value of the upper frequency of the filter, expressed as a fraction of
the Nyquist frequency. Must be between 0 and 1.

gibbs—The size of the Gibbs Phenomenon variations. Expressed in units of —db
(decibels).

nterm — The number of termsin the filter formula used. Determines the order of
the filter.

286 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — The coefficients of aconvolution mask to be used in thefiltering of digital
signals.

Keywords

None.

Discussion

The coefficients returned by DIGITAL_FILTER form the convolution mask or
kernel that can be used with the CONVOL function to apply thefilter to asignal.
The size of this vector is equal to:

(2* nterm) —1

Highpass, lowpass, bandpass, and bandstop filters can be constructed with
DIGITAL_FILTER. Usethefollowing valuesfor fhigh and flow to specify thetype
of filter you want to obtain:

Desired Effect Value

No filtering flow =0, fhigh=1
Lowpassfilter flow=0,0<fhigh<1
Highpassfilter O<flow<1,fhigh=1
Bandpass filter O<flow <fhigh<1
Bandstop filter O<fhigh<flow<1

These non-recursive filters require evenly spaced data points. Frequencies are
expressed in terms of the Nyquist frequency, 1/2T, where T is the time el apsed
between data samples.

The Gibbs Phenomenon variations are oscillations which result from the abrupt
truncation of theinfinite FFT series. Setting the gibbs parameter either too high or
too low may yield unacceptable results.

TIP A value of 50 for gibbs is a good choice for most filters.

Sample Usage

DIGITAL_FILTER isused extensively inimage and signal processing applications
tobuildimageor signal filters. It provides aconvenient way of creating convolution

DIGITAL_FILTER Function 287

kernels (containing the filter coefficients)—all you need do is specify the desired

filter with respect to the high and low cutoff frequencies, the Gibb'svariations, and
the number of terms. You can then use the constructed kernels with the CONVOL
function to perform the actual filtering operation upon asignal or image.

To evaluate the coefficients of adigital filter and then apply them to asignal, use
the following sequence of equations:

Coeff = DIGITAL_FILTER(flow, fhigh, gibbs, nterm)

Filtered_Sgnal = CONVOL (input_signal, coeff)

The end result is an image or signal that has certain frequencies or bands of
frequenciesfiltered out of it. For example, an electrical engineer may want to filter
out high frequency harmonics or low frequency flutter from asignal. This can
easily be achieved by using the high and low pass filters constructed with
DIGITAL_FILTER asthe coefficientsin the CONVOL function.

NOTE Two or morefilters created by DIGITAL_FILTER can be combined by
addition, subtraction, or averaging to create multiplefiltering effectswith onefilter.

Example 1

A digital signal processing example follows:

av_temp = FLTARR(140)
OPENR, unit, !Data dir + ’‘example _air g.dat’, /Get lun
READF, unit, av_temp, Format=' (5X,F9.4)’

; Read the average temperature field from the air quality test dataset.

FREE LUN, unit

PLOT, av_temp
; Display the original data.

filter = DIGITAL FILTER(0.0, 0.1, 50, 10)
; Create the convolution kernel for a lowpass filter.

filt temp = CONVOL(av_temp, filter)
; Filter the data by convolving it with the kernel.

OPLOT, filt temp, Linestyle=2
; Display the filtered data using a dashed line.

Example 2

An image processing example follows:

288 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

mandril = BYTARR(512,512)
OPENR, unit, !Data_dir + ‘mandril.img’, /Get_ lun
READU, unit, mandril
; Read the mandril demo image.
FREE LUN, unit
WINDOW, XSize=512, YSize=512
TV, mandril
; Display the original image.
mandril = FLOAT (mandril)
; Convert the byte data to floating-point for filtering.
filter = DIGITAL FILTER(0.0, 0.1, 50, 10)
; Create the convolution kernel for a lowpass filter.
filt image = CONVOL (mandril, filter)
; Filter the image by convolving it with the kernel.
TV, filt image
; Display the filtered image.

See Also
CONVOL

DIGITAL_FILTER is adapted from the article “ Digital Filters,” by Robert
Walraven, in Proceedings of the Digital Equipment User’s Society, Fall 1984,
Department of Applied Science, University of California, Davis, CA 95616.

DILATE Function

Implements the morphologic dilation operator for shape processing.

Usage
result = DILATE(image, structure [, Xy, Yol)

Input Parameters
image — The array to be dilated.

structure — The structuring element. May be a one- or two-dimensional array.
Elements are interpreted as binary (values are either zero or nonzero), unless the
Gray keyword is used.

DILATE Function 289

X,— (optional) The x-coordinates of structure’s origin.

Yo— (optional) The y-coordinates of structure’s origin.

Returned Value
result— The dilated image.

Keywords

Gray —A flag which, if present, indicates that gray scale, rather than binary
dilation, is to be used.

Values— An array providing the values of the structuring e ement. Must have the
same dimensions and number of e ements as structure.

Discussion

If imageis not of the byte type, PV=WAV E makes atemporary byte copy of image
before using it for the processing.

The optional parameters x, and y, specify the row and column coordinates of the
structuring element’s origin. If omitted, the origin is set to the center, (LN, / 2],
LN, / 2]), where N, and N, are the dimensions of the structuring element array.
However, the origin need not be within the structuring element.

Nonzero elements of the structure parameter determine the shape of the structuring
element (neighborhood).

If the Values keyword is not used, all elements of the structuring element are 0,
yielding the neighborhood maximum operator.

You can choose whether you want to use gray scale or binary dilation;

» |If you select binary dilation type, theimageis considered to be a binary image
with all nonzero pixels considered as 1. (You will automatically select binary
dilation if you don't use either the Gray or Values keyword.)

» |If you select gray scale dilation type, each pixel of the result is the maximum
of the sum of the corresponding elements of values overlaid with image. (You
will automatically select gray scaledilationif you use either the Gray or Values

keyword.)

Background Information

The DILATE function implements the morphol ogic dilation operator on both
binary and gray scale images. Mathematical morphology provides an approach to

290 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

the processing of digital images on the basis of shape. This approachis
summarized below.

DILATE returns the dilation of image by the structuring element, structure. This
operation isalso commonly known asfilling, expanding, or growing. It can be used
tofill holesthat are equal in size or smaller than the structuring element, or to grow
features contained within an image. The result is an image that contains items that
may touch each other and become one. Sharp-edged items and harsh angles
typically become dull as they expand and grow.

NOTE Dilation can be used to change the morphological structure of objects or
featuresin animage to see what would happen if they wereto actually expand over
time.

Used with gray scale images, which are always converted to a byte type, the
DILATE function isaccomplished by taking the maximum of aset of sums. It may
be conveniently used to implement the neighborhood maximum operator, with the
shape of the neighborhood given by the structuring element.

Used with binary images, where each pixel is either 1 or O, dilation issimilar to
convolution. On each pixel of the image, the origin of the structuring element is
overlaid. If the image pixel is nonzero, each pixel of the structuring element is
added to the result using the logical OR operator.

Letting A © B represent the dilation of animage A by structuring element B,
dilation may be defined as:

C=A®B= U (A),

be B

where (A), represents the translation of A by b. Intuitively, for each nonzero
element by; of B, Aistransated by i,j and summed into C using the OR operator.

Openings and Closings

The opening of image B by structuring element K is defined as:

BOK)®K

The closing of image B by K is defined as:

DILATE Function 291

(B@®K)0OK

where the erosion operator is denoted by 6 and isimplemented by the ERODE
function.

As stated by Haralick et al:

“Theresult of iteratively applied dilationsand erosionsisan elimination of specific
image detail smaller than the structuring element without the global geometric
distortion of unsuppressed features. For example, opening an image with adisk
structuring element smooths the contour, breaks narrow isthmuses, and eliminates
small islands and sharp peaks or capes.

Closing an image with a disk structuring element smooths the contours, fuses
narrow breaks and long thin gulfs, eliminates small holes, and fills gaps on the

contours.”
Example 1
In the example below, the origin of the structuring element is at (0,0):
0100 0110
0100 0110
0110 ® 11 = 0111
1000 1100
0000 0000
Example 2

Hereiswhat an aerial image looks like before and after applying the DILATE
function three different times. For this example, the following parameters were
used each time:

img = DILATE (aerial img, struct, /Gray)

where struct hasavaueof [10 1].

Because the DILATE function was applied to the image three times, the “blurring”
is more pronounced than it would have been with only one dilation.

292 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-18 The DILATE function has been used to fuse the visual elements of this 512-by-
512 aerial image.

See Also
ERODE

For details on the approach used in the DILATE function, refer to the source
document: Haralick, Sternberg, and Zhuang, “ Image Analysis Using Mathematical
Morphology,” |EEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 4, pp. 532-550, July 1987.

DINDGEN Function

Returns a double-precision floating-point array with the specified dimensions.

Usage
result = DINDGEN(dim, ..., dim,)

Input Parameters

dim; — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result— Aninitialized double-precision, floating-point array. If theresulting array
istreated as a one-dimensional array, then itsinitialization is given by the
following:

DINDGEN Function 293

array(i) = DOUBLE(i), for i = 0,1, ...,(HDj—lJ
j=1
Keywords

None.

Example

This example creates a 4-by-2 double-precision, floating-point array.
a = DINDGEN (4, 2)
; Create double-precision, floating-point array.

INFO, a
A DOUBLE = array (4, 2)

PRINT, a
0.0000000 1.0000000 2.0000000 3.0000000
4.0000000 5.0000000 6.0000000 7.0000000

See Also

BINDGEN, CINDGEN, DBLARR, FINDGEN, INDGEN,
LINDGEN, SINDGEN

DIST Function

Standard Library function that generates a square array in which each element

equals the euclidean distance from the nearest corner.

Usage
result = DIST(n, [M])

Input Parameters

n — The size of the resulting array.

m — If this parameter is supplied, the function generates a rectangular Euclidean

distance array.

Returned Value

result — The resulting floating-point array.

294 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

Keywords

None.

Discussion

DIST generates a square array in which each element is proportional to its
frequency. A three-dimensional plot of thisfunction displays a surface where each
guadrant is a curved quadrilateral forming a common cusp at the center.

The result of the DIST function is an n-by-n single-precision floating-point array,
as defined by:

result(i, j) = JF@)2+F(j)?

where

F(x) =x if 0<x<n/2
or

FX)=n—-1-xif x>n/2

The DIST function is particularly useful for creating arrays that can be used for
frequency domain filtering in image and signal processing applications.

TIP DIST isan excellent choice when you need atwo-dimensional array of any
sizefor afast test display.

If the optional parameter mis supplied, the result is an n-by-m rectangular
Euclidean distance array.

Example 1
mandril = BYTARR(512,512)
OPENR, unit, !Data dir + ’‘mandril.img’, /Get lun
READU, unit, mandril
FREE LUN, unit
; Read the demo image.

WINDOW, XSize=512, YSize=512
TV, mandril
; Display the original image.

d = DIST(512)

DIST Function 295

; Use the DIST function to create a frequency image of the same
; size as the demo image.
n=1.0
do = 10.0
; Set n, the order (steepness) of the Butterworth filter to use, and
; d0, the cutoff frequency.
filter = 1.0 / (1.0 + (d/d0)* (2.0 * n))
; Create a Butterworth low-pass filter to be applied to the image.
; (For other common filters that could be substituted here, see the
; reference listed in the See Also section.)
filt image = FFT(FFT(mandril, -1) * filter, 1)
; Filter the image by transforming it to the frequency domain,
; multiplying by the filter, and then transforming back to the
; spatial domain. (Note that this operation may take a while.)
TVSCL, filt image
; Display the resulting image.

Example 2

Use these commands:
testarr = DIST(40)
CONTOUR, testarr
SURFACE, testarr
LOADCT, 7
SHADE_SURF, testarr
testimg = DIST(200)
TVSCL, testimg

to create the a surface of an array:

296 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-19 Surface view of an array.

See Also

For more information, see on frequency domain techniques, see the PV=WAVE
User’s Guide.

DOC_LIBRARY Procedure (UNIX/OpenVMS)

Standard Library procedure that extracts header documentation for user-written
procedures and functions.

Usage
DOC_LIBRARY [, name]

Input Parameters

name — A string containing the name of the user-written module for which
documentation is desired. The search for the file follows the current path in the
system variable ! Path.

DOC_LIBRARY Procedure (UNIX/OpenVMS) 297

Keywords

Directory — (UNIX only) The name of the directory to search. If this keyword is
omitted, the current directory and !Path are used.

File— (OpenVMS only) If present and nonzero, sends the output to the file
userlib.doc inthe current directory.

Multi — (UNIX only) A flag that allows for the printing of more than onefile. To
do this, Multi must be nonzero and the named file must exist in more than one
directory in the path.

Path — (OpenVM S only) Thedirectory/library search path. It hasthe same format
and semantics as the system variable ! Path. If this keyword is omitted, !Path is
used.

Print — A flag to direct the output:

» A valueof 1 specifiesthe output from the procedure isto be sent to the default
printer.

» A string value specifies acommand to redirect the standard output.
« |If the Print keyword is nhot used, documentation is sent to the standard output.

Discussion

Thefirst line of the header documentation must begin with the characters ; + and
the last line of the header documentation must begin with the characters ; —.
DOC_LIBRARY extractsal the information between the + and — characters.
(Each line of the header must begin with the semicolon character to denote a
comment line.)

DOC_LIBRARY isauseful tool for finding out what is available in the
undocumented Users' Library. This procedure can be used to search each routine
inthe Users' Library and extract all the text that is bracketed by the + and the —
characters. Thisincludes the routine’s name, purpose, category, calling sequence,
inputs, outputs, and modification history.

DOC_LIBRARY checksto seewhat operating system you are using, and then calls
the appropriate version DOC_LIB_UNIX or DOC_LIB_VMS.

Keywords allow you to have the output sent to a printer or displayed on the screen.
If the procedure is called without keywords, you are prompted for specific
information about the search.

When creating your own PV=WAVE routines, it is helpful to include a; + asthe
second linein thefile and a; — as the last informational line so that

298 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DOC _LIBRARY can then be used to create documentation for the routine. An
example of afile set up to use DOC_LIBRARY inthisway is shown below. (All
the information shown in bold will be extracted by DOC_LIBRARY.)
FUNCTION COSINES, x, m

i+

; NAME:

; COSINES

; PURPOSE:

; Example of a function to be used by SVDFIT. ;

; Returns COS (i*COS(x(j)) .

; CATEGORY:

; Curve fitting.

; CALLING SEQUENCE:

; r = COSINES(x, m)

; INPUTS:

; x = vector of data values. n elements.

; m = order, or number of terms.

; OUTPUTS:

; Function result = (n,m) array,

; where n is the number of points in x,

; and m is the order. r(i,j) = COS(j * x(i))

; MODIFICATION HISTORY:

; DMS, Nov, 1987.

ON_ERROR, 2

;Return to caller if an error occurs.

RETURN, COS(x # FINDGEN (m))

;Couldn’t be much simpler.

END

UNIX Examples

DOC_LIBRARY, ’'gamma’
; On the screen, display the header for the gamma.pro procedure
; using the default search path.

DOC_LIBRARY, ’‘gamma’, Print='cat > gamma_header’
; Print the header for gamma.pro to the file gamma_header.
DOC_LIBRARY, ’'*',directory= $
"$VNI_DIR/wave/lib/std’, s
Print='cat > user lib headers’
; Print the headers for all the files located in the Users’ Library.

DOC_LIBRARY Procedure (UNIX/OpenVMS) 299

OpenVMS Examples

DOC_LIBRARY, ’‘gamma’
; On the screen, display the header for the gamma.pro procedure
; using the default search path.

DOC_LIBRARY, ‘gamma’, /File
; Print the header for gamma.pro to the file userlib.doc.

See Also
INFO
System Variables: !Path

DOUBLE Function

Converts an expression to double-precision floating-point data type.

Extracts datafrom an expression and placesit in a double-precision floating-point
scalar or array.

Usage

result = DOUBLE(expr)
This form is used to convert data.

result = DOUBLE(expr, offset, [dimy, ..., dim,])
This form is used to extract data.

Input Parameters
To convert data:
expr — The expression to be converted.
To extract data:
expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin.

dim; — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

300 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

For data conversion:

result — A copy of expr converted to double-precision floating-point data
type.
For data extraction:

result — If offset is used, DOUBLE does not convert result, but allows
fields of data extracted from expr to be treated as double-precision float-
ing-point data. If no dimensions are specified, the result is scalar.

Keywords

None.

Example

In thisexample, DOUBLE isused in two ways. First, DOUBLE is used to convert
an integer array to double precision, floating point. Next, DOUBLE is used to
extract a subarray from the double precision array created in the first step.
a = INDGEN (6)
PRINT, a
0 1 2 3 4 5

; Create an integer vector of length 6 that is initialized to the

; a = INDGEN(6) value of its one-dimensional subscript.
b = DOUBLE (a)

; Convert a to double precision, floating point.

INFO, b
B DOUBLE = Array (6)

PRINT, b
0.0000000 1.0000000 2.0000000 3.0000000
4.0000000 5.0000000

¢ = DOUBLE (b, 16, 2, 2)
; Extract the last four elements of b, and place them in a 2-by-2
; double-precision, floating-point array.

INFO, ¢
C DOUBLE = Array (2, 2)

PRINT, c¢
2.0000000 3.0000000
4.0000000 5.0000000

DOUBLE Function 301

NOTE If youwant to place the double-precision value of aconstant into avariable,
itis more efficient to use the d or D constant notation rather than the double func-
tion. For example:

x = .0705230784D

See Also
BYTE, COMPLEX, DBLARR, DCOMPLEX, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV=WAVE
Programmer’s Guide

DROP_EXEC_ON_SELECT Procedure (UNIX)
Drops asingle item from the EXEC_ON_SEL ECT list.

Usage
DROP_EXEC_ON_SELECT, lun

Input Parameters

lun — Logical unit number.

Keywords

None.

Description

A logical unit number and associated command is dropped from the
EXEC_ON_SELECT list. Thisprocedure is designed to be called from an
EXEC_ON_SELECT callback procedure. When the logical unit number and
associated command are dropped from the EXEC_ON_SELECT ligt, the
EXEC_ON_SELECT procedure returns to the calling routine.

See Also
ADD_EXEC ON_SELECT, EXEC_ON_SELECT, SELECT READ LUN

302 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DT_ADD Function

Increments the values in a date/time variable by a specified amount.

Usage
result = DT_ADD(dt_var)

Input Parameters

dt var —The original date/time variable or array of variables.

Returned Value

result — A date/time variable incremented by the specified amount.

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.
Minute — Specifies an offset value in minutes.
Month — Specifies an offset value in months.
Second — Specifies an offset value in seconds.

Year — Specifies an offset value in years.

NOTE Only one keyword can be specified at atime. You cannot, for example,
specify both years and monthsin asingle DT_ADD call. But if you need to add,
for example, one day and one hour, you can simply add 25 hours.

Discussion

The DT_ADD function returns a date/time variable containing one or more dates/
times that have been offset a specified amount.

The keywords specify how the dates and/or times are incremented (added to). If no
keyword is specified, the default increment is one day.

DT_ADD Function 303

Only positive whole numbers (including zero) can be used with the keywords to
specify anincrement. Therefore, the smallest unit that can beaddedto dt_var isone
second.

Example

This example shows how to add one day to a date/time variable containing two
date/time values.

dtarray = STR_TO DT([’17-03-92', $
"8-04-93'], Date Fmt=2)
; Convert two date strings to a date/time variable.
DT_PRINT, dtarray
03/17/1992
04/18/1993
; The date/time variable dtarray contains two dates.

dtarrayl = DT ADD(dtarray, /Day)

; Create a new date/time variable dtarray1 that contains two
; dates with one day added to each date.

DT _PRINT, dtarrayl
03/18/1992
04/19/1993

See Also
DT_SUBTRACT, DT_DURATION
For more information on date/time, see the PV=WAVE User’s Guide.

DT COMPRESS Function

Removes previously defined holidays and weekends from the Julian day portion of
IDT structuresin a date/time variable.

Usage
result = DT_COMPRESS(dt_array)

Input Parameters

dt_array — A date/time variable containing an array of date/time structures.

304 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — An array of double-precision values containing the compressed Julian
days; that is, al days representing holidays and weekends are removed from each
value of the array. In addition, the fractional time component of each Julian value
is removed.

Keywords

None.

Discussion

Thisfunction is primarily used to generate compressed date/time data for
specialized, user-written plotting applications, such as bar charts. If the XType
keyword is set to 2, the compressed data can be used with the PLOT and OPLOT
procedures.

NOTE Avoidusing DT_COMPRESS for normal XY plotting with the PLOT and
OPLOT commands. Use the Compress keyword with PLOT and OPLOT to create
compressed date/time results.

The value of the system variables !PDT.Exclude_Holiday and/or

IPDT.Exclude Weekend must be set to one (the default) before DT_COMPRESS
iscalled. In addition, the functions CREATE_ WEEKENDS and
CREATE_HOLIDAY S must be run before you use DT_COMPRESS.

Note that the result of DT_COMPRESS is a double array of Julian days, not
another array of !DT structures.

Example 1

This example demonstrates how DT_COMPRESS can be used to compress the
weekend daysfrom adate/time variable containing the daysin the month of March,
1992. The resulting array of compressed Julian numbers s then processed so that
it can be used to create a date/time plot in a specialized plotting application.

marchl = VAR TO DT (1992, 3, 1, 11, 30, 0)
PRINT, marchl
{ 1992 3 1 11 30 0.00000 87462.479, 0}

; Creates and prints out a variable march1 which is a date/time
; variable. Note the Julian Day carefully, 87462. After
; compression, this value will be smaller. This is because all the

DT_COMPRESS Function 305

; weekends from Julian day 1 (September 14, 1752) are
; compressed.
marray = DTGEN (marchl,31, /Day)

; Generates a date/time array containing the 31 days of the month of
; March, 1992.

PRINT, marray
{ 1992 3 1 0 0 0.00000 87462.479 0}

{ 1992 3 31 0 0 0.00000 87492.479 0}
CREATE_WEEKENDS, [’Saturday’, ’Sunday’]

; Defines Saturday and Sunday as weekend days.
cmarray = DT COMPRESS (marray)
PRINT, cmarray

62472.5 62473.0 62474.0 62475.0
62476.0 62477.0 62477.5 62477.5
62478.0 62479.0 62480.0 62481.0
62482.0 62482.5 62482.5 62483.0
62484 .0 62485.0 62486.0 62487.0
62487.5 62487.5 62488.0 62489.0
62490.0 62491.0 62492.0 62492.5
62492.5 62493.0 62494.0

; Creates and prints out a compressed array for the month of

; March, 1992. Weekend (compressed) days can be identified

; by fraction .5. Note that the values of the weekend days fall

; between the end and beginning of the week. Also note that the
; Julian numbers are smaller than in the original array. This is

; because all of the weekends from Julian day 1 are

; compressed.

The following block of code must be run before you can use this array of Julian
numbersto generate adate/time axis. The DT_COMPRESS function removed the
fractional Time portion of each Julian day, leaving date values with .0 or .5
appended to them. A .0 value indicates that the day is aweekday. A .5 value
indicates a compressed day (aweekend). To generate a meaningful plot with this
data, two things must be done.

First, the compressed days (the ones ending in .5) must beincremented to the value
of the next whole day. Second, the Time portion of the Julian numbers representing
weekdays must be restored.

The following code accomplishes both of these objectives:

FOR i=0, 30 DO BEGIN $
whole day = DOUBLE (FIX(cmarray(i))) $

306 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

delta day = cmarray(i) - whole day $
IF (delta day GE 0.4) AND $
(delta day LE 0.6) THEN BEGIN $

; Determine if a date value is a weekend day. If it is, then
; increment its value to the value of the next whole day.

marray (i) = whole day + 1.04d $
ENDIF $

ELSE BEGIN $
fract day = marray(i).julian - $
DOUBLE (FIX (marray (i) .julian)) $
cmarray (i) = whole day + fract day $

; Restore the fractional portion of weekday Julian values
; from the original date/time array variable.

ENDELSE $
ENDFOR

After this code isrun, cmarray can be used to generate a date/time plot for a
specialized plotting application—one where the regular PLOT routine is not
sufficient. For example, this data could be used to generate a bar chart.

Before using this date data, however, you must first call PLOT or OPLOT with the
XType keyword set to 2. This establishes the plot axis and coordinate system, and
alows the date/time axis to be generated from an array of Julian numbers.

Example 2

This example defines some holidays for the year 1992 with the
CREATE_HOLIDAY S procedure, creates an array with all the days of the year,
and then excludes these holidays using the DT_COMPRESS function.

christmas = VAR TO DT (1992, 12, 25)
PRINT, christmas
{ 1992 12 31 0 0 0.00000 87761.000 0}
; Create and print out a date/time variable for Christmas.
; The purpose is to show the Julian day before using
; DT_COMPRESS. Note the Julian Day is 87761.
dayl = VAR TO DT (1992, 1, 1)
yarray = DTGEN (dayl, 366)
; Create a variable day1 which is used to generate an array that
; contains all the days of the year (where 366 is used because
; 1992 is a leap year).
x = ['1-1-92', '5-31-92',"'7-4-92", &
1-1-92', ’11-24-92', '12-25-92']
; Create an array containing date information for the following

DT_COMPRESS Function 307

; holidays: New Years, Memorial day, Fourth of July, Labor Day,
; Thanksgiving, and Christmas.
holidays = STR_TO DT (x, Date Fmt=1)
; Create a date/time variable for the holidays.
CREATE HOLIDAYS, holidays
; Define the holidays by setting the !Holiday_List system variable.

cyarray = DT COMPRESS (yarray)
; Creates an array that excludes the holidays for 1992. The
; compressed array cyarray appends the .5 decimal to all of the
; holidays. Non-holidays end in .0. When you print out cyarray,
; note the Julian day for Christmas is 87755.5. This is six days
; less than for the yarray, because six holidays were defined
; and compressed out of the result.

See Also
CREATE HOLIDAYS, CREATE WEEKENDS
For more information on date/time, see the PV=WAVE User’s Guide.

DT_DURATION Function
Standard Library function that determines the elapsed time between the valuesin
two date/time variables.
Usage
result =DT_DURATION(dt_var_1, dt_var_2)

Input Parameters

dt var_1— Thedate/time variable to be subtracted from. Can be ascalar or array
variable.

dt_var_2 — The date/time variable to subtract. Can be ascalar or array variable.
Returned Value

result — A double-precision array containing the difference betweendt_var_1 and
dt_var_2in days and fractions of days.

308 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the calculation of duration. The default is no compression (0).

Discussion

If the input arrays are not of the same dimension, the output will be the size of the
smallest input array.

Example
DT1 = str to dt(’01-02-92’, Date Fmt=2)
DT2 = str to dt(’01-03-92’, Date Fmt=2)

; Create two date/time variables containing February 1, 1992
; and March 1, 1992,

diff = DT DURATION (DT2, DT1)
PRINT, diff
29.000000
; The difference between these dates is 29 days.

See Also
DT_ADD, DT_SUBTRACT
For more information on date/time, see the PV=WAVE User’s Guide.

DTGEN Function
Returns a date/time array variable beginning with aspecified date and incremented

by a specified amount.
Usage
result = DTGEN(dt_start, dimension)

Input Parameters

dt_start — A date/time variable containing a val ue representing the first date and
timein the new data set.

dimension — Specifies the number of date/time values to generate.

Returned Value

result — A date/time array variable containing the specified number of date/time
values.

DTGEN Function 309

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.
Minute — Specifies an offset value in minutes.
Month — Specifies an offset value in months.
Second — Specifies an offset value in seconds.
Year — Specifies an offset value in years.

NOTE Only one keyword can be specified at atime. You cannot, for example,
specify both years and monthsinasingle DTGEN call. But if you need to add, for
example, one day and one hour, you can simply add 25 hours.

Discussion

Each value in the result is offset from the previous value by the amount specified
with a keyword.

DTGEN lets you generate date and time data that match a particular dataset. For
example, if you have gathered dataat regular intervals, but do not have time stamps
in your dataset, you can use DTGEN to generate date and time data that
corresponds to your data-gathering intervals.

Only whole numbers (including zero) can be used with the keywordsto specify the
offset between dates and times. Therefore, the smallest unit by which generated
dates can be offset is one second. If no keyword is specified, the default offset is
one day.

Example 1

This example shows how to generate an array of date/time structures for
consecutive years.
datel = TODAY ()
; Create a date/time variable containing the current date.
date2 = DTGEN(datel, 4, /Year)
; Use DTGEN to create a new date/time variable containing four
; date/time values. The four date/time values represent four
; consecutive years with identical months, days, and times.
PRINT, date2
{ 1992 3 26 6 28 50.0000 87487.270 0}
{ 1993 3 26 6 28 50.0000 87852.270 0}

310 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

{ 1994 3 26 6 28 50.0000 88217.270 0}
{ 1995 3 26 6 28 50.0000 88582.270 0}

Example 2

The second exampl e shows how to create an array containing date/time structures
for every other month of a year.
date = VAR TO DT (1992, 1, 1)
; Create a date/time variable for January, 1992.
datel = DTGEN(date, 6, Month=2)

; Create an array variable containing date/time data for every other
; month of the year 1992.

PRINT, datel

{ 1992 1 1 0 0 0.00000 87402.000 0}
{ 1992 3 1 0 0 0.00000 87462.000 0}
{ 1992 5 1 0 0 0.00000 87523.000 0}
{ 1992 7 1 0 0 0.00000 87584.000 0}
{ 1992 9 1 0 0 0.00000 87646.000 0}
{ 1992 11 1 0 0 0.00000 87707.000 0}

See Also

DT _ADD

For more information on date/time, see the PV=WAVE User’s Guide.

DT PRINT Procedure

Standard Library procedurethat printsthe valuein date/time variablesin areadable
format.

Usage
DT_PRINT, dt_var

Input Parameters
dt_var — A date/time variable containing one or more date/time structures.

Keywords

None.

DT _PRINT Procedure 311

Discussion

The system variables !Date_Separator and ! Time_Separator determine which
charactersare used to separate the date and time el ementsin the output. The default
delimiter for datesis a slash (/), and the default delimiter for printing timesisa
colon (). For example:

4/2/1992 7:7:51

You can change these separators by changing the values of !Date Separator and
ITime_Separator.

Examples

x = TODAY ()
DT PRINT, x
05/06/1992 14:34:54
PRINT, x
{ 1992 5 6 14 34 54.0000 87528.608 0}

dtarray = DTGEN (x,4)

DT_PRINT, dtarray
4/2/1992 7:7:51.000

4/3/1992 7:7:51.000

4/4/1992 7:7:51.000

4/5/1992 7:7:51.000
See Also

System Variables. !'Date Separator, !Time_Separator
For more information on date/time, see the PV=WAVE User’s Guide.

DT SUBTRACT Function

Decrements the values in a date/time variable by a specified amount.
Usage
result =DT_SUBTRACT(dt_var)

Input Parameters

dt_var — The original date/time variable or array of variables.

Returned Value
result — A date/time variable decremented by the specified amount.

312

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.

Minute — Specifies an offset value in minutes.

Month — Specifies an offset value in months.

Second — Specifies an offset value in seconds.

Year — Specifies an offset valuein years.

NOTE Only one keyword can be specified at atime. You cannot, for example,
specify both yearsand monthsinasingleDT_SUBTRACT call. But if you need to
subtract, for example, one day and one hour, you can simply subtract 25 hours.

Discussion

TheDT_SUBTRACT function returns a date/time variable containing one or more
dates/times that have been offset by the specified amount.

The keywords specify how the dates and/or times are decremented (subtracted
from). If no keyword is specified, the default decrement is one day.

Only positive whole numbers (including zero) can be used with the keywords to
specify a decrement. Therefore, the smallest unit that can be subtracted from
dt_var isone second.

Example 1

dtvar = VAR TO DT(1992, 03, 17, 09, 30, 54)
; Create a date/time variable containing a date/time.
dtvarl= DT_SUBTRACT (dtvar, Year=4)
; Create a new date/time variable by subtracting 4 years from dtvar.
PRINT, dtvarl
{ 1988 3 17 9 30 54.0000 86017.396 0}
; Display the new date/time variable.

Example 2

This example shows how to add one day to a date/time variable containing two
date/time values.
dtarray = STR_TO DT([’17-03-92’, $
"8-04-93'], Date Fmt=2)
; Convert two date strings to a date/time variable.

DT_SUBTRACT Function 313

DT _PRINT, dtarray
03/17/1992

04/18/1993
; The date/time variable dtarray contains two dates.

dtarrayl = DT SUBTRACT (dtarray, /Day)
; Create a new date/time variable dtarray1 that contains two
; dates with one day subtracted from each date.

DT_PRINT, dtarrayl
03/16/1992
04/17/1993

Example 3

This example shows the effect of using the Compress keyword with
DT_SUBTRACT. Assume that you have defined Christmas (December 25, 1992)
to be a holiday with the procedure CREATE_HOLIDAY S.

x = VAR TO DT(1992, 12, 26)

; Begin with a date variable containing December 26, 1992.

DT SUBTRACT (x, /Day, /Compress)

; Subtract one day from the variable.

DT PRINT, y

12/24/1992

; The result is December 24. Normally, the result would be
; 12/25/92, but because December 25 is defined as a holiday,
; the Compress keyword causes the 25th to be skipped.

Y

See Also
DT _ADD, DT_DURATION
For more information on date/time, see the PV=WAVE User’s Guide.

DT TO SEC Function

Standard Library function that converts a date/time variable to a double-precision
variable containing the number of seconds elapsed from a base date.

Usage
result = DT_TO_SEC(dt_var)

Input Parameters
dt_var —A date/time variable.

314 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — A double-precision variable containing the number of seconds elapsed
between the base date and the date(s) contained in dt_var. The value of the base
date is maintained in the system variable |DT_Base.

Keywords

Base — A string containing adate, such as “3-27-92". Thisisthe base date from
which the number of elapsed seconds is calculated. Base can be used to override
the default value in the system variable |DT_Base.

Date Fmt — Specifies the format of the base date, if passed into the function.
Possible valuesare 1, 2, 3, 4, or 5, as summarized in the following table:

Value Format Description Examplesfor May 1, 1992
1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY]YY] 122,1992

4 DD* mmm[mmmmmm]*[YY]YY 0Y/May/92

5 [YY]YY*MM*DD 1992-05-01

where the asterisk (*) represents one of the following separators. dash (-),
dash (/), comma (,), period (.), or colon (:).

For a detailed description of these formats, see the PV=WAVE User’s Guide.

Discussion

Thisfunction isuseful for converting date/time valuesto relative time. The default
base date is September 14, 1752.

Examplei

Assume that you have created the array date1 that contains the following date/
time data:

datel=[{!dt, $ 1992,3,27,7,18,57.0000,87488.305,0},5
{rdat, 1993,3,27,7,18,57.0000,87853.305,0}, $
{rat, 1994,3,27,7,18,57.0000,87218.305,0}]

DT _TO_SEC Function 315

To find out the number of seconds for each date from the default base, September
14, 1752, use:

seconds = DT _TO_SEC(datel)
PRINT, seconds
7.5589031e+09 7.5904391e+09 7.5355751e+09

Example 2

Assume that you have created the array date1 that contains the following date/
time data:

datel=[{!dt, $ 1992,4,15,7,29,19.0000,87507.312,0},5
{rdt, 1993,4,15,7,29,19.0000,87872.312,0}, $
{rat, 1994,4,15,7,29,19.0000,88237.312,0}]

To find out the number of seconds for each date from January 1, 1970, use:

seconds = DT TO_SEC(datel, $
Base=’1-1-70’, Date Fmt=1)
PRINT, seconds
7.0332296e+08 7.3485896e+08 7.6639496e+08

See Also
DT_TO_STR, DT_TO VAR, SEC_TO DT
System Variables. 'DT_Base

For more information, see the PV=WAVE User’s Guide.

DT _TO_STR Procedure
Converts date/time variables to string data.

Usage
DT _TO_STR, dt_var, [, dateg] [, times]

Input Parameters

dt_var — A date/time variable containing one or more date/time structures.

316 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Output Parameters

dates — (optional) A variable containing the date strings extracted from the date/
time variable.

times— (optional) A variable containing the time strings extracted from date/time
variable.
Keywords

Date_Fmt — Specifies the format of the date datain the input variable. Possible
valuesarel, 2, 3, 4, or 5, as summarized in the following table:

Value Format Description Examplesfor May 1, 1992
1 MM*DD*YYYY 05/01/1992

2 DD*MM*YYYY 01-05-1992

3 ddd*YYYY 122,1992

4 DD*mmm[mmmmmm]*YYYY 01/May/1992

5 YYYY*MM*DD 1992-05-01

where the asterisk (*) represents one of the following separators. dash (-), slash
(/), comma.(,), period (.), or colon (3).

Time_Fmt — Specifies the format of the time portion of the datain the input
variable. Possible values are —1 or —2, as summarized in the following table:

Value Format Description Examplesfor 1:30 p.m.
-1 HH*Mn* SS.sss 13:30:35.25
2 HHMn 1330

where the asterisk (*) represents one of the following separators. dash (-), slash
(/), commad(,), or colon (:). No separators are allowed between hours and minutes
for the —2 format. Both hours and minutes must occupy two spaces.

Date and time separators are specified with the !Date_Separator and
ITime_Separator system variables. It is possible to use any character or string asa
separator with the DT_TO_STR function; however, if you use a non-standard
separator (one other than dash (-), slash (/), commac(,), period (.), or colon (%)), you
will be unable to convert the data back to a date/time variable with STR_TO_DT.
If Either of these system variables is set to an empty string, then you receive a
default separator.

DT _TO _STR Procedure 317

You must specify adate and/or timeformat if the dates and/or times parametersare
specified.

Examples

Assume you have a date/time variable named date1l that contains the following
date/time structures:
datel=[{!dt, $
1992,3,13,1,10,34.0000,87474.049,0}, S
{!dt, 1983,4,20,16,18,30.0000,84224.680,0}, S
{rdt, 1964,4,24,5,7,25.0000,77289.213,0}]

To convert to string data, usethe DT_TO_STR procedure:

DT TO_STR, datel, d, t, Date Fmt=1, $
Time Fmt=-1

; Convert date/time data. Store the date data in d and the time
;datain t.

PRINT, d

3/13/1992 4/20/1983 4/24/1964
PRINT, t

01:10:34 16:18:30 05:07:25

See Also

DT_TO_SEC, DT_TO_VAR, STR_TO DT

System Variables: !Date Separator, !Time_Separator

For more information on date/time, see the PV=WAVE User’s Guide.

318 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DT TO VAR Procedure

Standard Library procedure that converts a date/time variable to regular numerical
data.

Usage
DT_TO_VAR, dt_var

Input Parameters
dt_var —A date/time variable.

Keywords

Year — Specifies an integer variable to contain the years.

Month — Specifies a byte variable to contain the months.

Day — Specifies a byte variable to contain the days of the month.
Hour — Specifies a byte variable to contain the hours.

Minute — Specifies a byte variable contain the minutes.

Second — Specifies afloating-point variable to contain the seconds and fractional
seconds.

Discussion

Use one or more keywords to specify the kind of output produced by this
prlocedure. For example, to create a new variable containing the years in the date/
time variable mydtvar, use:

DT TO VAR, mydtvar, year=myyear

Theresult isanew variable called myyear that contains integer values.

Example

Assumethat you have created adate/time variable named date1 that containsthe
following date/time data:
datel=[{!dt, S
1992,3,13,10,34,15.000,87474.440,0}, $
{1dt, 1983,4,20,12,30,19.000,84224.521,0}, $

DT _TO_VAR Procedure 319

{!dt, 1964,4,24,16,25,14.000,77350.684,0{
To extract each date/time element into a separate variable:

DT _TO_ VAR, datel, Year=years, Month=months, Day=days
; This procedure creates several variables containing the date time data.

PRINT, "Years = ", years
Years = 1992 1983 1964

PRINT, "Months = ", months
Months = 3 4 6

PRINT, "Days = ", days
Days = 13 20 24

See Also
DT _TO SEC, DT _TO STR, VAR TO DT
For more information on date/time, see the PV=WAVE User’s Guide.

320 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

EMPTY Procedure

Causes al buffered output for the current graphics device to be written.

Usage
EMPTY

Parameters

None.

Keywords

None.

Discussion

PV=WAV E uses buffered output on many image devices for reasons of efficiency.
This leads to rare occasions where a program needs to be certain that data are not
waiting in abuffer, but have actually been output. This procedureis handy for such
occasions.

EMPTY isalow-level graphics routine. PV=WAVE graphics routines generally
handle the flushing of buffered data transparently to you, so the need for EMPTY
isextremely rare.

See Also
FLUSH

EMPTY Procedure 321

ENVIRONMENT Function (UNIX/Windows)

Returns a string array containing all the environment strings for the PV=WAVE
process.

Usage
result = ENVIRONMENT()

Parameters

None.

Returned Value

result — A string array containing all the environment strings for the PV=WAV E
process. Each element of the result contains one environment string.

Keywords

None.

Discussion

PV=WAVE inherits its environment from its parent process, which is usualy the
shell (UNIX) or Command Window (Windows) from which it was started.

Example

p = ENVIRONMENT ()
PRINT, p

; This statement prints a list of the environment variables defined for
; the shell in which PV=WAVE was started.

See Also
GETENV, SETENV

322

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

EOF Function
Tests the specified file unit for the end-of-file condition.

Usage
result = EOF(unit)

Input Parameters
unit — Thelogical unit number (LUN) of the fileto be tested.

Returned Value
result — Returns 1 if thefileis positioned at the end of thefile. Otherwise, returns

0.

Keywords

None.

Discussion

OpenVMS USERS Under OpenVMS, the EOF function has the following
limitations:

* |t does not work with files accessed via DECNET.

» Itismeaningless when used with files having an indexed organization
structure.

In such cases, we recommend using the ON_IOERROR procedure to handle end-
of-file.

Example

In thisexample, afile of test datais created. That fileisthen read and printed until
the end-of-file condition is detected by EOF.

OPENW, unit, ’‘eoffile.dat’, /Get Lun
; Open the file eoffile.dat for writing.

EOF Function 323

PRINTF, unit, ‘This is’
PRINTF, unit, ’'some sample’
PRINTF, unit, ’‘data.’

; Write some text to the file.

FREE LUN, unit
; Close the file and free the associated unit number.

OPENR, unit, ’‘eoffile.dat’, /Get Lun
; Open the file eoffile.dat for reading.

a="'1":"1

; Define a string variable.

WHILE NOT eof (unit) DO BEGIN &$
READF, unit, a &$
PRINT, a &$
; Read data and print it until end-of-file.

ENDWHILE
This is
some sample
data.

FREE_LUN, unit

See Also
ON_IOERROR, RETALL, RETURN

For information on opening files and choosing LUNs, see.

ERASE Procedure

Erases the display surface of the currently active window.

Usage
ERASE [, background_color]

Input Parameters

background_color — (optional) The background color index.

324 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE Not all devicessupport this parameter. Workstations and display terminals,
such as X workstations and Tektronix terminals, generally do, while some hard-
copy devices, such as HPGL plotters, do not.

Keywords

Channel — Thedestination channel index or mask for the operation. Use only with
deviceswith multiple display channels. If Channel is omitted, the system variable
IP.Channel is used.

Color — The background color index. If specified (and the parameter
background_color is not specified), Color overrides the value of the system
variable !PBackground.

Discussion

ERASE isalow-level graphics routine. It resets the display surface to the default
background color (normally 0), which isindexed from the current color translation
tables by the system variable ' PBackground. You can override the default by
specifying background_color.

ERA SE affects the current window only; to switch windows, use the WINDOW
command.

A side effect of ERASE is that the device isreset to alphanumeric modeiif it has
such amode (e.g., Tektronix terminals).

Example 1
ERASE

; Erase the display surface for the current window and use the value
; in IP.Background to set the background color.

Example 2
COLOR_PALETTE
; Create a color palette so the color table can be easily viewed.

LOADCT, 2
; Load in color table 2, GRN-RED-BLU-WHT, as it has distinctive colors.

WINDOW, 1
; Create window 1.

ERASE

ERASE Procedure 325

; Erase it using !P.Background.

WINDOW, 2
; Create window 2.

ERASE, 22
; Erase it, setting the background color to 22 (lime green).

WINDOW, 1
; Switch back to window 1.

ERASE, 64
; Reset the background color to 64 (bright red).

WINDOW, 2
; Switch back to window 2.

! P.Background=180
; Explicitly set the background color to 180 (lavender).

ERASE
; Set the background color based on !P.Background.

See Also
IPBackground, WDELETE, WINDOW

ERODE Function

Implements the morphologic erosion operator for shape processing.

Usage
result = ERODE(image, structure [, X, Yol)

Input Parameters
image — The array to be eroded.

structure — The structuring element. May be a one- or two-dimensional array.
Elements are interpreted as binary (values are either zero or nonzero), unless the
Gray keyword is used.

X,— (optional) The x-coordinates of structure's origin.

y,— (optional) The y-coordinates of structure’s origin.

326 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value
result— The eroded image.

Keywords

Gray —A flag which, if present, indicates that gray scale, rather than binary
erosion, isto be used.

Values—An array providing the values of the structuring el ement. Must have the
same dimensions and number of elements as structure.

Discussion

If imageis not of the bytetype, PV=WAV E makes atemporary byte copy of image
before using it for the processing.

The optional parameters x, and y, specify the row and column coordinates of the
structuring element’s origin. If omitted, the origin is set to the center,
(LN, /2], [N, 7 2]), where N, and N, are the dimensions of the structuring element
array. However, the origin need not be within the structuring element.

Nonzero elements of the structure parameter determine the shape of the structuring
element (neighborhood).

If the Values keyword is not used, al elements of the structuring element are 0,
yielding the neighborhood minimum operator.

You can choose whether you want to use gray scale or binary erosion:

» If you select binary erosion type, theimage is considered to be a binary image
with all nonzero pixels considered as 1. (You will automatically select binary
erosion if you don’t use either the Gray or Values keyword.)

» |If you select gray scale erosion type, each pixel of the result isthe minimum of
the difference of the corresponding elements of Values overlaid with image.
(You will automatically select gray scale erosion if you use either the Gray or
Values keyword.)

Background Information

The ERODE function implements the morphol ogic erosion operator on binary and
gray scaleimages and vectors. Mathematical morphology provides an approach to
the processing of digital images on the basis of shape. This approachis

summarized in the description of the DILATE function. Erosion isthe complement
(dual) of dilation; it does to the background what dilation does to the foreground.

ERODE Function 327

Briefly, ERODE returns the erosion of image by the structuring element, structure.
This operation is also commonly known as contracting or reducing. It can be used
to remove islands smaller than the structuring element.

Theresult isan image that contains items that now contract away from each other.
Features that either slightly touch or are connected by narrow areas may
disconnect, becoming separate, smaller objects. Any holes or gapsin or between
features become larger as the features in the image shrink away from each other.
Sharp-edged items and harsh angles typically become dull asthey are worn away;
however, in some cases areas that were dull may become somewhat sharper as a
feature erodes away.

TIP Erosion can be used to change the morphological structure of objects or fea-
turesin an image to see what would happen if they were to actually shrink over
time.

Used with gray scale images, which are always converted to a byte type, the
ERODE function is accomplished by taking the minimum of aset of differences. It
may be conveniently used to implement the neighborhood minimum operator, with
the shape of the neighborhood given by the structuring element.

Used with binary images, the origin of the structuring element is moved to each
pixel of theimage. If each nonzero element of the structuring element is contained
in the image, the output pixel is set to one.

Letting A © B represent the erosion of an image A by structuring element B,
erosion may be defined as:

C=A0B= M (A
be B

where (A)_, represents the translation of A by b. The structuring element B may be
visualized as a probe which dlides across the image A, testing the spatial nature of
A at each point. Where B trandated by i, j can be contained in A (by placing the
originof B ati, j), then A; ; belongs to the erosion of A by B.

Example 1
In this example, the origin of the structuring element is at (O, 0):

0100 0000
0100 0000

328 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

1110 6 11 =1100

1000 0000
0000 0000
Example 2

This example demonstrates what an aerial image looks like before and after
applying the ERODE function three different times. For this example, the
following parameters were used each time:

img = ERODE (aerial img, struct, /Gray)

where struct hasavalueof [1 0 1].

Because the ERODE function was applied to the image three times, the “ blurring”
is more pronounced that it would have been with only one erosion.

Figure 2-20 The ERODE function has been used to “wear away” the visual elements of this
512-by-512 aerial image.

See Also
DILATE

ERODE Function 329

ERRORF Function

Calculates the standard error function of the input variable.

Usage
result = ERRORF(X)

Input Parameters

X — The expression for which the error function will be evaluated.

Returned Value

result — The standard error function of x. It is of floating-point datatype, and has
the same dimensions as x.

Keywords

None.

Discussion

The standard error function is central to many calculationsin statistics. The
ERRORF function can be used in avariety of applications, one exampleisto solve
diffusion equations in heat transfer problems.

The error function is a special case of the incomplete gamma function. ERRORF
is defined as:

()]

ERROREF has the following limiting values and symmetries:
ef(0)=0
erf(e) = 1

erf(-x) = —erf(x)

330 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

It isrelated to the incomplete gamma function by:
erf(x) = T(1/2, x2)

wherex > 0.

See Also
GAMMA, GAUSSINT

The method used to determine the error function of complex operands is taken
from: W. Gautschi, “ Efficient computation of the complex error function,” Sam
Journal of Numerical Analysis, Volume 7, page 187, 1970.

ERRPLOT Procedure

Standard Library procedure that overplots error bars over a previously-drawn plot.

Usage
ERRPLQOT [, points], low, high

Input Parameters

points— (optional) A vector containing the independent or abscissae values of the
function. If pointsis omitted, the abscissae values are taken to be unit distances
along the x-axis, beginning with 0.

low — A vector containing the lower bounds of the error bars. The value of low(i)
isequal to the data value at i minus the lower error bound.

high — A vector containing the upper bounds of the error bars. The value of high(i)
isequal to the datavalue at i plus the upper error bound.

Keywords

Width — The width of the error bars. If omitted, the width is set to one percent of
the plot width.

Discussion

Error bars are drawn for each element, extending from low to high.

ERRPLOT Procedure 331

Example

Assume the vector y contains the data values to be plotted, and that err isthe
symmetrical error estimate. The commands to plot the data and overplot the error
bars are:

err = 0.2
PLOT, y, YRange=[1l, 6]
ERRPLOT, y-err, y+err

If theerror estimates are asymmetrical, they should be placed in the vectorslow and
high. For example:

low = [3.5, 4.8, 2.5, 2.7, 1.9]
high = [4.3, 5.1, 3.5, 3.2, 2.1]
PLOT, y, YRange=[1l, 6]

ERRPLOT, low, high

This produces the following plot:

Figure 2-21 In this example, asymmetrical error estimates have been constrained by using
ERRPLOT’s low and high parameters.

To plot error bars versus a vector containing specific points along the X axis, use
the following commands:

points = [1.0, 3.0, 4.0, 6.0, 7.0]
PLOT, points, y, YRange=[1l, 6]
ERRPLOT, points, low, high

This produces the plot shown below:

332 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

L L L E
0 2 4 3 8

Figure 2-22 In this example, error bars have been plotted over a vector containing specific
points along the x-axis.

See Also
OPLOT, OPLOTERR, PLOT, PLOTERR

EUCLIDEAN Function

Standard Library function that transforms the Euclidean metric for a Jacobian j =
Jacobian (f)

Usage

e = euclidean (j)

Input Parameters

j — A Jacobian defined by an n-element list of m-element lists of m-dimensional
arrays of dimensionsd.

Returned Value

e — The Euclidean metric under atransformation with Jacobian j: an m-element
list of melement lists of m-dimensional arrays. (e(p))(q) isthe m-dimensional
array (of dimensions d) that represents the (p, gq) component of the metric.

Keywords

None.

EUCLIDEAN Function 333

Example

Seewave/lib/user/examples/euclidean ex.pro.

See Also
CURVATURES, JACOBIAN, NORMALS

EXEC_ON_SELECT Procedure (UNIX)

Registers callback procedures on input for a vector of logical unit numbers
(LUNS).

Usage
EXEC_ON_SELECT, luns, commands

Input Parameters
luns — Vector of logical unit numbers.

commands— Vector of procedure names. It must have the same number of entries
asthe vector luns.

Keywords

Widget — If present and nonzero, resisters LUNs and commands with the WAV E
Widgets or Widget Toolbox event loop (WwL oop or WtLoop).

Just_reg — If present and nonzero, registers the unit numbers and callback
procedures. Do not wait for any input. Thisis useful when this procedure is used
with widgets.

Description

Thisprocedure checksfor input on all thelogical unit numbers specified intheluns
vector. When thereisinput available on luns (k), the commands (K) procedure is
called with luns (K) asits (only) argument. This procedure never returns; it just
keeps handling callbacks when input is available.

When used with the WAV E Widgets applications (i.e., when the Widget and
Just_reg keywords are used), the callback procedures must have the following
parameters:

334 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

top, data, nparamsg, id, lun, source

Refer to Example 2 for more information.

Example 1

In this example, three servers are started and their output handled using

EXEC ON_SELECT. For simplicity, the servers are al the same program, EX1,
with a different command line argument. The servers occasionally output afour-
byte integer. Thisinput is handled by the callback procedures SERVER1,
SERVER?2, SERVERS. The server isthe following C program:

#include <stdio.h>

#include <string.h>

main (int argc, char *argv[])
{
int tag = atoi(argv[1l]);
for (; ;) {
sleep (5) ;
write(l, &tag, sizeof (tag)) ;

}
The following are the PV=WAVE procedures that use the above server:

PRO SERVER1l, lun
code = 0L
READU, lun, code
PRINT, ’'SERVER1’, code
END

PRO SERVER2, lun
code = 0L
READU, 1lun, code
PRINT, ’'SERVER2’, code
END

PRO SERVER3, lun
code = 0L
READU, lun, code
PRINT, ‘SERVER3’, code
END

PRO EX1
; Start servers.
SPAWN, ‘EX1 1’, Unit = lunl, /Sh

EXEC_ON_SELECT Procedure (UNIX) 335

SPAWN, '‘EX1 2’, Unit lun2, /Sh
SPAWN, ’'EX1 3’, Unit = lun3, /Sh
; Handle servers.

EXEC ON_ SELECT, [lunl, lun2, lun3], $
["SERVER1’, ’'SERVER2’, ’'SERVER3’]

END

Example 2

This example is an extension of the previous example. Again, three servers are
started and their output handled using EXEC_ON_SEL ECT. Theinput is handled
by the callback procedures SERVER1, SERVER2, SERVERS. Now, awidget
menu alsoisdisplayed and serviced. TheEXEC_ON_SELECT procedureregisters
the LUNs and callback procedures with the WAV E Widgets event |oop (WwL oop)
and returns values using the Widget and Just_reg keywords.

When there isinput, WwL oop calls the appropriate callback routine to handle the
input and returns to waiting for more input.
PRO SERVER1, top, data, nparams, id, lun, $
source
code = 0L
READU, lun, code
PRINT, ’SERVER1’, code, lun
END
PRO SERVER2, top, data, nparams, id, lun, $
source
code = 0L
READU, lun, code
PRINT, ’'SERVER2’, code, lun

END

PRO SERVER3, top, data, nparams, id, lun, source
code = OL
READU, lun, code
PRINT, ’'SERVER3’, code, lun

END

PRO MenuCB, wid, index
; Create a menu.
PRINT, ’'Menu Item’, index, ' selected.’
value = WwGetValue (wid)
PRINT, value
END

336 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

PRO Ex2
SPAWN, 'EX1 1’, unit = lunl, /sh
SPAWN, 'EX1 2’, unit = lun2, /sh
SPAWN, ’'EX1 3’, unit = lun3, /sh

top = WwInit(’ex2’,’Test’,layout,/Vertical)

button = WwButtonBox (layout, [’Fonts’, $
'Size’,’'Icons’], 'MenuCB’)

status = WwSetValue (top, /Display)

EXEC_ON SELECT, [lunl, lun2, lun3], $

[SERVER1’,’'SERVER2’,’SERVER3’'], /Widget, $
/Just_reg

WwLoop
CLOSE, lunl, lun2, lun3
END

See Also

ADD_EXEC_ON_SELECT, DROP_EXEC ON_SELECT,
SELECT_READ_LUN

EXECUTE Function

Compiles and executes one or more PV=WAV E statements contained in astring at
run-time.

Usage
result = EXECUTE(string)

Input Parameters

string — A string containing the PV=WAV E command(s) to be compiled and
executed. Cannot contain acommand that starts with either adollar ($), period (.),
or at (@) character; such commands must be entered at the PV=WAVE prompt.

EXECUTE Function 337

Returned Value

result— Returns 1 if the string was successfully compiled and executed; returns O
if an error occurs during either phase.

Keywords

None.

Discussion

When the EXECUTE function is used inside a procedure or function, the compiler
directive ..LOCALS can be used to allocate memory for local variables created at
compile time (see Using the ..LOCALS Compiler Directive in Chapter 9 of the
PV=WAVE Programmer’s Guide).

Example

This example creates a procedure, TABLE, that prints atable giving the results of
evaluating a user-defined function of two variables at the valuesin two vectors. A
user-defined printing procedure is used to actually display the table of values.

Function EXECUTE is used to invoke both the user-defined function of two
variables and the user-defined printing procedure. The name of the functionis
passed to TABLE using keyword Func, and the name of the printing procedureis
passed using keyword Prt_Pro. The following is alisting of TABLE:

PRO TABLE, x, y, Func = func, Prt_Pro = pp

tab = FLTARR(3, n_elements (x))
tab(0, *) = x
tab(1, *) =y
val = EXECUTE(’tab(2, *) = '
+ func + ‘' (tab(0, *), tab(1, *))’)
; Use EXECUTE to invoke the function in the string
; variable func. Assign the result to column 2 of tab.
IF val EQ 1 THEN BEGIN
val = EXECUTE (pp + ', tab’)
; Use EXECUTE to invoke the procedure in the string variable
; pp- This procedure prints the table.
IF val EQ 0 THEN BEGIN

PRINT, "***Error in execution of " + $
"printing procedure! ***"

ENDIF

338 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ENDIF ELSE BEGIN

PRINT, "*** Error in execution of " + "function! **x"
ENDELSE
END

If thisprocedureisplaced inthefiletable . pro inyour working directory, it will
be compiled automatically when it isinvoked. Note that the string concatenation

operator, along with several string literals, are used to construct the statements to
execute using EXECUTE.

The user-defined function requires two arguments, which are the values of the
independent variables of the function. The function should return the result of the
function evaluation. The user-defined printing procedure requires one argument,
which is the two-dimensional table to be printed. The following commands can be
entered at the interactive prompt to create and compile afunction of two variables:

.RUN
- FUNCTION fcn, x, y
- RETURN, x*2 - y"2
- END

The following procedure prints the table:

PRO prt, arr

PRINT, Format = $

" (4x, "x", 13x, "y", 10x, "func(x, y)")’
PRINT, Format = ' (39("-"))’
PRINT, Format = ' (2(£9.4, 5x), £10.4)’, arr
END

If this procedureis placed inthefileprt . pro in your working directory, it will
be compiled automatically when it isinvoked. The following commands can be
used to create the vectors of values at which to evaluate fcn and to invoke TABLE:

x = [1, 2, 3, 4, 5]

y = REVERSE (x)

TABLE, x, y, Func = 'fcn’, Prt_pro = ’'prt’
x vy func (x, y)
1.0000 5.0000 -24.0000
2.0000 4.0000 -12.0000
3.0000 3.0000 0.0000
4.0000 2.0000 12.0000
5.0000 1.0000 24.0000

EXECUTE Function 339

See Also

For more information, see in

EXIT Procedure
Exits PV=WAVE and returns you to the operating system.

Usage
EXIT

Parameters

None.

Keywords

None.

Discussion

All buffers are flushed and open files are closed. The values of all variables that
were not saved are |ost.

See Also
QUIT

340 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

EXP Function

Raises e to the power of the value of the input variable.

Usage
result = EXP(X)

Input Parameters
X — The value to be evaluated.

Returned Value

result — The natural exponential function of x.

Keywords

None.

Discussion
EXPisdefined as:
y=e~x

If x is of double-precision floating-point or complex datatype, EXP yields results
of the same type. All other types yield a single-precision floating-point result.

EXP handles complex valuesin the following way:
exp(x) = complex(e'cos(i), €'sin(i))

wherer isthereal part of x, and i istheimaginary part of x. If xisan array, theresult
has the same dimensions as x, with each element containing the result for the
corresponding element of x.

Example

exp of 1 = EXP(1)

PRINT, exp of 1
2.71828

exp_of 0 = EXP(0)

EXP Function 341

PRINT, exp of 0
1.00000

exp of 10 = EXP(10)

PRINT, exp_of 10
22026.5

See Also

For alist of other transcendental functions, see Transcendental Mathematical
Functions on page 32.

EXPAND Function

Standard Library function that expands an array into higher dimensions.

Usage
result = EXPAND(a, d, i)

Input Parameters
a— An array of ndimensions.
d— A vector specifying the dimensions for the new array.

i — A monotonically increasing vector of nindicesinto d specifying which
of the new dimensions correspond to old dimensions:
d(i) must equal SIZE(a, /Dimensions).

Returned Value

result — An array of dimensions d, the expansion of the input array.

Keywords

None.

Examples

pm, EXPAND([O0,1], [2,3], [0])
pm, EXPAND([0,1], [3,21, [1])

342 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

pm, EXPAND([[0,1,2],([3,4,5]11, [5,3,2], [1,2])

pm, EXPAND([[O,1,2]1,1([3,4,511, [3,5,2], [0,2])
pm, EXPAND([[0,1,2],([3,4,51]1, I[3,2,5], [0,1])
See Also
REBIN, REPLV

EXPON Function

Standard Library function that performs general exponentiation.

Usage
result = EXPON(a, b)

Input Parameters
a— An array (scalar) of any numerica datatype.

b — An array (scalar) of any numerical datatype.

Returned Value

result — A double complex array (scalar) containing the values ab.

Keywords

None.

Example

pm, EXPON([complex(0,1),-1]1, [complex(2,3),0.5])

EXPON Function 343

EXTREMA Function

Standard Library function that finds the local extremain an array.

Usage
result = EXTREMA (array)

Input Parameters

array — The array for which the local extremawill be found.

Returned Value

result — A list containing two vectors of indicesinto array. result(0) containsthe
local minimaand result(1) contains the local maxima

Keywords

None.

Examples

e = EXTREMA([0,1,2,2,2,3,2,1,3]) & pm, e(0), ' ' & pm, e(l)

a = bytscl(randomu(s,5,5), top=9) & pm, a

e EXTREMA(a) & pm, e(0), "' & pm, e(l)

See Also
MAX, MIN

344 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FACTOR Function

Standard Library function that returns the prime factorization of an integer greater
than 1.

Usage
result = FACTOR(i)

Input Parameters
i — An integer greater than 1.

Returned Value

result — Sorted vector of longs containing the prime factorization of i.

Keywords

a— If set, result contains all factors instead of just prime factors.

Examples
pm, FACTOR(12,/a)
pm, FACTOR(12)

See Also
GCD, LCM, PRIME

FACTOR Function 345

FAST GRID2 Function

Returns agridded, 1D array containing y values, given random X, y coordinates
(this function works best with dense data points).

Usage
result = FAST_GRID2(points, grid_x)

Input Parameters
points— A (2, n) array containing the random x, y points to be gridded.

grid x — Thexdimension of thegrid. Thex values are scaled to fit thisdimension.

Returned Value
result — A gridded 1D array containing y values.

Keywords

I ter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood sizeis calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data points fall in the same cell in the gridded
array, then the value of that cell is the average value of all the data points that fall
in that cell.

If theNo_Avg keyword is present and nonzero, however, the value of the cell inthe
gridded array isthe total of all the pointsthat fall in that cell.

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the
maximum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the |eft edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

346 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

FAST_GRID2 uses a neighborhood smoothing technique to interpolate missing
datavalues for 2D gridding. The gridded array returned by FAST_GRID2 is
suitable for use with the PLOT function.

FAST_GRID2 issimilar to GRID_2D. FAST_GRID2, however, works best with
dense data points (more than 1000 pointsto be gridded) and is considerably faster,
but dightly less accurate, than GRID_2D. (GRID_2D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and alarge number of
iterations (more than 16).

Examples
PRO f gridemo2
; This program shows 2D gridding with dense data points.

points = INTARR (2, 10)

points(*, 0) = [1,2]
points(*, 1) = [2,3]
points(*, 2) = [5,5]
points(*, 3) = [8,0]
points(*, 4) = [9,6]
points(*, 5) = [4,9]
points(*, 6) = [7,15]
points(*, 7) = [6,-5]
points(*, 8) = [0,3]
points(*, 9) = [0,-1]

; Set up the data points.
WINDOW, 0, Colors=128
LOADCT, 4
T3D, /Reset
; Set up the viewing window and load the color table.

!Y.Range = [MIN(points), MAX(points)]
; Set the y-axis range for plotting.

yval = FAST GRID2 (points, 256, Iter=0)

PLOT, yval, Color=60

yval FAST GRID2 (points, 256, Iter=150, Nghbr=3)
OPLOT, yval, Color=80

FAST GRID2 (points, 256, Nghbr=77)

yval

FAST_GRID2 Function 347

OPLOT, yval, Color=100

yval = FAST GRID2 (points, 256)

OPLOT, yval, Color=120
; Grid and plot the points using different values for the
; neighborhood and number of iterations.

!Y.Range = [0.0, 0.0]
; Reset the y-axis range to the default value.

END

See Also

FAST_GRID3, FAST_GRID4, GRID_2D, GRID_3D, GRID_4D,
GRIDN, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV=WAVE:GTGRID, contact your Visual Numerics
account representative.

FAST GRID3 Function

Returnsagridded, 2D array containing z values, given random x-, y-, z-coordinates
(this function works best with dense data points).

Usage
result = FAST_GRID3(points, grid_x, grid_y)

Input Parameters
points— A (3, n) array containing the random x, y, z points to be gridded.
grid x — Thexdimension of the grid. The x values are scaled to fit this dimension.

grid y— They dimension of thegrid. They values are scaled to fit this dimension.

Returned Value
result — A gridded, 2D array containing z values.

348 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

I ter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood sizeis calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data points fall in the same cell in the gridded
array, then the value of that cell is the average value of all the data points that fall
in that cell.

If theNo_Avg keyword is present and nonzero, however, the value of the cell inthe
gridded array isthe total of all the pointsthat fall in that cell.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the
maximum x value found in the points(0, *) array to the right edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the
minimum y value found in the points(1, *) array to the bottom edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the
maximum y value found in the points(1, *) array to the top edge of the grid.

Discussion

FAST_GRID3 uses a neighborhood smoothing technique to interpolate missing
datavalues for 3D gridding. The gridded array returned by FAST _GRID3 is
suitable for use with the SURFACE, TV, AND CONTOUR procedures.

FAST_GRID3 issimilar to GRID_3D. FAST_GRID3, however, works best with
dense data points (more than 1000 pointsto be gridded) and is considerably faster,
but dlightly less accurate, than GRID_3D. (GRID_3D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and alarge number of
iterations (more than 16).

FAST_GRID3 Function 349

Examples
PRO f gridemo3
; This program shows 3D gridding with dense data points.

points = RANDOMU (s, 3, 1000)

points (0, *) = points(0, *) * 10.0
points (1, *) = points(l, *) * 10.0
points(*, 0) = [1.7, 1.6, 2.9]
points(*, 1) = [1.4, 1.2, 3.7]
points(*, 2) = [9.8, 9.2, 5.5]
points(*, 3) = [9.8, 8.4, 0.1]
points(*, 4) = [4.8, 9.9, 6.3]
points(*, 5) = [0.2, 9.0, 9.0]
points(*, 6) = [3.1, 7.2, 15.2]
points(*, 7) = [5.6, 6.0, -5.9]
points(*, 8) = [0.3, 0.5, 3.3]
points(*, 9) = [9.7, 0.7, -1.6]

; Generate random data points.

zval = FAST GRID3 (points, 48, 32)
; Grid the resulting data points.
WINDOW, 0, Colors=128
SURFR
SURFACE, zval, Bottom=90, Ax=30.0, Az=30.0, /T3d
; Display the gridded data as a surface in the specified window.

END

See Also

FAST GRID2, FAST GRID4, GRID 2D, GRID_3D,
GRID_4D, GRIDN, GRID SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV=WAVE:GTGRID, contact your Visual Numerics
account representative.

350 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FAST GRID4 Function

Returns a gridded, 3D array containing intensity values, given random 4D coordi-
nates (this function works best with dense data points).

Usage
result = FAST_GRID4(points, grid_x, grid_y, grid 2)

Input Parameters

points— A (4, n) array containing the random 4D pointsto be gridded. Typically,
points(0, *) contains the x values, points(1, *) contains the y values, points(2, *)
contains the z values, and points(3, *) contains the intensity values. (You may,
however, choose to put other variables in these four vectors.)

grid_x — Thex dimension of thegrid. Thex values are scaled to fit thisdimension.
grid_y— They dimension of thegrid. They values are scaled to fit thisdimension.

grid_z— The zdimension of the grid. The z values are scaled to fit this dimension.

Returned Value
result — A gridded, 3D array containing intensity values.

Keywords

Iter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood sizeis calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data pointsfall in the same cell in the gridded
array, then the value of that cell isthe average value of all the data points that fall
in that cell.

If the No_Avg keyword is present and nonzero, however, the value of the cell inthe
gridded array isthe total of all the pointsthat fall in that cell.

FAST_GRID4 Function 351

XMax — The x-coordinate of the right edge of the grid. If omitted, mapsthe
maximum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the
maximum y value found in the points(1, *) array to the top edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the
minimum y value found in the points(Z, *) array to the bottom edge of the grid.

ZMax — The z-coordinate of the front edge of the grid. If omitted, maps the
maximum z value found in the points(2, *) array to the front edge of the grid.

ZMin — The z-coordinate of the back edge of the grid. If omitted, maps the
minimum z value found in the points(2, *) array to the back edge of the grid.

Discussion

FAST_GRID4 uses a neighborhood smoothing technique to interpolate missing
datavalues for 4D gridding. The gridded array returned by FAST_GRID4 is
suitable for use with the SHADE_VOLUME and VOL_REND functions.

FAST_GRID4 issimilar to GRID_4D. FAST_GRID4, however, works best with
dense data points (more than 1000 pointsto be gridded) and is considerably faster,
but dightly less accurate, than GRID_4D. (GRID_4D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and alarge number of
iterations (more than 16).

Examples
See the Examples section in the description of the CENTER_VIEW routine.

See Also
FAST _GRID3, GRID_2D, GRID 3D, GRID 4D, GRIDN, GRID_ SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV=WAVE:GTGRID, contact your Visual Numerics
account representative.

352 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FFT Function
Returns the fast Fourier transform (FFT) for the input variable.

Usage
result = FFT(array, direction)

Input Parameters

array — The array for which the FFT or the reverse FFT is computed. The size of
each dimension may be any positive integer value.

direction — A signed scalar value that determines the direction of the transform,
between the time (or spatial) domain and the frequency domain.

Returned Value

result — The fast Fourier transform of array. The Cooley-Tukey fast Fourier
transform algorithm is used for calculating the FFT.

Keywords

Intleave — A scalar string indicating the type of interleaving of 2D input signals
containing signal-interleaved signals; and 3D input arrays containing image-
interleaved images, or avolume. Valid strings and the corresponding interleaving
methods are:

"signal’ — The 2D input image array arrangement is (x, p) for p
signal-interleaved signals of length x.

"image’ — The 3D image array arrangement is (X, y, p) for p image-
interleaved images of x-by-y.

"volume’ — Theinput image array istreated as a single entity.

Discussion

The FFT function supportsinput arrays composed of multipleimages (multi-layer
band interleaved images) aswell asinput arrays composed of multiplesignals. The
Intleave keyword is used to specify whether the input array is a multi-signal or
multi-image array. When the Intleave keyword is used to indicate multiple signals
or images in this way, each signal or image in the array is operated on separately
and an array of theindividual resultsis returned.

FFT Function 353

The Fourier transform of a scaled-time function is defined by:

F(w) = F(f(t)) = jf(t)e—JW‘dt

—oco

where w relates to the frequency domain, and t relates to the time (space) domain.

The data type of array is converted to complex, with the real part described by
array and theimaginary part set to 0, unlessit isalready complex. The output array
will have the same number and size of dimensions as array.

TIP For more efficient transforms, choose dimensions for array that are a power
of 2.

The direction parameter controls the direction of the transform:
» Set direction to a negative value to transform from space to frequency.
» Set direction to apositive (or zero) value to go from frequency to space.

A normalization factor of 1/n, where nisthe number of pointsin array, is applied
to the transformation when going from space to frequency.

CAUTION Take careto avoid wrap-around artifactswhen filtering and convolving
in the frequency domain. In particular, make sure your images are properly win-
dowed and sampled before applying the Fast Fourier Transform, or false and
misleading values will result.

Example 1

This example shows what an aerial image looks like before and after applying the
FFT function, in conjunction with other functions.

The FFT function is used to transform the image into the frequency domain. For
the example shown in , the following parameters are used:

fft aerial = FFT(aerial img, -1)

FFT places the frequency component into the first element of the image, which
appearsin thelower-left corner. However, it iscustomary to display Fourier spectra
of images with the frequency component in the center of the image. This can be
done using the SHIFT function to move the origin to the center, and the ABS and
ALOG functions to convert the data back into aformat that can be displayed:

354 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-23 PV=WAVE makes it easy to generate the Fourier spectrum for any image. Note
that the diagonal, vertical, and horizontal lines in the Fourier spectrum correspond to the
roads in the original 512-by-512 image, but are perpendicular to them; this is because of the
90-degree phase shift that occurs when moving from the space domain to the frequency
domain.

» Usethe SHIFT function to shift theimage so the point with asubscript of (0,0)
isin the center (assuming theimage is a 512-by-512 image).
» Usethe ALOG function to return the natural logarithm of each pixel.

» Usethe ABS function to calculate the magnitude of each complex-valued
pixel.

Theresult of theinitial FFT operation (££t _aerial) can berunthrough these
other three functions as follows:

display = SHIFT (ALOG (ABS(fft aerial)), 256, 256)

Theresulting variable, display, istheimage displayed on theright in .

Example 2

For an example of an FFT used in windowing, see the description of the
HANNING function.

See Also
HANNING, HILBERT

For background information, see the section Frequency Domain Techniquesin
Chapter 6 of the PV=WAVE User’s Guide.

For details on the Cooley-Tukey Fast Fourier Transform algorithm, see the Special
Issue on FFT in IEEE Audio Transactions, June 1967.

FFT Function 355

FILEPATH Function

Standard Library function that returnsthefile path to use to open afile, when given
afile name within the PV=WAVE distribution.

Optionally, can also return the file name of the user’sterminal and the default
location for temporary files for the current operating system.

Usage
result = FILEPATH(filename)

Input Parameters

filename— A string containing the name of afile. Must bein all lowercase. Do not
enter any device or directory information.

Returned Value
result — The fully qualified file path for filename.

Keywords

Subdirectory — The name of the subdirectory in the PV=WAVE distribution area
in which filename is located.

Terminal — The file name of the user’sterminal.

Tmp— Thepathto thedefault location for temporary filesfor the current operating
system (filenameis atemporary or “scratch” file).

Discussion

FILEPATH isused to get path information for afile. It is not a search facility, but
simply builds the file path by padding information based on the operating system
and keyword information passed into the function in the system variable ! Dir.

FILEPATH does not check for the existence of filename, but rather only contracts
afully qualified pathname. It does account for operating system dependencies.

Thisroutine is useful when you are writing a procedure that will be used on
different platforms that support PV=WAV E and will open filesin the PV=WAVE
distribution.

356 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

UNIX Examples

PRINT, FILEPATH(’wvstartup’)
/usr/local/vni/wave/wvstartup

full name = FILEPATH('errplot’, $

Subdirectory='1ib/std’)

PRINT, full name
/usr/local/vni/wave/lib/std/errplot

PRINT, FILEPATH (’'dummy’,/Terminal)
/dev/tty

PRINT, FILEPATH (’scratchlO’,/Tmp)
/tmp/scratchlo

VMS Examples
PRINT, FILEPATH(’'wvstartup’)
WAVE_DIR: [000000]wvstartup

full name = FILEPATH('errplot’, $
Subdirectory='1ib.std’)

PRINT, full name
WAVE_DIR: [lib.std]errplot

PRINT, FILEPATH (’dummy’,/Terminal)
SYSSOUTPUT :

PRINT, FILEPATH (’scratchl0’,/Tmp)
SYSSLOGIN:scratchl0

Windows Examples

full name = FILEPATH('errplot’, $
Subdirectory='1ib\std’)

PRINT, full name
d:\vni\wave\lib\std\errplot

PRINT, FILEPATH (’scratchl0’,/Tmp)
\tmp\scratchl0

See Also
FINDFILE
System Variables: !Dir, !Path

FILEPATH Function 357

FINDFILE Function

Returns a string array containing the names of all files matching a specified file
description.

Usage
result = FINDFILE(file_specification)

Input Parameters

file_specification — A scalar string used to find files. May contain any valid shell
wildcard characters. If omitted, all filesin the current directory are supplied.

Windows USERS |If afilename or directory name used in the file specification
string contains a space, the entire string must be enclosed in quotes (either single
or double quotes). For example, to find filesin the directory:

'Visual Numerics\wave\xres’, you must usethe command:

files=FINDFILE (’'”\Visual Numerics\wave\xres”')

Returned Value

result — A string array containing the names of all files matching
file_specification. If no files with matching names exist, returnsanull scalar string.

Keywords

Count— A named variableinto which the number of filesfound isplaced. A value
of 0 indicates that no files were found.

Discussion

FINDFILE returns al matched filenames in a string array, one file name per array
element.

UNIX USERS Under UNIX, FINDFILE usesthe shell specified by the SHELL
environment variable (or /bin/shif SHELL isnot defined) to search for any files
matching file_specification.

358 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

OpenVMS USERS Under OpenVMS, FINDFILE uses the command language
interpreter.

Example

This example assumes you have two files, test .c and test_2.c, inyour
current directory.

x=FINDFILE(’*.c’, Count=cntr)
PRINT, x

test.c test _2.c
PRINT, cntr

2

See Also
FILEPATH

FINDGEN Function

Returns a single-precision floating-point array with the specified dimensions.

Usage
result = FINDGEN(dim,, ..., dim,)

Input Parameters

dim;— The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — Aninitialized single-precision, floating-point array. If theresulting array
istreated as a one-dimensional array, then itsinitialization is given by the
following:

n
array(i) = FLOAT(i), for i = 0,1, ...,(HDj—l]
ji=1

FINDGEN Function 359

Keywords

None.

Discussion

Each element of the array is set to the value of its one-dimensional subscript.
Example

This example creates a 4-by-2 single-precision, floating-point array.
a = FINDGEN (4, 2)
; Create single-precision, floating-point array.

INFO, a
A FLOAT = Array (4, 2)

PRINT, a
0.00000 1.00000 2.00000 3.00000
4.00000 5.00000 6.00000 7.00000

See Also
BINDGEN, CINDGEN, DINDGEN, INDGEN, LINDGEN, SINDGEN

FINITE Function

Returns avalue indicating if the input variable is finite or not.

Usage
result = FINITE(X)

Input Parameters

X — A scalar or array expression of single-precision complex, double-precision
complex, single-precision floating point, or double-precision floating point data
type.

Returned Value

result — Returns 1 if x isfinite. Returns O if x isinfinite or not a defined number
(NaN). Undefined numbersresult fromill-defined operations, such asdividing zero
by zero, or taking the logarithm of zero or a negative number.

360 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Example

fmach = MACHINE (/Float)
; Get the single-precision, floating-point machine constants.
a = [fmach.nan, 3.0, fmach.pos inf, 5.2, $
fmach.neg inf]
; Create a five-element vector containing single-precision,
; floating-point NaN, positive infinity, negative infinity, and
; finite values.
b = FINITE(a)
; View result of FINITE.

INFO, b
B BYTE = Array(5)

FOR 1 = 0, 4 DO PRINT, af(i), b(i)
NaN
3.00000
Inf
5.20000
-Inf 0

; Print vectors a and b. Note that vector b contains a 0 when
; NaN or infinity occurs in a. Vector b contains a 1 at the indices
; where vector a contains finite values.

0
1
0
1

See Also
CHECK_MATH, ON_ERROR, ON_IOERROR

For more details, see Chapter 10, Programming with PV-WAVE, in the PV-WAVE
Programmer’s Guide.

FINITE Function 361

FIX Function

Converts an expression to integer data type.

Extracts data from an expression and placesit in ainteger scalar or array.

Usage
result = FIX(expr)

This form is used to convert data.

result = FIX(expr, offset, [dimy, ..., dim,])
This form is used to extract data.

Input Parameters
To convert data:

expr — The expression to be converted.

To extract data:
expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin.

dim; — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value
For data conversion:

result — A copy of expr converted to integer data type.
For data extraction:

result — If offset is used, FIX does not convert result, but allows fields of
data extracted from expr to be treated as integer data. If no dimensionsare
specified, the result is scalar.

Keywords

None.

362 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

CAUTION If thevalues of expr are within the range of along integer, but outside
the range of theinteger datatype (—32,768 to +32,767), amideading result occurs,
without an accompanying message. For example, FIX (66000) erroneously
resultsin 464.

In addition, PV=WAVE does not check for overflow during conversion to integer
datatype. The valuesin expr are smply converted to long integers and the low 16
bits are extracted.

Examples

FIX isused in two ways here. First, FIX isused to convert asingle-precision,
floating- point array to integer. Next, FIX is used to extract a subarray from the
integer array created in the first step.

a = FINDGEN(6) + 0.6

; Create a single precision, floating point vector of length 6. Each
; element has a value equal to its one-dimensional subscript plus 0.6.

PRINT, a
0.600000 1.60000 2.60000 3.60000 4.60000
5.60000

b = FIX(a)
; Convert a to type integer.

INFO, b
B INT = Array (6)
PRINT, b
0 1 2 3 4 5
; Notice that the floating-point numbers in a were truncated by
; FIX.

c = FIX(b, 4, 2, 2)
; Extract the last four elements of b, and place them in a 2-by-2
; integer array.
INFO, c
C INT = Array (2, 2)
PRINT, c
2 3

FIX Function 363

See Also
BYTE, COMPLEX, DOUBLE, FLOAT, LONG, SMALL_INT

For more information on using this function to extract data, see the PV=WAVE
Programmer’s Guide.

FLOAT Function

Converts an expression to single-precision floating-point data type.

Extracts data from an expression and places it in a single-precision floating-point
scalar or array.

Usage

result = FLOAT (expr)
This form is used to convert data.

result = FLOAT (expr, offset, [dimy, ..., dim,])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted, or from which to extract data.

To extract data:
expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction isto begin.

dim, — (optional) The dimensions of theresult. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value

For data conversion:

364 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

result — A copy of expr converted to single-precision floating-point data
type.
For data extraction:

result — If offset isused, FLOAT does not convert result, but allowsfields
of dataextracted from expr to be treated as single-precision floating-point
data. If no dimensions are specified, the result is scalar.

Keywords

None.

Example

In this example, FLOAT isused in two ways. First, FLOAT is used to convert an
integer array to single precision, floating point. Next, FLOAT is used to extract a
subarray from the single-precision array created in the first step.

a = INDGEN(6)

; Create an integer vector of length 6. Each element has a
; value equal to its one-dimensional subscript.

PRINT, a
0 1 2 3 4 5
b = FLOAT (a)
; Convert a to single precision, floating point.

INFO, Db
B FLOAT = Array(6)
PRINT, b
0.00000 1.00000 2.00000 3.00000 4.00000
5.00000

c = FLOAT (b, 8, 2, 2)
; Extract the last four elements of b, and place them in a 2-by-2
; single-precision, floating-point array.

INFO, c

C FLOAT = Array (2, 2)
PRINT, c

2.00000 3.00000

4.00000 5.00000

FLOAT Function 365

See Also
BYTE, COMPLEX, DOUBLE, FIX, LONG

For more information on using this function to extract data, see the PV=WAVE
Programmer’s Guide.

FLTARR Function

Returns a single-precision floating-point vector or array.

Usage
result = FLTARR(dimy, ..., dim,)

Input Parameters

dim, — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A single-precision floating-point vector or array.

Keywords

Nozero — If Nozero is nonzero, this zeroing is not performed, thereby causing
FLTARR to execute faster.

Discussion
Normally, FLTARR sets every element of result to zero.

Example

PRINT, FLTARR(4)
0.00000 0.00000 0.00000 0.00000

PRINT, FLTARR (4, /Nozero)
5.60519e-45 1.98225e-39 2.35149e-38 5.60519e-45

366 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

BYTARR, COMPLEXARR, DBLARR, FINDGEN, INTARR, LONARR,
MAKE_ARRAY, REPLICATE, STRARR

FLUSH Procedure

Causes dl buffered output on the specified file units to be written.

Usage
FLUSH, unit, ..., unit,

Input Parameters

unit; — Thefile units (logical unit numbers) to flush.

Keywords

None.

Discussion

PV=WAV E uses buffered output for reasons of efficiency. Thisleads to rare
occasions where a program needs to be certain that output data are not waitingin a
buffer, but have actually been output. This procedure is handy for such occasions.

See Also
CLOSE, EMPTY

For background information, see Chapter 8, Working with Data Files, in the
PV=WAVE Programmer’s Guide.

FLUSH Procedure 367

FREE_LUN Procedure
Deallocates file units previously alocated with GET_LUN.

Usage
FREE_LUN, unit,, ..., unit,

Input Parameters

unit; — Thefile units (logica unit numbers) to deallocate.

Keywords

None.

Discussion
If the specified file units are open, they are closed prior to the deall ocation process.

Example
Suppose that the first available logica unit number is 100.

GET_LUN, log unit
; Returns the logical unit number to allocate (100).

OPENR, log unit, ’test.dat’
; Open test.dat file for reading.

READF, log unit, my var
; Read the file.

FREE LUN, log_ unit
; Closes the file and frees the logical unit 100.

See Also
CLOSE, GET_LUN, POINT_LUN

For background information, see the section Logical Unit Numbers (LUNS) in
Chapter 8 of the PV"WAVE Programmer’s Guide.

368 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FSTAT Function

Returns an expression containing status information about a specified file unit.

Usage
result = FSTAT (unit)

Input Parameters

unit — Thefile unit (logical unit number) about which information is required.

Returned Value

result — A structure expression of type FSTAT containing status information
about unit.

Keywords

None.

Discussion

FSTAT can be used to get more detailed information, as well asinformation that
can be used from within a PV=WAVE program.

Example 1

To get detailed information about the standard input, enter the command:
INFO, /Structures, FSTAT(0)
This causes the following to be displayed on the screen:

** Structure FSTAT, 10 tags, 32 length:

UNIT LONG 0

NAME STRING '<stdin>"'
OPEN BYTE 1

ISATTY BYTE 1

READ BYTE 1

WRITE BYTE 0
TRANSFER COUNT LONG 0
CUR_PTR LONG 8112
SIZE LONG 0
REC_LEN LONG 0

FSTAT Function 369

Thefields of the FSTAT structure provide the following information:
UNIT — Thefile unit number.
NAME — The name of thefile.

OPEN — Nonzeroif thefileunitisopen. If OPEN iSO, theremaining fields
in FSTAT contain no useful information.

ISATTY — Nonzeroif thefileis actually aterminal instead of a normal
file.

READ — Nonzero if the fileis open for read access.
WRITE — Nonzero if thefileis open for write access.

TRANSFER COUNT — Thenumber of scalar dataitemstransferredinthe
last 1/0 operation on the unit. Thisis set by the following routines: READ,
READF, READU, PRINT, PRINTF, and WRITEU.

TRANSFER_COUNT is useful when you are attempting to recover from
input/output errors.

CUR_PTR — The current position of the file pointer, given in bytes from
the start of thefile. If the deviceisaterminal (ISATTY isnonzero), the
value of CUR_PTR will not contain useful information.

SIZE — Thecurrent length of thefile, in bytes. If the deviceisaterminal
(ISATTY isnonzero), the value of STZE will not contain useful
information.

REC_LEN — OpenVMS-specific record length, in bytes. Thisfield is
always zero under UNIX and Windows.

Example 2

The following function can be used to read single-precision floating point data
from afileinto avector when the number of elementsin thefileisnot known. This
function uses FSTAT to get the size of thefile in bytes and then divides by 4 (the
size of asingle-precision floating-point value) to determine the number of values:

FUNCTION read data, file
; Read_data reads all the floating-point values from file and returns
; the result as a floating-point vector.

OPENR, /Get Lun, unit, file
; Get a unique file unit and open the data file.

370 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

status = FSTAT (unit)
; Retrieve the file status.

data = FLTARR(status.size / 4.0)

; Make an array to hold the input data. The size tag of status gives the number
; of bytes in the file and single-precision floating-point values are four bytes each.

READU, unit, data
; Read the data.

FREE LUN, unit
; Deallocate the file unit and close the file.

RETURN, data
; Return the data.

END

; This is the end of the read_data function.
Assuming that afile named herc . dat exists and contains 10 floating-point
values, the following statements:

a = read _data(’herc.dat’)
; Read floating-point values from herc.dat.

INFO, a
; Show the result.

will produce the following output:

A FLOAT = Array(10)

See Also

CLOSE, FREE_LUN, GET_LUN, OPEN (UNIX/OpenVMS),
OPEN (Windows), POINT_LUN

For more information, see the section Getting Information About Filesin Chapter
8 of the P\V=WAVE Programmer’s Guide.

For background information, see the section Logical Unit Numbers (LUNS) in
Chapter 8 of the P\V"WAVE Programmer’s Guide.

FSTAT Function 371

FUNCT Procedure

Standard Library procedure that evaluates a function that is a sum of a Gaussian
and a second order polynomial.

Usage
FUNCT, x, parms, funcval [, pder]

Input Parameters
X — The values of the independent variable.
parms — The parameters of the equation described in the Discussion section.

funcval — The value of the function, described in the Discussion section, at each

X(0).

Output Parameters

pder — (optional) An N_ELEMENT(X)-by-6 array containing the partial
derivatives of the function. The parameter pder (i, j) isequal to the derivative at the
i ! point with respect to the j ! parameter.

Keywords

None.

Discussion

The FUNCT procedureisused primarily by the CURVEFIT function to fit the sum
of aline and avarying background to actual data. The function to be evaluated is:

e(—zz/z)

F(x) = A, + Ayt A+ A

where z = (x-A,)/(a,)

See Also
CURVEFIT

372 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FUNCT Procedure 373

GAMMA Function

Calculates the gamma function of the input variable.

Usage
result = GAMMA(X)

Input Parameters

X — The expression for which the gamma function will be evaluated. x must eval-
uate to < 34.5; otherwise, afloating-point over-flow will result.

Returned Value

result — The gamma function of x. The result is floating-point, regardless of the
datatypefor x.

Keywords

None.

Discussion

The gamma function can be used in a variety of applications; one exampleisto
solve nonlinear flow problems, such as the creep of metals.

GAMMA isdmefined as.
r'(x) = JtX—Je—Ut x> 0
0

The gamma function has the following properties:
I'(x+1) = xI'(x)
A specia value of the gamma function occurs when x = 1/2:
1) _
3) = =

See Also
ERRORF, GAUSSINT

374 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GAUSSFIT Function

Standard Library function that fits a Gaussian curve through a data set.

Usage
result = GAUSSFIT(x, y [, coefficients])

Input Parameters

X — A real vector containing the values of the independent variable.

y — A real vector containing the values of the dependent variable. Should be the
same length as x.

Output Parameters

coefficients— (optional) A six-element vector with the coefficients A, through As
of the equation described in the Discussion section.

Returned Value

result — A real vector containing the dependent y values of the fitted function.

Keywords

None.

Discussion
The GAUSSFIT function fitsy = F(x), where:
F(X) = Ay * EXP(-22/2) + Ag + AX + Agx?
and
z=27(x- A)I(Ay)

GAUSSFIT callsthe POLY_FIT function to fit a straight line through the data for
the purpose of determining estimates of the height, center, orientation, and width
(approximately 1/e) of the Gaussian function to be fitted to the data.

These estimated parameters—along with the constant, linear, and quadratic
coefficients of the straight line polynomia—are sent to the CURVEFIT function as
trial coefficients of the Gaussian function. CURVEFIT uses a honlinear least-
squares method to fit a function with an arbitrary number of parameters. Any

GAUSSFIT Function 375

nonlinear function can befitted aslong asthe partial derivatives of thefunction are
known or can be approximated.

The peak or minimum of the Gaussian function returned will belocated at the index
of the largest or smallest value, respectively, in they vector.

See Also
CURVEFIT, GAUSSINT, POLY_FIT

GAUSSINT Function

Evaluates the integral of the Gaussian probability function.

Usage
result = GAUSSINT(x)

Input Parameters

X — The expression for which the Gaussian function is computed. Can be a scalar
or array expression of any type except string.

Returned Value

result — Theintegral of the Gaussian probability function. Yields floating-point
results, regardless of the datatype of x. Scalar inputsyield scalar results, and array
inputs yield array results.

Keywords

None.

Discussion

The Gaussian probability function provides agood mathematical model for many
different physically observed random phenomema. It can easily be extended to
handle an arbitrarily large number of random variables. It is most commonly asso-
ciated with the standard bell-shaped curve.

GAUSSINT is defined by:)

. 1 (-t?)/2
Gaussint (X) =— J e dt
A2m

376 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also
ERRORF, GAMMA, GAUSSFIT

GCD Function

Standard Library function that returns the greatest common divisor of some
integers greater than 0.

Usage
result = GCD(i)

Input Parameters
i — An array of integers greater than 0.

Returned Value

result — An integer: the greatest common divisor of the integersi.

Keywords

None.

Examples

pm, GCD([12,20,32])

See Also
FACTOR, LCM, PRIME

GCD Function 377

GETENY Function

Returns the specified equival ence string from the environment of the PV=WAVE
process.

Usage
result = GETENV (name)

Input Parameters

name — The scalar string specifying which equivalence string to return from the
environment.

Returned Value

result — The equivalence string for name. If name does not exist in the environ-
ment, returns anull string.

Keywords

None.

Discussion

OpenVMS USERS OpenVMS does not directly support the concept of environ-
ment variables. Instead, it isemulated in the manner described bel ow, which allows
you to use GETENV portably between UNIX and OpenVMS:

e If nameisoneof HOME, TERM, PATH, or USER, an appropriate responseis
generated. This mimics the most common UNIX environment variables.

* Anattempt ismadeto trandate name as alogical name. All four logical name
tables are searched in the standard order.

* Anattempt is made to translate name as a command-language interpreter
symbol.

UNIX and OpenVMS Examples

This command prints information about the environment:

PRINT, ’Current shell is: ‘', GETENV(’SHELL')

378 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

This example shows how to read data from afile in amanner that will work on
either UNIX or OpenVMS systems:

IF !Version.platform EQ 'VMS’ THEN $
OPENR, u, GETENV(’'WAVE DIR')+ S
' [data]lheartbeat.dat’, /Get Lun $

ELSE S
OPENR, u, '$SWAVE DIR/data/heartbeat.dat’, /Get Lun

Windows Example
This command prints information about the environment:
PRINT, 'Home Drive is: ’, GETENV (’HOMEDRIVE’)

This example shows how to read data using GETENV to obtain part of afile's
pathname:

OPENR, u, GETENV('WAVE DIR')+ S
"\data\heartbeat.dat’, /Get_ lun

See Also
ENVIRONMENT, SETENV

GET KBRD Function

Returns the next character available from standard input (file unit 0).

Usage
result = GET_KBRD(wait)

Input Parameters

wait— If wait iszero, GET_KBRD returnsthenull string if there are no characters
intheterminal typeahead buffer. If it isnonzero, GET_KBRD waitsfor acharacter
to be typed before returning.

Returned Value

result — The next character available from standard input, as a one-character
string.

GET_KBRD Function 379

Keywords

None.

Example

In this example, a character is read from the keyboard, and the character and its
ASCII code are echoed to the screen. The loop isterminated when “q” or “Q” is
typed.

REPEAT BEGIN
; Retrieve keyboard input, placing result in the variable a.
a = GET_KBRD (1)
PRINT, a,’ = ', BYTE(a)
ENDREP UNTIL STRLOWCASE(a) EQ 'q’

; Display the character entered and its associated ASCII code.
; Terminate loop when “q” or “Q” is entered.

GET LUN Procedure

Allocates afile unit from a pool of free units.

Usage
GET_LUN, unit

Input Parameters

unit — A named variable.

Output Parameters

unit — On output, unit is converted into an integer containing the file unit number.

Keywords

None.

Discussion

GET_LUN setsunit to thefirst availablelogical unit number. Thisnumber can then
be used to open afile.

380 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

User-written PV=WAV E functions and procedures should use GET_LUN to
reserve unit numbersto avoid conflicts with other routines. (Similarly, they should
use FREE_LUN to free them when finished).

NOTE The Get_Lun keyword, used with the OPENR, OPENU, and OPENW pro-
cedures, calls GET_LUN to alocate a file unit number.

Example
Suppose that the first available logical unit number is 100.

GET_LUN, log unit
; Returns the logical unit number to allocate (100).

OPENR, log unit, ’test.dat’
; Open test.dat file for reading.

READF, log_ unit, my_var
; Read the file.

FREE_LUN, log_unit
; Closes the file and frees the logical unit 100.

See Also

CLOSE, FREE_LUN, ON_IOERROR, OPEN (UNIX/OpenVMS), OPEN
(Windows), POINT_LUN, READ, WRITEU

For background information, see the section Logical Unit Numbers (LUNS) in
Chapter 8 of the PV"WAVE Programmer’s Guide

GET_LUN Procedure 381

GETNCERR Function

Retrieves the current value of the“ncerr” variable as discussed in the error section
of the NetCDF User’s Guide.

Usage
ncerr = GETNCERR([errstr])

Input Parameters

errstr — (optional) A variable to hold the corresponding error string to the ncerr
variable.

Keywords
Help — List the usage for this function.
Usage — List the usage for this function. (Same as the Help keyword.)

Return Value

ncerr — The current value of the ncerr variable.

Discussion

GETNCERR retrievesthe current value of the “ncerr” variable as discussed in the
Error Handling section of the NetCDF User's Guide. This variable gets set to a
non-zero value when an error occursin acall to the NetCDF functions. A string
describing the error will be returned in the optional “errstr” parameter.

NOTE GETNCERR isonly valid for the NetCDF functionality.

The value of “ncerr” does not change when avalid NetCDF function call is made.

Example
ncid = NCOPEN("foo.nc", NC_NOWRITE)
status = NCCLOSE (ncid)

status = NCREDEF (ncid)
ncredef: 0 is not a valid cdfid

382 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

% NCREDEF: error in HDF return status.
ncerr = GETNCERR (errstr)

INFO, ncerr, errstr
NCERR LONG = 1
ERRSTR STRING = ’'Not a netcdf id’

See Also
GETNCOPTS, SETNCOPTS
Also refer to the NetCDF User’s Guide.

For more information on using the PV=WAV E HDF interface and the calling
sequence for the entire suite of HDF base functions, refer to
Appendix A, The PV-WAVE HDF Interface.

For acompletelist of the HDF convenienceroutines, refer to Chapter 1, Functional
Summary of Routines.

GETNCOPTS Function

Retrieves the current value of the ncopts variable as discussed in the error section
of the NetCDF User’s Guide.

Usage
ncopts = GETNCOPTS()

Input Parameters

None.

Keywords
Help — List the usage for this function.
Usage — List the usage for this function. (Same as the Help keyword.)

Return Value

ncopts — The current value of the “ncopts’ variable.

GETNCOPTS Function 383

Discussion

GETNCOPTS retrieves the current value of the “ncopts’ variable as discussed in
the Error Handling section of the NetCDF User’s Guide. This variable defines the
level of error reporting by the netCDF functions.

NOTE GETNCOPTS isonly valid for the netCDF functionality.

Example
ncopts = GETNCOPTS ()

INFO, ncopts
NCOPTS LONG = 2

; The default value of "ncopts" is set to NC_VERBOSE which is
; equal to 2.

ncid = NCOPEN ("foo.nc", NC_NOWRITE)
status = NCCLOSE (ncid)

status = NCREDEF (ncid)
ncredef: 0 is not a valid cdfid
% NCREDEF: error in HDF return status.

See Also
GETNCERR, SETNCOPTS
Also refer to the NetCDF User’s Guide.

For more information on using the PV=WAVE HDF interface and the calling
sequence for the entire suite of HDF base functions, refer to
Appendix A, The PV-WAVE HDF Interface.

For acompletelist of the HDF convenienceroutines, refer to Chapter 1, Functional
Summary of Routines.

384 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GET_SYMBOL Function (OpenVMS)
Returns the value of an OpenVMS DCL interpreter symbol as a scalar string.

Usage
result = GET_SYMBOL (name)

Input Parameters

name — A scalar string containing the name of the symbol to be translated.

Returned Value

result — A scalar string containing the value of an OpenVMS Digital Command
Languageinterpreter symbol. If the symbol isundefined, the null string is returned.

Keywords
Type — Indicates in which OpenVMS table name is found:

1 Specifiesthelocal symbol table (the default).
2 Specifiesthe globa symboal table.

Example

This example assumes that on your system kermi t isasymbol that pointsto the
KERMIT communications software.

my kermit=GET_ SYMBOL (’'kermit’)
; This converts my_kermit into the string SYS$SYSTEM:KERMIT.

See Also
DELETE_SYMBOL, DELLOG, SETLOG, SET _SYMBOL, TRNLOG

GET_SYMBOL Function (OpenVMS) 385

GREAT_INT Function

Greatest Integer Function. Standard Library function that returns the greatest
integer less than or equal to the passed value. Also known as the Floor Function.

Usage
result = GREAT _INT(values)

Input Parameters

values— An array (scaar).

Returned Value

result — A long array (scalar) of the same dimensions as values:. result(i) isthe
greatest integer less than or equal to values(i).

Keywords

None.

Example

PM, GREAT INT([-0.5,0,0.5])

See Also
SMALL_INT

386 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GRID Function

Standard Library function that generates a uniform grid from irregularly-spaced
data.

Usage
result = GRID(xtmp, ytmp, ztmp)

Input Parameters
xtmp — The vector containing the x-coordinates of the irregularly-spaced input

data.
ytmp — The vector containing the y-coordinates of the irregularly-spaced input
data.
ztmp — The vector containing the z-coordinates of the irregularly-spaced input
data.

Returned Value
result — An array containing the gridded z values applied to a uniform XY grid.

Keywords

Nghbr — The number of neighboring data points to be used in the gridding algo-
rithm. Must bein the range of {3 ... 25}. (Default: 3)

Nx — The number of columnsin the resulting array. Must be < 200.
Ny — The number of rowsin the resulting array. Must be < 200.

Discussion

For PV=WAVE Version 6.0, the previously used GRID procedure algorithm has
been discontinued. GRID now callsthe FAST _GRID3 procedure directly. If you
prefer to use the previously supported GRID algorithm, please contact Visual
Numerics Technical Support.

UNIX and OpenVMS USERS PV-WAVE:GTGRID isan optional software
package for advanced gridding. It gives you additional interpolation and extrapo-
lation power by providing accessto alibrary of gridding routines provided by
Geophysical Techniques, Inc. For information on PV=WAVE:GTGRID, contact
your Visual Numerics account representative.

GRID Function 387

See Also
FAST _GRID3, GRID 3D

GRIDN Function
Standard Library function that grids n dimensional data.

Usage
result = GRIDN(d, i)

Input Parameters

d — An (m,n+1) array of m datapoints in n independent variables and one depen-
dent variable; d(*,n) isthe dependent variable.

i — A vector of nintegers specifying the dimensions of the grid.

Returned Value

result — An n dimensional array of values of the dependent variable on aregular
grid over the independent variables.

Keywords

r — A scalar specifying the order of the weighting function. The dependent vari-
able at agrid point is computed as a weighted average of the variable over all
neighborhood datapoints. The weighting function is 1/€” where e is the Euclidean
distance between the grid point and the datapoint. r defaults to 2

t — A scalar between 0 and 1 specifying neighborhood size. t=1 gives a maximal
neighborhood which includes all datapoints, while lower t valuesyield smaller
neighborhoods. t defaultsto 1

b — A 2 x n array fixing the boundary of the grid. b(0,*) is the minimum corner
and b(1,*) isthe maximum corner. The default extent of the grid isthe same asthat
of the data.

f — The name of a user-supplied procedure describing voids in the independent

variable space (datapoints and gridpoints within these regions are ignored in com-
putation). Input to f isa(p,n) array of p pointsin the independent variable space. f
outputstwo itemswhere thefirst itemisavector of indicesindicating which of the

388 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

p input points are within bounds, and where the second item is a scalar that will
appear as a place holder for the dependent variable at out-of-bounds gridpoints.

¢ — (output) A list of n vectors defining the grid coordinates.

Examples
Seewave/lib/user/examples/gridnexl.pro

wave/lib/user/examples/gridnex2.pro

See Also
FAST GRID2, FAST GRID3, FAST _GRID4, INTERPOLATE

GRID 2D Function

Returnsagridded, 1D array containing y values, given random x,y coordinates (this
function works best with sparse data points).

Usage

result = GRID_2D(points, grid_x)

Input Parameters
points— A (2, n) array containing the random X,y points to be gridded.

grid_x — The size of the vector to return.

Returned Value
result — A gridded, 1D array containing y values.

Keywords

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

A

w=1.0/ (dist Order)
where di st isthe distance to the point. (Default: 2)

XMax — The x-coordinate of theright edge of the grid. If omitted, maps the max-
imum x value found in the points(0, *) array to the right edge of the grid.

GRID_2D Function 389

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the mini-
mum X value found in the points(0, *) array to the |eft edge of the grid.

Discussion

GRID_2D usesan inverse distance averaging technique to interpol ate missing data
valuesfor 2D gridding. The gridded array returned by GRID_2D issuitablefor use

with the PLOT function.

GRID 2Dissimilarto FAST_GRID2. GRID_2D, however, worksbest with sparse
data points (say, less than 1000 pointsto be gridded) and is stable when extrapolat-
ing into large void areas. (FAST_GRID2 works best with dense data points; it is
considerably faster, but slightly less accurate, than GRID_2D.)

Examples
PRO grid demo2

; This program shows 2D gridding with sparse data points.

points = INTARR (2, 10)

points(*, 0) = [1,2]
points(*, 1) = [1,3]
points(*, 2) = [9,5]
points(*, 3) = [8,0]
points(*, 4) = [9,6]
points(*, 5) = [9,9]
points(*, 6) = [7,15]
points(*, 7) = [6,-5]
points(*, 8) = [0,3]
points(*, 9) = [0,-1]

; Generate the data.
WINDOW, 0, Colors=128
LOADCT, 4
T3D, /Reset

; Reset the viewing window and load the color table.

1Y.Range = [MIN(points), MAX(points)]

; Set the y-axis range for plotting.

yval = GRID 2D(points, 256, Order=0.

PLOT, yval, Color=60

yval = GRID 2D(points, 256, Order=1.

OPLOT, yval, Color=80

yval = GRID 2D(points, 256, Order=2.

OPLOT, yval, Color=100

yval = GRID 2D(points, 256, Order=3.

5)

0)

0)

0)

390 Chapter 2: Procedure and Function Reference

PV-WAVE Reference Volume 1

OPLOT, yval, Color=120

; Grid and plot the resulting data.
!Y.Range = [0.0, 0.0]

; Reset the y-axis range to the default value.
END

See Also

FAST_GRID2, FAST_GRIDS, FAST_GRID4, GRID_3D,
GRID_4D, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV=WAVE:GTGRID, contact your Visual Numerics
account representative.

GRID 3D Function

Returnsagridded, 2D array containing zvalues, given random x-, y-, z-coordinates
(this function works best with sparse data points).

Usage
result = GRID_3D(points, grid_x, grid_y)

Input Parameters
points— A (3, n) array containing the random x, y, z pointsto be gridded.
grid_x — Thexdimension of thegrid. The x values are scaled to fit this dimension.

grid_y— They dimension of thegrid. They values are scaled to fit thisdimension.

Returned Value
result — A gridded, 2D array containing z values.

Keywords

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

A

w=1.0/ (dist Order)

GRID_3D Function 391

where di st isthe distance to the point. (Default: 2)

XMax — The x-coordinate of theright edge of the grid. If omitted, maps the max-
imum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the |left edge of the grid. If omitted, maps the mini-
mum X value found in the points(0, *) array to the left edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the maxi-
mum y value found in the points(1, *) array to the top edge of the grid.

YMin — They-coordinate of the bottom edge of the grid. If omitted, mapsthe min-
imum y value found in the points(1, *) array to the bottom edge of the grid.

Discussion

GRID_3D usesan inverse distance averaging techniqueto interpol ate missing data
valuesfor 3D gridding. Thegridded array returned by GRID_3D issuitablefor use
with the SURFACE, TV, and CONTOUR procedures.

GRID_3Dissimilarto FAST_GRID3. GRID_3D, however, worksbest with sparse
datapoints (say, less than 1000 pointsto be gridded) and is stable when extrapol at-
ing into large void areas. (FAST_GRID3 works best with dense data points; it is
considerably faster, but slightly less accurate, than GRID_3D.)

Examples

PRO grid demo3
; This program shows 3D gridding with sparse data points.

points = INTARR (3, 10)
points(*, 0) = [1,1,2]
points(*, 1) = [1,1,3]
points(*, 2) = [9,9,5]
points(*, 3) = [9,8,0]
points(*, 4) = [4,9,6]
points(*, 5) = [0,9,9]
points(*, 6) = [3,7,15]
points(*, 7) = [5,6,-5]
points(*, 8) = [0,0,3]
points(*, 9) = [9,0,-1]

; Generate the data points.

zval = GRID 3D(points, 48, 32, Order=2.0)
; Grid the data points.

WINDOW, 0, Colors=128

392

Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

SURFR
SURFACE, zval, Bottom=90, Ax=30.0, Az=30.0, /T3d

; Display the gridded data as a surface.
END

See Also

FAST GRID2, FAST GRID3, FAST_GRID4, GRID_2D,
GRID_4D, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV=WAVE:GTGRID, contact your Visual Numerics
account representative.

GRID 4D Function

Gridsa 3D array containing intensity values, given random 4D coordinates (this
function works best with sparse data points).

Usage
result = GRID_4D(poaints, grid_x, grid_y, grid 2)

Input Parameters

points— A (4, n) array containing the random 4D pointsto be gridded. Typically,
points(0, *) contains the x values, points(1, *) contains the y values, points(2, *)
containsthe zvalues, and points(3, *) containstheintensity values. (You may, how-
ever, choose to put other variablesin these four vectors.)

grid x — Thex dimension of the grid. The x values are scaled to fit thisdimension.
grid_y— They dimension of thegrid. They values are scaled to fit this dimension.
grid_z— Thezdimension of the grid. The zvalues are scaled to fit this dimension.

Returned Value
result — A gridded, 3D array containing intensity values.

GRID_4D Function 393

Keywords

Order — The order of the weighting functi