
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

P r o g r a m m e r ’ s G u i d e



Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

 i

Table of Contents

Preface ix

What’s in this Manual ix

Conventions Used in this Manual xi

Technical Support xii

Chapter 1: PV-WAVE Programming 1
Where to Find Libraries of PV-WAVE Programs 1

Creating and Running Programs 3

Using PV-WAVE in Runtime Mode 12

Startup Flags 17

Chapter 2: Constants and Variables 19
Constants 19

Variables 24

Chapter 3: Expressions and Operators 29
Operator Precedence 30

Type and Structure of Expressions 31

Structure of Expressions 35

PV-WAVE Operators 37

Chapter 4: Statement Types 47
Components of Statements 47

Assignment Statement 48

Blocks of Statements 53

CASE Statement 55

ii PV-WAVE Programmer’s Guide

Common Block Definition Statement 56

FOR Statement 57

Function Declaration Statement 60

Function Definition Statement 60

GOTO Statement 62

IF Statement 62

Procedure Call Statement 64

Procedure Definition Statement 66

REPEAT Statement 67

WHILE Statement 68

Chapter 5: Using Subscripts with Arrays 71
Syntax 71

“Extra” Dimensions 73

Subscript Ranges 74

Structure of Subarrays 76

Arrays as Subscripts to Other Arrays 78

Combining Array Subscripts with Others 79

Storing Elements with Array Subscripts 81

Memory Order 83

Matrices 83

Chapter 6: Working with Structures 89
Introduction to Structures 89

Defining and Deleting Structures 90

Structure References 94

Creating Arrays of Structures 99

Structure Input and Output 100

Advanced Structure Usage 103

 iii

Working with Lists and Associative Arrays 104

Chapter 7: Working with Text 113
Example String Array 113

Basic String Operations 114

Concatenating Strings 114

String Formatting 115

Converting Strings to Upper or Lower Case 117

Removing White Space from Strings 118

Determining the Length of Strings 119

Manipulating Substrings 120

Using Non-string and Non-scalar Arguments 122

Using Regular Expressions 123

Chapter 8: Working with Data Files 131
Simple Examples of Input and Output 131

Opening and Closing Files 133

Logical Unit Numbers (LUNs) 136

How is the Data File Organized? 139

Types of Input and Output 144

Free Format Input and Output 151

Explicitly Formatted Input and Output 155

Input and Output of Binary Data 174

External Data Representation (XDR) Files 188

Associated Variable Input and Output 194

Miscellaneous File Management Tasks 199

UNIX-Specific Information 203

OpenVMS-Specific Information 204

Windows-Specific Information 210

iv PV-WAVE Programmer’s Guide

Chapter 9: Writing Procedures and Functions 217
Procedure and Function Parameters 218

Compiling Procedures and Functions 222

System Limits and the Compiler 224

Using the ..LOCALS Compiler Directive 226

Parameter Passing Mechanism 228

Procedure or Function Calling Mechanism 229

Error Handling in Procedures 230

The Users’ Library 231

OpenVMS Procedure Libraries 233

Creating OpenVMS Procedure Libraries 234

Chapter 10: Programming with PV-WAVE 237
Description of Error Handling Routines 237

Error Signaling 241

Detection of Math Errors 243

Hardware-dependent Math Error Handling 247

Checking for Parameters 248

Using Program Control Routines 252

Chapter 11: Tips for Efficient Programming 255
Increasing Program Speed 255

Avoid IF Statements for Faster Operation 256

Use Array Operations Whenever Possible 257

Use System Routines for Common Operations 259

Use Constants of the Correct Type 259

Remove Invariant Expressions from Loops 260

Access Large Arrays by Memory Order 260

Be Aware of Virtual Memory 261

 v

Running Out of Virtual Memory? 262

Array Operations are Rewarded 266

Chapter 12: Getting Session Information 267
Using the INFO Procedure 267

Chapter 13: Using the PV-WAVE Debugger 275
The Main PV-WAVE Debugger Window 276

Using the Debugger’s Online Help System 277

Starting the Debugger 277

Saving Your Work and Stopping the Debugger 278

Loading Files into the Debugger 278

Running an Application 280

Detecting Execution Errors 280

Editing the Source File 280

Setting Breakpoints 281

Controlling Program Execution 283

Examining Variables 283

Obtaining Session Information 286

Customizing the Debugger 286

Chapter 14: Creating an OPI Option 287
Introduction 287

Managing Options 288

The Developer Environment 289

Creating An Option 295

Keyword Processing 302

License Management 303

Adding an Option to the PV-WAVE Search Path 303

vi PV-WAVE Programmer’s Guide

Variable Handling Examples 304

Option Programming Interface Language Bindings 307

OPI Function Definitions for PV-WAVE Variables 311

wave_execute 313

wave_compile 314

wave_interp 316

wave_free_WCH 317

wave_assign_num 317

wave_assign_string 317

wave_assign_struct 317

wave_get_WVH 321

wave_get_unWVH 322

wave_free_WVH 323

wvh_name 324

wvh_type 326

wvh_ndims 327

wvh_nelems 328

wvh_dimensions 329

wvh_sizeofdata 330

wave_type_sizeof 330

wvh_is_scalar 332

wvh_is_constant 333

wvh_dataptr 334

wave_wsdh_from_wvh 335

wave_wsdh_from_name 336

wave_free_WSDH 337

wsdh_name 338

wsdh_ntags 339

 vii

wsdh_tagname 339

wsdh_sizeofdata 341

wsdh_offset 341

wsdh_element 342

opi_malloc, opi_free, opi_realloc, opi_calloc 344

C Language Error Handling 345

wave_error 346

wave_onerror 348

wave_is_onerror 349

wave_onerror_continue 349

wave_is_onerror_continue 350

Appendix A: FORTRAN and C Format Strings A-1

What Are Format Strings? A-1

When to Use Format Strings A-2

What to Do if the Data is Formatted Incorrectly A-2

Example — Using C and FORTRAN Format Strings A-2

Using Format Reversion A-4

Group Repeat Specifications A-6

FORTRAN Formats for Data Import and Export A-7

FORTRAN Format Code Descriptions A-9

C Format Strings for Data Import and Export A-19

Appendix B: Modifying Your Environment B-1

Modifying Your PV-WAVE Environment
(UNIX/OpenVMS Only) B-1

Modifying Your PV-WAVE Environment (Windows) B-9

Programmer’s Guide Index 21

viii PV-WAVE Programmer’s Guide

ix

PREFACE

Preface
This manual describes the PV-WAVE programming language in detail. PV-WAVE
uses an intuitive fourth-generation language (4GL) that analyzes and displays data
as you enter commands. With it you can perform complex analysis, visualization,
and application development quickly and interactively.

What’s in this Manual
This manual covers the following topics:

• Chapter 1, PV-WAVE Programming — Provides an overview of the basic
elements of the command language and a brief discussion of its high-level
features.

• Chapter 2, Constants and Variables — Introduces the different types and
structures of variables, constants, and predefined system variables.

• Chapter 3, Expressions and Operators — Explains expressions, which are
one or more variables or constants combined with operators. Expressions are
the basic building blocks of PV-WAVE.

• Chapter 4, Statement Types — Describes the syntax and semantics of
PV-WAVE statements, such as FOR and WHILE loops, CASE statements, and
assignments.

• Chapter 5, Using Subscripts with Arrays — Describes how to use the wide
variety of subscript types, ranges, and arrays available with PV-WAVE.

• Chapter 6, Working with Structures — Explains how to define and use
structures.

x Preface PV-WAVE Programmer’s Guide

• Chapter 7, Working with Text — Discusses the system routines used for string
processing and gives examples.

• Chapter 8, Working with Data Files — Describes how to read and write for-
matted and unformatted data files using the traditional routines such as
WRITEU, WRITEF, READU, and READF. In addition, a collection of new
routines, the DC_READ_* and DC_WRITE_* functions, provide a greatly
simplified alternative to other methods of reading and writing data. These rou-
tines are discussed in this chapter as well.

• Chapter 9, Writing Procedures and Functions — Explains how to write your
own PV-WAVE functions and procedures. Topics such as error handling and
parameter passing are discussed.

• Chapter 10, Programming with PV-WAVE — Discusses routines that are use-
ful when programming PV-WAVE applications.

• Chapter 11, Tips for Efficient Programming — Explains ways to optimize
programs written in the PV-WAVE language.

• Chapter 12, Getting Session Information— Describes how to get information
about the current PV-WAVE session.

• Chapter 13, Using the PV-WAVE Debugger — Explains how to use the
PV-WAVE Debugger, a development environment for creating, testing, and
maintaining VDA applications written in PV-WAVE.

• Chapter 14, Creating an OPI Option — Discusses how to use the Option Pro-
gramming Interface (OPI) to create optional modules that can be loaded
explicitly by any PV-WAVE user.

• Appendix A, FORTRAN and C Format Strings — Discusses the format
strings that you can use to transfer data to and from PV-WAVE.

• Appendix B, Modifying Your Environment — Discusses methods for modi-
fying your PV-WAVE environment for UNIX, OpenVMS, and Windows
systems.

• Programmer’s Guide Index — A subject index with hypertext links to infor-
mation in this manual.

 xi

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are preceded by a semicolon and are shown in this typeface,
immediately below the commands they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type (!Ver-
sion). For better readability, all GUI development routines are shown in mixed
case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error message is
; displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto
; two command lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

xii Preface PV-WAVE Programmer’s Guide

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

 xiii

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

xiv Preface PV-WAVE Programmer’s Guide

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

PV-WAVE Programming
PV-WAVE’s programming environment is versatile and its syntax is easy to learn.
PV-WAVE allows you to concentrate on specialized applications rather than on
system design and routine program development, therefore saving valuable time.
Instant display of intermediate and final results, either in the form of graphs or
images, allows you to deal with the unexpected, to better interpret complex data,
and to create and debug programs in an efficient manner.

Furthermore, PV-WAVE provides several ways for you to develop applications
with a “user-friendly” graphical user interface (GUI).

TIP If you are just getting started with PV-WAVE, we recommend that you work
through the lessons in the PV-WAVE Tutorial. The Tutorial is designed to teach
you the basics of PV-WAVE and prepare you to use PV-WAVE productively.

This chapter discusses methods for creating and running PV-WAVE programs.

Where to Find Libraries of PV-WAVE Programs
Several libraries of procedures and functions written in the PV-WAVE language are
available for your use. You can use the routines in these libraries as they are, or you
can copy or modify the code for use in your own applications.

The following diagram shows the directory structure for PV-WAVE function and
procedure libraries:

2 PV-WAVE Programmer’s Guide

Figure 1-1 The PV-WAVE function and procedure library directory structure.

The rest of this section describes the contents of each of these libraries.

PV-WAVE Function and Procedure Libraries

Library Description

std Routines in the Standard library are fully tested and documented by
Visual Numerics.

guitools Contains an assortment of graphical user interface (GUI) routines.
These routines perform color table modifications, display surface
views, display and manipulate iso-surfaces, and provide access to a
variety of other functions. The GUI routines all begin with Wg (e.g.,
WgSurfaceTool) and are described in the PV-WAVE Reference.

motif
windows

Contains the standard WAVE Widgets routines for Motif and
Microsoft Windows. For information on WAVE Widgets, see the PV-
WAVE Application Developer’s Guide.

user Users’ library routines written and submitted by PV-WAVE users.
This library contains such entries as routines for compressing
images, making pie charts, creating 2D/3D bar graphs, and
displaying 3D scatterplots.
The routines in the Users’ library are not documented in the PV-
WAVE documentation set. For information on a routine in the user
library, read the header of the .pro file for that routine.
For information on adding routines to the Users’ Library, see
Submitting Programs to the Users’ Library on page 232.

vdatools Contains routines used to build VDA Tools. These include the VDA
Tools Manager (Tm) routines, VDA Utilities (Wo), and a set of
prewritten VDA Tools (Wz).

wave

lib

std

guitools motif

user

windows

vdatools

 3

Creating Your Own Library

You can also create your own routines and add them to the library, or create your
own library. In fact, creating your own library is recommended so your routines
aren’t lost when you upgrade to a new version of PV-WAVE.

TIP Be sure to include the new directory in the PV-WAVE search path. You can
do this by modifying the !Path system variable.

Creating and Running Programs
You can create program files using a text editor that can save a file in ASCII format,
and then execute these programs within PV-WAVE. This method is usually how
programs are created because these programs can be saved in files for future use.
The types of programs you can create include:

• interactive command line programs

• functions and procedures

• main programs

• command or batch files

• journal files

NOTE For information on creating applications with a Graphical User Interface
(GUI), refer to PV-WAVE Application Developer’s Guide.

Creating and Running Programs Interactively at the
Command Line

Normally, functions and procedures are created in files so that they can be used in
future sessions. However, occasionally you may need to create a short program or
function that you do not want to save. The .RUN command provides this option.

Here’s an example showing how to create a program interactively using the .RUN
command:

WAVE> .RUN

- FOR I = 0,3 DO BEGIN

- PRINT, 'SQRT of ', I

- PRINT, ' = ', SQRT(I)

4 PV-WAVE Programmer’s Guide

- ENDFOR

- END

% Compiled module: $MAIN$

SQRT OF 0

= 0.00000

SQRT OF 1

= 1.00000

SQRT OF 2

= 1.41421

SQRT OF 3

= 1.73205

The example program calculates and prints out the square root for the numbers 0
through 3.

After typing .RUN and pressing <Return>, a dash (–) prompt is displayed indicat-
ing that you are in program mode. When you have completed the program, you
must enter END as the last line and press <Return>. The message %Compiled
module: $MAIN$ that displays indicates that this is a main program.

Two other types of programs, procedures and functions, can also be created from
the WAVE> prompt using the .RUN command. Here’s an example of how to create
a function that squares a number:

WAVE> .RUN

- FUNCTION SQUARE, NUMBER

- RETURN, NUMBER^2

- END

%Compiled module: SQUARE

After you type END and press <Return>, the message, %Compiled module:
SQUARE, displays. Now, you can use the SQUARE function to calculate the square
of a number.

A program created interactively like this cannot be saved for use in later sessions
unless you have given it a name, such as SQUARE. As long as the program has a
name, you can enter the following command:

SAVE, /Routine

and the routine SQUARE will be saved along with any other routines that you had
already compiled during that session.

 5

Creating and Running a Function or Procedure

Using an ordinary text editor that can save to an ASCII file, you can create files that
define procedures and functions.

NOTE For much more information on writing procedures and functions, see
Chapter 9, Writing Procedures and Functions, Chapter 10, Programming with
PV-WAVE, and Chapter 11, Tips for Efficient Programming. See also Chapter 13,
Using the PV-WAVE Debugger.

Function Program Example

For example, here’s the program listing for a file named square.pro that defines
a function to square a number:

FUNCTION SQUARE, NUMBER

RETURN, NUMBER^2

END

The file automatically compiles and executes when being called at the WAVE>
prompt:

WAVE> x = SQUARE(24) & PRINT, x

% Compiled module: SQUARE.

576

The file automatically compiles and executes only under the following
circumstances:

• if the file is in the !Path or current directory

and

• the filename is the same as the function or procedure name and has a .pro
extension.

If the file is not the same name as the function, then you must use the .RUN
command to compile it. See the section in this manual, WAVE_PATH: Setting Up
a Search Path (UNIX, OpenVMS) on page B-3 for details about search paths.

TIP The PV-WAVE Debugger has a built-in editor that you can use to develop and
run programs. See Chapter 13, Using the PV-WAVE Debugger.

6 PV-WAVE Programmer’s Guide

Creating and Running Main Programs

A main program is a series of statements that are not preceded by a procedure or
function heading (PRO or FUNCTION) and is compiled as a unit. Main programs
can also be created interactively as indicated in the next section. Since there is no
heading, it cannot be called from other routines, and cannot be passed arguments.
When PV-WAVE encounters the END statement in a main program as the result of
a .RUN executive command, it compiles it into the special program named
$MAIN$ and immediately executes it as a unit. Afterwards, it can be executed
again with the .GO executive command.

Main Program Example

For example, a main program file named testfilemight contains the following
statements:

FOR I = 3,5 DO BEGIN

 PRINT, 'Square of ', I, ' = ', I^2

 PRINT, 'Square root of ', I, ' = ', SQRT(I)

ENDFOR

END

To compile and run this main program file named testfile, enter the following
at the WAVE> prompt:

WAVE> .RUN testfile

The results are:

Square of 3 = 9

Square root of 3 = 1.73205

Square of 4 = 16

Square root of 4 = 2.00000

Square of 5 = 25

Square root of 5 = 2.23607

Main Program Compared to Function or Procedure

A main program is a series of statements that is not preceded by a procedure or
function heading (PRO or FUNCTION) and is compiled as a unit. The Editor win-
dow in the Windows version of PV-WAVE is ideal for creating programs like this.

Since a main program has no heading, it cannot be called from other routines, and
it cannot be passed arguments. But it can contain commands that communicate
with other applications – either off-the-shelf commercially-available software, or

 7

custom applications that you or a coworker have written in C. Furthermore, it can
be stored for later use, either by you or by someone else.

For example, suppose that earlier you had saved a PV-WAVE program on a floppy
disk in a file named ditto.pro. Because the program did not include a
FUNCTION or PRO command, it is considered to be a main program. If the disk
drive on your computer is assigned to the A: partition, you can run this program
by entering the following command at the WAVE> prompt:

WAVE> .RUN A:\ditto

If the file had some other filename extension besides .pro, you would have had to
supply that, as well (e.g., ditto.txt or ditto.pgm).

UNIX and OpenVMS USERS For more information about how to enable PV-
WAVE to communicate with other applications, refer to the PV-WAVE Application
Developer’s Guide.

Windows USERS For more information about how to enable PV-WAVE to
communicate with other applications, refer to the PV-WAVE Application Devel-
oper’s Guide.

Main Program Compared to Command File

The differences between a main program and a command file are:

• Main programs must have an END statement, they must be executed with the
.RUN command (or the File=>Run option), and they are executed as a unit.

• Command files do not have an END statement, are executed by typing
@filename, and are executed one line at a time.

For more information about command files, and how they can be used during your
PV-WAVE session, refer to Running a Command (Batch) File on page 8.

Creating and Running a Command (Batch) File

Each line of a command file (also called a batch file) is interpreted exactly as if it
had been entered from the WAVE> prompt. In the command file mode, PV-WAVE
compiles and executes each statement before reading the next statement. This is
different than the interpretation of programs, procedures, and functions compiled
using.RNEW or.RUN (explained previously), in which all statements in a program
are compiled as a single unit and then executed. Labels, as described in Statement

8 PV-WAVE Programmer’s Guide

Labels on page 48, are not allowed in the command file mode because each state-
ment is compiled independently.

Multi-line statements must be continued on the next line using the $ continuation
character, because in interactive mode PV-WAVE terminates every statement not
ending with $ by an END statement. A common mistake is to include a block of
commands in a FOR loop inside a command file:

FOR I = 1,10 DO BEGIN

PRINT, I, ' square root = ', SQRT(I)

PRINT, I, ' square = ', I^2

ENDFOR

In command file mode (this is not the case for functions and procedures), PV-
WAVE compiles and executes each line separately, causing syntax errors in the
example above because no matching ENDFOR is found on the same line as the
BEGIN when the line is compiled. The above example can be made to work by
inserting an ampersand between each statement in the block of statements and by
terminating each line (except the last) with a $:

FOR I = 1,10 DO BEGIN & $

PRINT, I, ' square root = ', SQRT(I) & $

PRINT, I, ' square = ', I^2 & $

ENDFOR

NOTE Both the ampersand and the dollar sign are required on every line of a
command file except the last line. For example, with just an ampersand at the end
of each line, the sample program does not run properly because each line is com-
piled as a separate entity. Hence, a syntax error results when the ENDFOR
statement is compiled because it is seen as a single statement that is not connected
to a FOR statement. With the dollar sign at the end of each line, no compilation
occurs until the ENDFOR statement. For more information on the dollar sign and
ampersand characters, see Special Characters in the PV-WAVE Reference.

Running a Command (Batch) File

A command file is simply a file that contains PV-WAVE executive commands and
statements. Command files are useful for executing commands and procedures that
are commonly used. The commands and statements in the command file are exe-
cuted as if they were entered from the keyboard at the WAVE> prompt.

There are three ways that you can run a command file:

• You can enter the command file mode (run a command file) by entering the fol-
lowing at the WAVE> prompt:

 9

WAVE> @filename

• From a UNIX or OpenVMS prompt, you can enter the filename in conjunction
with the wave command:

wave filename

• If you have created a startup file that has been defined with the environment
variable WAVE_STARTUP, then you can enter the wave command at the
UNIX or OpenVMS prompt to run the command file. See WAVE_STARTUP:
Using a Startup Command File on page B-5 for details.

NOTE You cannot execute a command file and a PV-WAVE command on the
same command line. For instance, if you were to type the following commands at
the WAVE> prompt, the command file will execute, but the PRINT command will
not.

WAVE> @myfile & PRINT, a

PV-WAVE reads commands from the specified file until the end is reached. You can
nest command files by prefacing the name of the new command file with the @
character. The current directory and then all directories in the !Path system variable
are searched for the file. See WAVE_PATH: Setting Up a Search Path (UNIX, Open-
VMS) on page B-3.

OpenVMS USERS A semicolon (;) after the @ character can be interpreted as
an OpenVMS filename in an OpenVMS environment. Surround the semicolon
within blank spaces or tabs to create a comment after the @ sign.

Command file execution may be terminated before the end of the file with control
returning to the interactive mode by calling the STOP procedure from within the
command file. Calling the EXIT procedure from the command file has the usual
effect of terminating PV-WAVE.

Command File Example

An example of a command line that initiates command file execution is:

WAVE> @myfile

; Use myfile for statement and command input. If not in the current
; directory, use the search path !Path.

Possible contents of myfile are shown below:

.RUN PROGA

; Run program A.

10 PV-WAVE Programmer’s Guide

.RUN PROGB

; Run program B.

PRINT, avalue, bvalue

; Print results.

CLOSE,3

; Close file on logical unit 3.

The command file should not contain complete program units such as procedures
or functions. However, complete program units can be compiled and run by using
the .RUN and .RNEW commands in the command files, as shown in the previous
example.

Creating Journal Files

Journaling provides a record of an interactive PV-WAVE session. All text entered
at the WAVE> prompt is entered directly into the file, and any text entered from the
terminal in response to any other input request (such as with the READ procedure)
is recorded as a comment. The result is a file that contains a complete description
of the PV-WAVE session which can be rerun later.

The JOURNAL procedure has the form:

JOURNAL [, param]

where the string parameter param is either a filename (if journaling is not currently
in progress), or an expression to be written to the file (if journaling is active).

The first call to JOURNAL starts the logging process. If no parameter is supplied,
a journal file named wavesave.pro is created. If a filename is specified in
param, the session’s commands will be written to a file of that name.

UNIX USERS Under UNIX, creating a new journal file causes any existing file
with the same name to be lost. This includes the default file wavesave.pro. Use
a filename parameter with the JOURNAL procedure to avoid destroying existing
journal files.

Programmatically Controlling the Journal File

When journaling is not in progress, the value of the system variable !Journal is 0.
When the journal file is opened, the value of this system variable is set to the logical
unit number of the journal file that is opened. This fact can be used by routines to
check if journaling is active. You can send any arbitrary data to this file using the
normal PV-WAVE output routines. In addition, calling JOURNAL with a parame-
ter while journaling is in progress results in the parameter being written to the

 11

journal file as if the PRINTF procedure had been used. In other words, the
statement:

JOURNAL, param

is equivalent to:

PRINTF, !Journal, param

with one exception—the JOURNAL procedure is not logged to the file (only its
output) while a PRINTF statement is logged to the file in addition to its output.

Journaling ends when the JOURNAL procedure is called again without an argu-
ment, or when you exit PV-WAVE.

TIP The journal file can be used later as a command input file to repeat the session,
and it can be edited with any text editor if changes are necessary.

JOURNAL Procedure Example

As an example, consider the following statements:

JOURNAL, 'demo.pro'

; Start journaling to file demo.pro

PRINT, 'Enter a number: '

READ, Z

; Read the user response into variable Z.

JOURNAL, '; This was inserted with JOURNAL.'

; Send a comment to the journal file using the JOURNAL procedure.

PRINTF, !Journal, '; This was inserted ' + $
'with PRINTF.'

; Send another comment using PRINTF.

JOURNAL

; End journaling.

If these statements are executed by a user named bobf on a Sun workstation named
peanut, the resulting journal file demo.pro will look something like:

; SUN WAVE Journal File for bobf@peanut

; Working directory: /home/bobf/wavedemo

; Date: Mon Aug 29 19:38:51 1995

PRINT, 'Enter a number: '

; Enter a number:

READ, Z

12 PV-WAVE Programmer’s Guide

; 100

; This was inserted with JOURNAL.

PRINTF, !Journal, '; This was inserted ' +$

'with PRINTF.'

; This was inserted with PRINTF.

NOTE The input data to the READ statement is shown as a comment. In addition,
the statement to insert the text using JOURNAL does not appear.

Using PV-WAVE in Runtime Mode
PV-WAVE can interpret and execute two kinds of files: source files and compiled
files.

• Source Files — Functions and procedures saved as regular ASCII files with a
.pro filename extension. When a function or procedure of this type is called,
it is first compiled, then executed by PV-WAVE.

• Compiled Files — Functions and procedures that are first compiled in PV-
WAVE, then saved with the COMPILE procedure. By default, such files are
given a .cpr filename extension. Because a file of this type is already com-
piled, it can be executed more quickly than a .pro file.

For detailed information on the COMPILE procedure, see its description in the
PV-WAVE Reference.

This ability to handle both source and compiled files allows PV-WAVE to be run in
two different modes:

• Interactive mode — The mode normally used for PV-WAVE application
development and direct access to the PV-WAVE command line, and, under
Windows, to the Home window and command line.

• Runtime mode — Allows direct execution of PV-WAVE applications com-
posed of compiled routines that have been saved with the COMPILE
procedure. The runtime mode is described in the following sections.

Runtime Mode for UNIX and OpenVMS

NOTE All of the interapplication communication methods described in the PV-
WAVE Application Developer’s Guide are supported in runtime mode except the
unidirectional communication routines wavecmd, waveinit, and waveterm.

 13

Starting PV-WAVE in Runtime Mode (UNIX/OpenVMS)

NOTE To execute a runtime mode (compiled) application, you must have a runt-
ime license. Without a runtime license for PV-WAVE, you will be unable to start
PV-WAVE in runtime mode as described in this section. For information on obtain-
ing a runtime license for PV-WAVE, please contact Visual Numerics.

In runtime mode, you can run a PV-WAVE application directly from the operating
system prompt. When the application is finished running, control returns to the
operating system level.

The application must first be compiled and saved with the COMPILE procedure.
For example, if the procedure called images is compiled, the command:

COMPILE, ’images’

saves a file containing the compiled procedure. By default, this file is named
images.cpr, and it is saved in the current working directory. For detailed infor-
mation on the COMPILE procedure, see its description in the PV-WAVE
Reference.

To execute the compiled, saved application named images.cpr from the oper-
ating system prompt, enter the following command, where -r is a flag that
specifies runtime mode:

wave -r images

When the application is finished running, control is returned to the operating sys-
tem prompt. Note that the .cpr extension is not used when invoking the
application.

You can set the default mode to “runtime” with the environment variable
WAVE_FEATURE_TYPE by typing on a UNIX system:

setenv WAVE_FEATURE_TYPE RT

On a OpenVMS system, enter:

DEFINE WAVE_FEATURE_TYPE RT

Now, the -r flag is not needed, and you can run the application by entering:

wave images

The read-only system variable !Feature_Type allows you to distinguish between
runtime mode and normal, interactive mode. This system variable simply reflects
the current setting of the WAVE_FEATURE_TYPE environment variable (UNIX)
or logical (OpenVMS).

More than one saved compiled file can be executed at a time from the operating
system prompt. Just separate the application filenames with spaces, as follows:

14 PV-WAVE Programmer’s Guide

wave file_1 file_2 file_3 ...

The Search Path for Compiled Routine Files (UNIX/OpenVMS)

Whenever a user-written procedure or function is called, PV-WAVE searches first
for saved, compiled files (.cpr files) with the same name as the called routine. If
a saved, compiled file is not found, PV-WAVE searches for a source file (.pro
file). PV-WAVE searches the current directory and all directories specified in the
!Path directory path.

If you place a .pro file in the current working directory that has the same name
as a .cpr file further along the directory path, the .cpr file will always be found
and executed first. To explicitly execute the .pro file, compile it with the .RUN
command or remove the .cpr file from the !Path directory path.

NOTE The compiled (.cpr) file must have the same name as the called routine.
If the calling name of an application program is images, then the saved, compiled
file must be called images.cpr.

Developing Runtime Applications (UNIX/OpenVMS)

Applications developed for operation in runtime mode must adhere to the
following guidelines:

• Only PV-WAVE routines that are compiled and saved with the COMPILE
command can be executed in runtime mode.

• The startup file pointed to by the WAVE_RT_STARTUP environment variable
(UNIX) or logical (OpenVMS) must be compiled and saved with the
COMPILE command. The startup file must be in a directory pointed to by the
WAVE_PATH environment variable (UNIX) or logical (OpenVMS). For more
information on this startup file, see WAVE_RT_STARTUP: Using a Startup
Procedure in Runtime Mode on page B-6.

• Executive commands .RUN, .RNEW, .GO, .STEP, .SKIP, .CON, and the STOP
routine are not recognized in runtime mode.

• Breakpoints specified with the BREAKPOINT procedure are not recognized
in runtime mode.

• Any errors that occur in runtime mode are reported as usual, and control is
returned to the operating system prompt.

 15

Runtime Mode for Windows

Starting PV-WAVE in Runtime Mode (Windows)

In the Windows version of PV-WAVE, you can run a PV-WAVE application
directly from the DOS prompt in a Windows command shell window. When the
application is finished running, control returns to the operating system level.

The application must first be compiled in PV-WAVE and saved with the COMPILE
procedure. For example, if the procedure called images is compiled in PV-
WAVE, the command:

COMPILE, ’images’

saves a file containing the compiled procedure. By default, this file is named
images.cpr, and it is saved in the current working directory. For detailed infor-
mation on the COMPILE procedure, see its description in the PV-WAVE
Reference.

To execute the compiled, saved application named images.cpr from the oper-
ating system prompt, enter the following command, where -r is a flag that
specifies runtime mode:

wave -r images

When the application is finished running, control is returned to the operating sys-
tem prompt. Note that the .cpr extension is not used when invoking the
application.

You can set the default mode to “runtime” with the environment variable
WAVE_FEATURE_TYPE by typing:

set WAVE_FEATURE_TYPE=RT

Now, the -r flag is not needed, and you can run the application by entering:

wave images

The read-only system variable !Feature_Type allows you to distinguish between
runtime mode and normal, interactive mode. This system variable simply reflects
the current setting of the WAVE_FEATURE_TYPE environment variable.

More than one saved compiled file can be executed at a time from the operating
system prompt. Just separate the application filenames with spaces, as follows:

wave file_1 file_2 file_3 ...

16 PV-WAVE Programmer’s Guide

The Search Path for Compiled Routine Files (Windows)

Whenever a user-written procedure or function is called, PV-WAVE searches first
for saved, compiled files (.cpr files) with the same name as the called routine. If
a saved, compiled file is not found, PV-WAVE searches for a source file (.pro
file). PV-WAVE searches the current directory and all directories specified in the
!Path directory path.

The compiled (.cpr) file must have the same name as the called routine. If the
calling name of an application program is images, then the saved, compiled file
must be called images.cpr.

If you place a .pro file in the current working directory that has the same name
as a .cpr file further along the directory path, the .cpr file will always be found
and executed first. To explicitly execute the .pro file, compile it with the .RUN
command or remove the .cpr file from the !Path directory path.

Developing Runtime Applications (Windows)

Applications developed for operation in PV-WAVE’s runtime mode must adhere to
the following guidelines:

• Only PV-WAVE routines that are compiled and saved with the COMPILE
command can be executed in runtime mode.

• The startup file pointed to by the WAVE_RT_STARTUP environment variable
must be compiled and saved with the COMPILE command. The startup file
must be in a directory pointed to by the WAVE_PATH environment variable.
For more information on this startup file, see WAVE_STARTUP: Using a
Startup Command File on page B-5.

• PV-WAVE executive commands .RUN, .RNEW, .GO, .STEP, .SKIP, .CON,
and the STOP routine are not recognized in runtime mode.

• PV-WAVE breakpoints specified with the BREAKPOINT procedure are not
recognized in runtime mode.

NOTE Any errors that occur in runtime mode are reported as usual, and control is
returned to the operating system prompt.

Runtime Mode for Dynamically Loaded Options

Applications developed with the Option Programming Interface (OPI) can be used
in runtime mode.

 17

To load an OPI application in runtime mode, you must include the startup call for
the option at the beginning of the runtime procedure. For example, the commands
math_init, stat_init, and sigpro_init start PV-WAVE:IMSL Mathe-
matics, PV-WAVE:IMSL Statistics, and the PV-WAVE:Signal Processing Toolkit.

Other Ways to Run the Program

Alternatively, you can achieve the same results by saving the commands in a file,
and then compiling that file using the .RUN command entered at the WAVE>
prompt:

WAVE> .RUN test_06

For details about where to store the file and what to name it, refer to Creating and
Running a Function or Procedure on page 5.

Although the file is named test_06 in this example, it is customary to give the
file a name that matches the name of the function or procedure it contains. Other-
wise, that function or procedure is not as easy to use from other PV-WAVE
programs.

NOTE If the program is a main program (not a named function or procedure), this
program can be executed over and over again using the .GO executive command.
This is true whether you process the file with the .RUN command or the
File=>Run command from the Editor window.

.RUN and .GO are special commands called executive commands. For more details
about using executive commands to control programs, see the PV-WAVE
Reference.

Startup Flags
PV-WAVE has flags for Windows and UNIX that can be used with the “wave”
command for setting initial values for the number of local variables and for the
code size of a WAVE session.

OpenVMS USERS There are no such flags on VMS, but users can get the same
effect by setting environment variables.

wave -lv number — Sets the initial number of local variables to number.

wave -cs number — Sets the initial size of the code area to number of bytes.

18 PV-WAVE Programmer’s Guide

The corresponding environment variables for Windows and UNIX are
WAVE_INIT_LVARS and WAVE_INIT_CODESIZE.

19

CHAPTER

2

Constants and Variables
Constants and variables are combined with operators and functions to produce
results. A constant is a value that does not change during the execution of a pro-
gram. A variable is a location with a name that contains a scalar or array value.
During the execution of a program or an interactive terminal session, numbers,
strings, or arrays may be stored into variables and used in future computations.

Constants
The data type of a constant is determined by its syntax, as explained later in this
section. In PV-WAVE there are eight basic data types, each with its own form of
constant:

• Byte — 8-bit unsigned integers.

• Integer — 16-bit signed integers.

• Longword — 64-bit signed integers on Digital ALPHA UNIX platforms; 32-
bit signed integers on all other platforms.

• Floating-Point — 32-bit single-precision floating-point.

• Double-Precision — 64-bit double-precision floating-point.

• Complex — Real-imaginary pair using single-precision floating-point.

• Double Complex — Real-imaginary pair using double-precision floating-
point.

• String — Zero or more eight-bit characters which are interpreted as text.

20 PV-WAVE Programmer’s Guide

In addition, structures are defined in terms of the eight basic data types. Chapter 6,
Working with Structures, describes the use of structures in detail.

Numeric Constants

This section discusses the different kinds of numeric constants in PV-WAVE and
their syntax. The types of numeric constants are:

• Integer constants.

• Floating-point and double-precision constants.

• Complex constants.

Integer Constants

Numeric constants of different types may be represented by a variety of forms. The
syntax of integer constants is shown in the following table, where “n” represents
one or more digits.

Digits in hexadecimal constants may include the letters A through F, for the deci-
mal numbers 10 through 15. Also, octal constants may be written using the same
style as hexadecimal constants by substituting an O for the X. The following table
illustrates both examples of valid and invalid constants.

Syntax of Integer Constants

Radix Type Form Examples

Decimal Byte nB 12B, 34B

Integer n 12, 425

Long nL 12L, 94L

Hexadecimal Byte 'n'XB '2E'XB

Integer 'n'X '0F'X

Long 'n'XL 'FF'XL

Octal Byte "nB "12B

Integer "n "12

'n'O '377'O

Long "nL "12L

'n'OL '777777'OL

 21

Values of integer constants can range from 0 to 255 for bytes, 0 to ± 32,767 for inte-
gers, and 0 to ± (231 – 1) for longwords. Integers that are initialized with absolute
values greater than 32,767 are automatically typed as longword. Any numeric con-
stant may be preceded by a + or a – sign. To ensure cross-platform compatibility,
place the + or a – sign outside of the apostrophe.

CAUTION There is no checking for integer overflow conditions when performing
integer arithmetic. For example, the statement:

 print, 32767 + 10

will give an incorrect answer and no error message. For more details on overflow
conditions and error checking, see Chapter 10, Programming with PV-WAVE.

Floating-point and Double-precision Constants

Floating-point and double-precision constants may be expressed in conventional or
scientific notation. Any numeric constant that includes the decimal point is a float-
ing-point or double-precision constant.

The syntax of floating-point and double-precision constants is shown in . The nota-
tion sx represents the sign and magnitude of the exponent, for example: E-2.

Double-precision constants are entered in the same manner, replacing the E with a
D. For example, 1.0D0, 1D, 1.D, all represent a double precision one.

Examples of Integer Constants

Correct Incorrect Reason

255 256B Too large, limit is 255

'123'X '123X Unbalanced apostrophe

-'123'X '-123'X Minus sign inside apostrophe

"123 '03G'x Invalid character

'27'OL '27'L No radix

'650'XL 650XL No apostrophes

"124 "129 9 is an invalid octal digit

22 PV-WAVE Programmer’s Guide

Complex Constants

Complex constants contain a real and an imaginary part, which can be of single or
double-precision floating point numbers. The imaginary part may be omitted, in
which case it is assumed to be zero.

The form of a complex constant is:

COMPLEX(real_part, imaginary_part)

or:

COMPLEX(real_part)

For example, COMPLEX(1, 2), is a complex constant with a real part of one, and
an imaginary part of two. COMPLEX(1)is a complex constant with a real part of
one and a zero imaginary component.

The ABS function returns the magnitude of a complex expression. To extract the
real part of a complex expression, use the FLOAT function; to extract the imaginary
part, use the IMAGINARY function. These functions are explained in the PV-
WAVE Reference.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (')
or quotation marks ("). The value of the constant is simply the characters appear-
ing between the leading delimiter (' or ") and the next occurrence of the delimiter.

A double apostrophe (' ') or double quotation mark (" ") is considered to be the
null string; a string containing no characters.

Syntax of Floating-point Constants

Form Example

n . 102.

. n .102

n .n 10.2

n Esx 10E5

n .Esx 10.E–3

.n Esx .1E+12

n .n Esx 2.3E12

 23

An apostrophe or quotation mark may be represented within a string that is delim-
ited by the same character, by two apostrophes, or quotation marks.

For example, 'Don''t' produces Don't; or you can write: "Don't" to pro-
duce the same result.

The following table illustrates valid string constants.

The following table illustrates invalid string constants.

NOTE The entry "129" is interpreted as an illegal octal constant. This is because
a quotation mark character followed by a digit from 0 to 7 represents an octal
numeric constant, not a string, and the character 9 is an illegal octal digit.

Examples of Correct String Constants

String Value Correct

Hi there 'Hi there'

Hi there "Hi there"

Null String ' '

I’m happy "I'm happy"

I’m happy 'I''m happy'

counter 'counter'

129 '129'

Examples of Incorrect String Constants

String Value Incorrect Reason

Hi there 'Hi there" Mismatched delimiters

Null String ' Missing delimiter

I’m happy 'I'm happy' Apostrophe in string

counter ''counter'' Double apostrophe is null string

129 "129" Illegal octal constant

24 PV-WAVE Programmer’s Guide

Representing Nonprintable Characters with UNIX/OpenVMS

The ASCII characters with values less than 32 or greater than 126 do not have
printable representations. Such characters are included in string constants by spec-
ifying their octal or hexadecimal values. A character is specified in octal notation
as a backslash followed by its three-digit octal value, and in hex as a backslash fol-
lowed by thex orX character, followed by its two-digit hexadecimal value. In order
to construct a character string which actually contains a literal backslash character,
it is necessary to enter two consecutive backslash characters. The following table
gives examples of using octal or hexadecimal character notation.

Representing Nonprintable Characters with Windows

The ASCII characters with values less than 32 or greater than 126 do not have
printable representations. To include such “nonprintable” characters in a string,
you can use the STRING function. For example, the bell sound is a nonprintable
ASCII “character”. The way to represent this character in a string is:

s=’This is a bell:’ + STRING(7B)

PRINT, s

; The text is printed and the bell rings.

The notation “7B” indicates that the parameter is of byte data type. The result is
equal to the decimal ASCII code 7, which is the bell character. For more informa-
tion, see Using STRING with Byte Arguments on page 116.

Variables
Variables are named repositories where information is stored. A variable may con-
tain a scalar, vector, multidimensional array, or structure of virtually any size.

Specifying Non-printing Characters

Specified String Actual Contents Comment

'\033[;H\033[2J' '<Esc>[;H<Esc>[2J' Erase — ANSI terminal

'\x1B[;H\X1b[2J' '<Esc>[;H<Esc>[2J' Erase — hex notation

'\007' Bell Ring the bell

'\x08' Backspace Move cursor left

'\014' Formfeed Eject current page

'\\hello' '\hello' Literal backslash

 25

Arrays may contain elements of any of the eight basic data types plus structures.
Variables may be used to store images, spectra, single quantities, names, tables, etc.

The following are the basic data types that variables may have:

• Byte — An eight-bit unsigned integer ranging in value from
0 to 255. Pixels in images are commonly represented as byte data.

• Integer — A 16-bit signed integer ranging from –32,768 to +32,767.

• Longword (Long Integer) — A 32-bit signed integer ranging in value from
approximately minus two billion to plus two billion.

NOTE On Digital ALPHA UNIX platforms only, the longword is 64 bits.

• Floating Point — A 32-bit single-precision number in the range of ±1038, with
7 decimal places of significance.

• Double Precision — A 64-bit double-precision number in the range of ±10308,
with 14 decimal places of significance.

• Complex — A real-imaginary pair of single-precision floating numbers.

• Double Complex — A real-imaginary pair of double-precision floating
numbers.

• String — A sequence of characters, from 0 to 32,767 characters in length. This
data type is used to transfer alphanumeric strings as well as date/time data for
calendar-based analysis.

• Structure — An aggregation made from the basic data types, other structures,
and arrays. Date/time data is handled internally as a structure.

Attributes of Variables

Each variable has a structure and a type, which can change dynamically during the
execution of a program or terminal session.

One important advantage that PV-WAVE has over program languages such as C
and FORTRAN is that you do not need to declare variables. When a variable is
assigned a value, it is automatically declared as a specific data type.

NOTE The dynamic nature of PV-WAVE variables may seem unusual to you if
you are used to strongly typed languages such as PASCAL. For example, in PV-
WAVE you can write a valid statement that assigns a scalar variable to an array
variable, or a string variable to an array variable.

26 PV-WAVE Programmer’s Guide

Structure of Variables

A variable may contain either a single value (a scalar), or it may contain a number
of values of the same type (an array). Note that one-dimensional arrays are often
referred to as vectors in the PV-WAVE documentation. Strings are considered a sin-
gle value and a string array contains a number of fixed-length strings. A single
instance of a structure is considered a scalar.

In addition, a variable may associate an array structure with a file; these variables
are called associated variables. Referencing an associated variable causes data to
be read from or written to the file. Associated variables and the related ASSOC
function are described in Chapter 8, Working with Data Files, and in the PV-WAVE
Reference.

Type of Variables

A variable may have one and only one of the following types: undefined, byte, inte-
ger, longword, floating-point, double-precision floating-point, complex floating-
point, string, or structure.

When a variable appears on the left-hand side of an assignment statement its
attributes are copied from those of the expression on the right-hand side. For exam-
ple, the statement:

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed.

NOTE This is an example of PV-WAVE’s loose data typing. This may be confus-
ing to programmers who are used to strongly typed languages where such an
assignment statement would produce an error.

Initially, every variable has the single attribute of undefined. Attempts to use unde-
fined variables result in an error.

Names of Variables

Variables are named by identifiers that have the following characteristics:

• Each identifier must begin with a letter and may contain from one to 31
characters.

• The second and following characters may be a letter, digit, the underscore char-
acter, or the dollar sign.

 27

• A variable name may not contain embedded spaces, because spaces are con-
sidered to be delimiters.

• Characters after the first 31 are ignored.

• Names are case insensitive, lowercase letters are converted to uppercase; so the
variable name abc is equivalent to the name ABC.

• A variable may not have the same name as a function or reserved word. This
will result in a syntax error. The following are reserved words:

The following table illustrates examples of valid and invalid variable names.

Reserved Words

AND BEGIN CASE COMMON

DO ELSE END ENDCASE

ENDELSE ENDFOR ENDIF ENDREP

ENDWHILE EQ FOR FUNCTION

GE GOTO GT IF

LE LT MOD NE

NOT OF ON_IOERROR OR

PRO REPEAT THEN UNTIL

WHILE XOR

Examples of Variable Names

Correct Incorrect Reason

A EOF Conflicts with function name

A6 6A Doesn’t start with a letter

INIT_STATE _INIT Doesn’t start with a letter

ABC$DEF AB@ Illegal character, @

My_variable ab cd Embedded space

28 PV-WAVE Programmer’s Guide

System Variables

NOTE For detailed information on each system variable, see the PV-WAVE
Reference.

System variables are a special class of predefined variables, available to all pro-
gram units. Their names always begin with the exclamation mark character !.
System variables are used to set the options for plotting, to set various internal
modes, to return error status, and perform other functions.

System variables have a predefined type and structure which cannot be changed.
When an expression is stored into a system variable, it is converted to the type of
the variable if necessary and possible.

Certain system variables are read only, and their values may not be changed. You
may define new system variables with the DEFSYSV procedure.

Examples of system variable references are:

!Prompt = ’Good Morning: ’

; Change the standard WAVE> prompt to a new string.

A = !C

; Store value of the cursor system variable !C in A.

PRINT, ACOS(a) * !Radeg

; Use !Radeg, a system variable that contains a radians-to- degrees
; conversion factor, to convert radians to degrees.

!P.Title = ’Cross Section’

; Set default plot title. !P is a structure, in which Title is a field.

If an error message appears that refers to the system variables !D, !P, !X, !Y, or !Z,
the error message will contain an “expanded” name for the system variable. The
“expanded” names of these system variables are:

• Device for !D

• Plot for !P

• Axis for !X, !Y, and !Z

29

CHAPTER

3

Expressions and Operators
Variables and constants may be combined, using operators and functions, into
expressions. Expressions are constructs that specify how results are to be obtained.
Expressions may be combined with other expressions, variables, and constants to
yield more complex expressions. Unlike FORTRAN or BASIC expressions, PV-
WAVE expressions may be scalar or array-valued.

There is a great variety of operators in PV-WAVE. In addition to the standard oper-
ators — addition, subtraction, multiplication, division, exponentiation, relations
(EQ, NE, GT, etc.), and Boolean arithmetic (AND, OR, NOT and XOR) — opera-
tors exist to find minima and maxima, select scalars and subarrays from arrays
(subscripting), and to concatenate scalars and arrays to form arrays.

Functions, which are operators in themselves, perform operations that are usually
of a more complex nature than those denoted by simple operators. Functions exist
for data smoothing, shifting, transforming, evaluation of transcendental functions,
etc. For a complete description of the PV-WAVE functions and procedures, see the
PV-WAVE Reference.

Expressions may be arguments to functions or procedures. For example:

SIN(A * 3.14159)

evaluates expression A multiplied by the value of π and then applies the trigono-
metric sine function. This result may be used as an operand to form a more complex
expression or as an argument to yet another function. For example:

EXP(SIN(A * 3.14159))

evaluates to e
 sin π a

.

30 PV-WAVE Programmer’s Guide

Operator Precedence
Operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in the following
table:

For example, the expression:

4 + 5 * 2

yields 14 because the multiplication operator has a higher precedence than the
addition operator. Parentheses may be used to override the default evaluation:

(4 + 5) * 2

yields 18 because the expression inside the parentheses is evaluated first. A useful
rule of thumb is when in doubt, parenthesize.

Some examples of expressions are:

Operator Precedence

Priority Operator

First (highest) ^ (exponentiation)

Second * (multiplication)
(matrix multiplication)
/ (division)
MOD (modulus)

Third + (addition)
– (subtraction)
< (minimum)
> (maximum)
NOT (Boolean negation)

Fourth EQ (equality)
NE (not equal)
LE (less than or equal)
LT (less than)
GE (greater than or equal)
GT (greater than)

Fifth AND (Boolean AND)
OR (Boolean OR)
XOR (Boolean exclusive OR)

 31

A

; The value of variable A.

A + 1

; The value of A plus 1.

A < 2 + 1

; The smaller of A or 2, plus 1.

A < 2 * 3

; The smaller of A and 6; The multiplication operator (*) has a higher
; precedence than the minimum operator (<).

2 * SQRT(A)

; Twice the square-root of A.

A + ’Thursday’

; The concatenation of the strings A and ‘Thursday’. An error
; will result if A is not a string.

Type and Structure of Expressions
Every entity in PV-WAVE has an associated type and structure. The eight atomic
data types, in decreasing order of complexity are:

• Complex single-precision floating point

• Complex double-precision floating point

• Double-precision floating point

• Floating point

• Longword integer

• Integer

• Byte

• String

The structure of an expression may be either a scalar or an array. The type and
structure of an expression depend upon the type and structure of its operands.

NOTE Unlike many other languages, the type and structure of expressions in PV-
WAVE cannot be determined until the expression is evaluated. Because of this, care
must be taken when writing programs. For example, a variable may be a scalar byte
variable at one point in a program, while at a later point it may be set to a complex
array.

32 PV-WAVE Programmer’s Guide

PV-WAVE attempts to evaluate expressions containing operands of different types
in the most accurate manner possible. The result of an operation becomes the same
type as the operand with the greatest precedence or potential precision. For exam-
ple, when adding a byte variable to a floating point variable, the byte variable is first
converted to floating point and then added to the floating point variable, yielding a
floating point result. When adding a double-precision variable to a complex vari-
able, the result is complex because the complex type has a higher position in the
hierarchy of data types.

When writing expressions with mixed types, caution must be used to obtain the
desired result. For example, assume the variable A is an integer variable with a
value of 5. The following expressions yield the indicated results:

A / 2

; Evaluates to 2. Integer division is performed. The remainder is
; discarded.

A / 2.

; Evaluates to 2.5. The value of A is first converted to floating point.

A / 2 + 1.

; Evaluates to 3. Integer division is done first because of operator
; precedence. Result is floating point.

A / 2. + 1

; Evaluates to 3.5. Division is done in floating point and then the 1
; is converted to Floating point and added.

NOTE When other types are converted to complex type, the real part of the result
is obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example:

'123' + 123.0

is 246.0,

'123.333' + 33

results in a conversion error because 123.333 is not a valid integer constant. In the
same manner, 'ABC' + 123 also causes a conversion error.

Type Conversion Functions

PV-WAVE provides a set of functions that convert an operand to a specific type.
These functions are useful in many instances, such as forcing the evaluation of an

 33

expression to a certain type, outputting data in a mode compatible with other pro-
grams, etc. The conversion functions are shown in the following table.

For example, the result of the expression FIX(A) is of single-precision (16-bit)
integer type with the same structure (scalar or array) as the variable. The variable
may be of any type. These conversion functions operate on data of any structure:
scalars, vectors, or arrays. If A lies outside the range of single-precision integers
(–32,768 to +32,767) an error will result.

CAUTION The statement:

PRINT, FIX(66000)

prints the value 464, which is 66000216, with no indication that an error occurred.
The FINITE and CHECK_MATH functions test floating point results for valid
numbers, and check the accumulated math error status respectively. For details on
these error-checking functions, see Chapter 10, Programming with PV-WAVE.

The statement:

A = FLOAT(A)

is perfectly legitimate in; its effect is to force the variable A to have Floating point
type.

Special cases of type conversions occur when converting between strings and byte
arrays. The result of the BYTE function applied to a string or string array is a byte
array containing the ASCII codes of the characters of the string. Converting a byte

Type Conversion Functions

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to integer

LONG Convert to longword integer

FLOAT Convert to floating point

DOUBLE Convert to double-precision Floating point

COMPLEX Convert to single-precision complex value

DCOMPLEX Convert to double-precision complex value

34 PV-WAVE Programmer’s Guide

array with the STRING function yields a string array or scalar with one less dimen-
sion than the byte array.

The following table shows examples of conversion on functions.

Extracting Fields

When called with more than a single parameter, the BYTE, COMPLEX,
DCOMPLEX, FIX, LONG, FLOAT and DOUBLE functions create an expression
of the designated type by extracting fields from the input parameter without per-
forming type conversion. The result is that the original binary information is simply
interpreted as being of the new type. This feature is handy for extracting fields of
data of one type embedded in arrays or scalars of another type.

The general form of the type conversion functions is:

CONV_FUNCTION(expression, offset [, dim1, ..., dimn])

Where:

CONV_FUNCTION is the name of one of the conversion functions listed
previously.

expression — An array or scalar expression of any type from which the field is to
be extracted.

offset — Starting byte offset within expression of the field to be extracted. Zero is
the first byte.

Examples of Conversion Functions

Example Result

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

BYTE(1.2) 1

BYTE(–1) 255 (Bytes are modulo 256)

BYTE('01ABC') [48,49,65,66,67]

STRING([65B,66B,67B]) ABC

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2],[4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

 35

dim1, ..., dimn — The dimensions of the result. If these dimensions are omitted, the
result is a scalar. If more than two parameters appear, the third and following
parameters are the dimensions of the resulting array.

For example, assume file unit 1 is open for reading on a file containing 112-byte
binary records containing the fields shown below:

The following program segment will read a record into an array and extract the
fields.

A = BYTARR(112)

; Define array variable to contain record, 112 bytes.

READU, 1, A

; Read the next record.

TIME = DOUBLE(A, 0)

; Extract TIME. Offset = 0, double-precision.

TYPE = BYTE(A, 8)

; Extract TYPE. Starting offset is 8.

COUNT = FIX(A, 9)

; Count, offset = 9, integer.

DATA = FLOAT(A, 11, 20, 5)

; DATA = floating array, dimensions of 20-columns by 5-rows, starting offset is 11 bytes.

QUALITY = BYTE(A, 111)

; Last field, single byte.

Structure of Expressions
Expressions may contain operands with different structures, just as they may con-
tain operands with different types. Structure conversion is independent of type

Example Fields in Open File

Bytes Type Name

0 - 7 Double Time

8 Byte Type

9 - 10 Integer Count

11 - 110 Floating DATA (20-by-5 array)

111 Byte Quality

36 PV-WAVE Programmer’s Guide

conversion. An expression will yield an array result if any of its operands is an
array as shown in the following table:

Eight functions exist to create arrays of the eight types: BYTARR, INTARR,
LONARR, FLTARR, DBLARR, COMPLEXARR, DCOMPLEXARR, and
STRARR. The dimensions of the desired array are the parameters to these func-
tions. The result of FLTARR(5) is a floating point array with one dimension, a
vector, with five elements initialized to zero. FLTARR(50, 100) is a two-
dimensional array, a matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array,
the last 50 points of the larger array are ignored. Array operations are performed
point-by-point without regard to individual dimensions. An operation involving a
scalar and an array always yields an array of identical dimensions. When two
arrays of equal size (number of elements) but different structure are operands, the
result is of the same structure as the first operand.

For example:

FLTARR(4) + FLTARR(1, 4)

yields FLTARR(4).

In the above example, a row vector is added to a column vector and a row vector is
obtained because the operands are the same size causing the result to take the struc-
ture of the first operand.

Here are some examples of expressions involving arrays:

ARR + 1

; Is an array in which each element is equal to the same element in
; ARR plus 1. The result has the same dimensions as ARR. If ARR is
; byte or integer the result is of integer type, otherwise the result is
; the same type as ARR.

ARR1 + ARR2

; Is an array obtained by summing two arrays.

Operands Result

Scalar : Scalar Scalar

Array : Array Array

Scalar : Array Array

Array : Scalar Array

 37

(ARR < 100) * 2

; Is an array in which each element is set to twice the smaller of
; either the corresponding element of ARR or 100.

EXP(ARR / 10.)

; Is an array in which each element is equal to the exponential of the
; same element of ARR divided by 10.

ARR * 3. / MAX(ARR)

; Is an inefficient way of writing the following line:

ARR * (3. / MAX(ARR))

; The more efficient way.

In the inefficient example above, each point in ARR is multiplied by 3 and then
divided by the largest element of ARR. (The MAX function returns the largest ele-
ment of its array argument.) This way of writing the statement requires that each
element of ARR be operated on twice. If (3. / MAX(ARR)) is evaluated with
one division and the result then multiplied by each point in ARR the process
requires approximately half the time.

PV-WAVE Operators
The following types of operators are described in this section:

• Assignment, array, numeric, and string operators

• Boolean operators

• Relational operators

Assignment, Array, and Numeric Operators
Summary of Operators

Operator Meaning

() Expression grouping

= Assignment

^ Exponentiation

* Multiplication

Matrix multiplication

/ Division

38 PV-WAVE Programmer’s Guide

Parentheses ()

Used in grouping of expressions and to enclose subscript and function parameter
lists. Parentheses can be used to override order of operator evaluation as described
above. Examples:

A(X, Y)

; Parentheses enclose subscript lists, if A is defined as a variable.

SIN(ANG * PI / 180.)

; Parentheses enclose function argument lists.

X = (A + 5) / B

; Parentheses specify order of operator evaluation.

Assignment Operator =

The value of the expression on the right side of the equal sign is stored in the
variable, subscript element, or range on the left side. For more information, see
Assignment Statement on page 48.

For example:

A = 32

; Assigns the value of 32 to variable A.

Addition Operator +

Besides arithmetic addition, the addition operator concatenates the strings. For
example:

B = 3 + 6

; Assigns the value of 9 to B.

B = ’John’ + ’ ’ + ’Doe’

; Assigns the string value of “John Doe” to B.

+ Addition and string
concatenation

– Subtraction

MOD Modulo operator

[] Array concatenation

Summary of Operators (Continued)

Operator Meaning

 39

Subtraction Operator –

Besides subtraction, the minus sign is used as the unary negation operator. For
example:

C = 9 - 5

; Assigns the value of 4 to C.

C = - C

; Changes the sign of C.

Multiplication Operator *

Multiplies two operands. For example:

A = 5 * 4

; Assigns the value of 20 to A.

Division Operator /

Divides two operands. For example:

A = 20 / 4

; Assigns the value of 5 to A.

Exponentiation Operator ^

A^B is equal to A to the B power. If B is of integer type, repeated multiplication is
applied, otherwise the formula AB = e B logA is evaluated. 0^0 is undefined for
all types of operands.

Matrix Multiplication Operator #

The rules of linear algebra are followed:

• The two operands must conform in that the second dimension of the first oper-
and must equal the first dimension of the second operand.

• The first dimension of the result is equal to the first dimension of the first oper-
and and the second dimension of the result is equal to the second dimension of
the second operand.

• The type of the result is double complex, single complex, double-precision or
floating point, in decreasing order of precedence. In mixed-mode operations,
the calculations are performed in the mode yielding the greatest precision. If
neither operand is of one of these types, the type of the result is floating point.

If a parameter is a one-dimensional vector, it is interpreted as either a row or col-
umn vector, whichever conforms to the other operand. If both operands are vectors,

40 PV-WAVE Programmer’s Guide

the result of the operation is the outer product of the two vectors. Results in which
the second dimension is equal to 1 (row vectors) are converted to vectors.

Use the TOTAL function to obtain the inner product which is the sum of the prod-
uct of the elements of the vectors. The expression

TOTAL(A * A)

calculates the inner product of the vector A.

For example, the statement:

PRINT, [1, 2, 3, 4] # [1, 2, 3, 4]

prints the outer product of two four-element vectors whose elements are the inte-
gers 1 to 4, or:

NOTE The notion of columns and rows is reversed from that of linear algebra,
although their treatment is consistent. The main reason for this is to allow the X
subscript to appear first when subscripting images, as is the convention. Arrays and
vectors that are operands for the matrix multiplication operator may be transposed,
either by entering them transposed or by using the TRANSPOSE function.

MOD

Modulo operator. I MOD J is equal to the remainder when I is divided by J.
When I or J are floating point, double-precision, or complex,
I MOD J = I - J * [I/J], where the bracketed value is the largest integer
smaller than or equal to the expression in the brackets. For example:

A = 9 MOD 5

; A is set to 4.

A = (ANGLE + B) MOD (2 * PI)

; Compute angle modulo 2π.

Array Concatenation Operators []

Operands enclosed in square brackets and separated by commas are concatenated
to form larger arrays. The expression [A, B] is an array formed by concatenating
the first dimensions of A and B, which may be scalars or arrays.

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

 41

Similarly, [A, B, C] concatenates A, B, and C. The second and third dimensions
may be concatenated by nesting the bracket levels: [[1, 2], [3, 4]] is a
two-by-two array with the first row containing 1 and 2, and the second row contain-
ing 3 and 4. Operands must have compatible dimensions: all dimensions must be
equal except the dimension that is to be concatenated. For example, [2,
INTARR(2, 2)] are incompatible.

For example:

C = [-1, 1, -1]

; Defines C as three-point vector.

C = [C, 12]

; Adds a 12 to the end of C.

C = [12, C]

; Inserts a 12 at the beginning.

PLOT, [ARR1, ARR2]

; Plots ARR2 appended to the end of ARR1.

KER = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]

; Defines a 3-by-3 array.

Boolean Operators

Results of relational expressions may be combined into more complex expressions
using the Boolean operators AND, OR, NOT, and XOR (exclusive OR). The action
of these operators is summarized as follows:

NOT is the Boolean inverse and is a unary operator because it only has one oper-
and. NOT true is false and NOT false is true.

AND

AND is the Boolean operator which results in true whenever both of its operands
are true, otherwise the result is false. Any non-zero value is considered true. For
integer and byte operands, a bitwise AND operation is performed. For operations
on other types, the result is equal to the first operand if the second operand is not
equal to zero or the null string. Otherwise, it is zero or the null string.

Operator (oper) T oper T T oper F F oper F

AND T F F

OR T T F

XOR F T F

42 PV-WAVE Programmer’s Guide

NOT

NOT is the Boolean complement operator. NOT true is false. NOT complements
each bit for integer or byte operands. For floating point operands, the result is 1.0
if the operand is zero, otherwise, the result is zero. NOT is the Boolean inverse and
is a unary operator because it only has one operand. NOT true is false and NOT
false is true.

OR

OR is the Boolean inclusive operator. For integer or byte operands a bitwise inclu-
sive “or” is performed. For example, 3 OR 5 equals 7. For floating point operands
the OR operator returns a 1.0 if neither operand is zero, otherwise zero is the result.

XOR

The Boolean exclusive “or” function. XOR is only valid for integer or byte oper-
ands. XOR returns a one bit if the corresponding bits in the operands are different;
if they are equal, a zero bit is returned.

Examples

When applied to bytes, integers, and longword operands, the Boolean functions
operate on each binary bit.

(1 AND 7)
; Evaluates to 1.

(3 OR 5)
; Evaluates to 7.

(NOT 1)
; Evaluates to –2 (twos-complement arithmetic).

(5 XOR 12)
; Evaluates to 9.

When applied to data types that are not integers, the Boolean operators yield the
following results:

OP1 AND OP2
; Means OP1 if OP2 is true (not zero or not the null string), otherwise
; false (zero or the null string).

OP1 OR OP2
; Means OP2 if OP2 is true, otherwise OP1.

Some examples of relational and Boolean expressions are:

(A LE 50) AND (A GE 25)

 43

; True if A is between 25 and 50. If A is an array the result is an array
; of ones and zeroes.

(A GT 50) OR (A LT 25)

; True if A is less than 25 or A is greater than 50. This expression is
; the inverse of the first example.

ARR AND ’FF’X

; ANDs the hexadecimal constant FF, (255 in decimal) with the
; array ARR. This masks the lower 8 bits and zeroes the upper bits.

Relational Operators

Relational operators apply a relation to two operands and return a logical value of
true or false. The resulting logical value may be used as the predicate in IF,
WHILE, or REPEAT statements or may be combined using Boolean operators with
other logical values to make more complex expressions. For example:

1 EQ 1

 is true, and

1 GT 3

is false.

The rules for evaluating relational expressions with operands of mixed modes are
the same as those given above for arithmetic expressions. For example, in the rela-
tional expression:

(2 EQ 2.0)

Operator Meaning

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

< Comparison to find minimum

> Comparison to find maximum

44 PV-WAVE Programmer’s Guide

the integer 2 is converted to floating point and compared to the Floating point 2.0.
The result of this expression is true which is represented by a floating point 1.0.

The value true is represented by the following:

• An odd, non-zero value for byte, integer and longword integer data types.

• Any non-zero value for single, double-precision and complex floating.

• Any non-null string.

Conversely, false is represented as anything that is not true: zero- or even-valued
integers; zero-valued floating point quantities; and the null string.

The relational operators return a value of 1 for true and zero for false. The type of
the result is determined by the same rules that govern the types of arithmetic
expressions. So,

(100. EQ 100.)

is 1.0, while

(100 EQ 100)

is 1, the integer.

Relational operators may be applied to arrays and the result, which is an array of
ones and zeroes, may be used as an operand. For example, the expression:

ARR * (ARR LE 100)

is an array equal to ARR except that all points greater than 100 have been zeroed.
The expression (ARR LE 100) is an array that contains a 1 where the correspond-
ing element of ARR is less than or equal to 100, and zero otherwise.

Minimum Operator <

The value of A < B is equal to the smaller of A or B. For example:

A = 5 < 3

; Sets A to 3.

ARR = ARR < 100

; Sets all points in array ARR that are larger than 100 to 100.

X = X0 < X1 < X2

; Sets X to smallest operand.

Maximum Operator >

A > B is equal to the larger of A or B. For example:

C = ALOG(D > 1E-6)

 45

; Avoids taking logs of 0 or negative numbers.

PLOT, ARR > 0

; Plots only positive points. Negative points are plotted as zero.

EQ

EQ returns true if its operands are equal, otherwise it is false. For floating point
operands true is 1.000; for integers and bytes, it is 1. For string operands, a zero-
length null string represents false.

GE

GE is the greater than or equal to relational operator. GE returns true if the operand
on the left is greater than or equal to the one on the right.

One use of relational operators is to mask arrays:

A = ARRAY * (ARRAY GE 100)

sets A equal to ARRAY whenever the corresponding element of ARRAY is greater
than or equal to 100; if the element is less than 100, the corresponding element of
A is set to 0.

Strings are compared using the ASCII collating sequence: “ ” is less than “0”, is
less than “9”, is less than “A”, is less than “Z”, is less than “a”, which is less than
“z”.

GT

Greater than relational operator.

LE

Less than or equal to relational operator.

LT

Less than relational operator.

NE

NE is the not equal to relational operator. It is true whenever the operands are not
of equal value.

46 PV-WAVE Programmer’s Guide

47

CHAPTER

4

Statement Types
PV-WAVE programs, procedures, and functions are composed of one or more valid
statements. Most simple statements may be entered in the interactive mode in
response to the WAVE> prompt. The 12 types of statements are:

• Assignment

• Block

• CASE

• Common Block Definition

• FOR

• Function Declaration

• Function Definition

• GOTO

• IF

• Procedure Call

• Procedure Definition

• REPEAT

• WHILE

Components of Statements
Statements may consist of any combination of three parts:

48 PV-WAVE Programmer’s Guide

• A label field

• The statement proper

• A comment field

Spaces and tabs may appear anywhere except in the middle of an identifier or
numeric constant.

Statement Labels

Labels are the destinations of GOTO statements. The label field, which must
appear before the statement or comment, is simply an identifier followed by a
colon. A line may consist of only a label field. Label identifiers, as with variable
names, may consist of from one to 31 alphanumeric characters. The $ (dollar sign)
and _ (underscore) characters may appear after the first character. Some examples
of labels are:

Label_1:

LOOP_BACK: A = 12

I$QUIT: RETURN ;Quit the loop.

; Note that comments are allowed after labels.

Adding Comments

The comment field, which is ignored, begins with a semicolon and continues to the
end of the line. Lines may consist of only a comment field. There are no execution
time or space penalties for comments in PV-WAVE.

Assignment Statement
The assignment statement stores a value in a variable. There are four forms of the
assignment statement. They are described in detail in this section.

The following table summarizes the four forms of assignment statements.

Syntax
Subscript
Structure

Expression
Structure

Effect

Form 1:
Var = expr

none Scalar or Array The expr is stored in Var.

Form 2:
Var(subs) = scalar.5

Scalar Scalar The scalar expression is stored in a
single element of Var.

 49

Form 1
The first (and most basic) form of the assignment statement has the form:

variable = expression
; Stores the value of the expression in the variable.

The old value of the variable, if any, is discarded and the value of the expression is
stored in the variable. The expression on the right side may be of any type or struc-
ture. Some examples of the basic form of the assignment statement are:
MMAX = 100 * X + 2.987

; Stores the value of the expression in MMAX.

NAME = ’MARY’

; Stores the string ‘MARY’ in the variable NAME.

ARR = FLTARR(100)

; ARR is now a 100-element floating-point array.

ARR = ARR(50:*)

; Discards elements 0 to 49 of ARR. ARR is now a 50-element array.

Form 2

The second type of assignment statement has the form:

variable(subscripts) = scalar_expression
; Stores the scalar in an element of the array variable.

Here, a single element of the specified array is set to the value of the scalar expres-
sion. The expression may be of any type and is converted, if necessary, to the type

Array Scalar The scalar expression is stored in the
designated elements of Var.

Form 3:
Var(range) = expr

Range Scalar The scalar is inserted into the
subarray.

Range Array Illegal

Form 4:
Var(subs) = array

Scalar Array The array is inserted in the Var array.

Array Array The elements of the array are stored
in the designated elements of Var.

Syntax
Subscript
Structure

Expression
Structure

Effect

50 PV-WAVE Programmer’s Guide

of the variable. The variable on the left side must be either an array or a file
variable.

DATA(100) = 1.234999

; Sets element (100) of DATA to value.

NAME(INDEX) = ’JOE’

; Stores a string in the array. NAME must be a string array or an error will result.

Using Array Subscripts with the Second Form

If the subscript expression is an array, the scalar value will be stored in the elements
of the array whose subscripts are elements of the subscript array. For example, the
statement:

DATA([3, 5, 7, 9]) = 0

will zero the four specified elements of DATA: DATA(3), DATA(5), DATA(7),
and DATA(9).

The subscript array is converted to longword type if necessary before use. Elements
of the subscript array that are negative or greater than the highest subscript of the
subscripted array are ignored.

The WHERE function may frequently be used to select elements to be changed.
For example, the statement:

DATA(WHERE(DATA LT 0)) = -1

will set all negative values of DATA to –1 without changing the positive values. The
result of the functionWHERE(DATA LT 0) is a vector composed of the subscripts
of the negative values of DATA. Using this vector as a subscript changes all the neg-
ative values to –1 in DATA. Note that if the WHERE function finds no eligible
elements, it returns a 1-element vector equal to –1; using this result as a subscript
vector changes no elements of the subscripted array; it results in a “subscript out of
range” error as negative subscripts are not allowed. For more information on the
WHERE function, see the PV-WAVE Reference.

Form 3

The third type of assignment statement is similar to the second, except the sub-
scripts specify a range in which all elements are set to the scalar expression.

variable(subscript_range) = scalar_expression
Stores the scalar in the elements of the array variable designated by the sub-
script range.

 51

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal
to the size of the dimension minus one may be written as *.

For example, ARR(I:J) denotes those points in the vector ARR with subscripts
between I and J. I must be less than J and greater than or equal to zero. J must
be less than the size of the array dimension. ARR(I:*) denotes the points in ARR
from ARR(I) to the last point.

For more information on subscript ranges, see Subscript Ranges on page 74.

Assuming the variable B is a 512-by-512 byte array, some examples are:

B(*, I) = 1

; Stores ones in the ith row.

B(J, *) = 1

; Stores ones in the jth column.

B(200:220, *) = 0

; Zeroes all the rows of the columns 200 through 220 of the array B.

B(*) = 100.

; Stores the value 100 in all the elements of the array B.

Form 4

The fourth type assignment statement is of the form:

variable(subscripts) = array
Inserts the array expression into the array variable starting at the element des-
ignated by the subscripts.

Note that this form is syntactically identical to the second type of assignment state-
ment, except the expression on the right is an array instead of a scalar. This form
of the assignment statement is used to insert one array into another.

The array expression on the right is inserted into the array appearing on the left side
of the equal sign, starting at the point designated by the subscripts.

For example, to insert the contents of an array called A into an array called B, start-
ing at point B(13,24):

B(13, 24) = A

; If A is a 5-column by 6-row array,
; elements B(13:17, 24:29) will be replaced by the contents of the array A.

Another example moves a subarray from one position to another:

B(100, 200) = B(200:300, 300:400)

52 PV-WAVE Programmer’s Guide

; A subarray of B, specifically the columns 200 to 300 and
; rows 300 to 400, is moved to columns 100 to 200 and rows
; 200 to 300, respectively.

Using Array Subscripts with the Fourth Form

If the subscript expression applied to the variable is an array and an array appears
on the right side of the statement:

var(array) = array

elements from the right side are stored in the elements designated by the subscript
vector. Only those elements of the subscripted variable whose subscripts appear in
the subscript vector are changed.

For example, the statement:

B([2, 4, 6]) = [4, 16, 36]

is equivalent to the following series of assignment statements:

B(2) = 4 & B(4) = 16 & B(6) = 36

Subscript elements are interpreted as if the subscripted variable is a vector. For
example if A is a 10-by-n matrix, the element A(i,j) has the subscript (i+ 10j). The
subscript array is converted to longword type before use if necessary.

As described above for the second type of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript are ignored and
the corresponding element of the array on the right side of the equal sign is skipped.

As another example, assume that the vector DATA contains data elements and that
a data drop-out is denoted by a negative value. In addition, assume that there are
never two or more adjacent drop-outs.

The following statements will replace all drop-outs with the average of the two
adjacent good points:

BAD = WHERE(DATA LT 0)

; Subscript vector of drop-outs.

DATA(BAD) = (DATA(BAD - 1) + DATA(BAD + 1)) / 2

; Replace drop-outs with average of previous and next point.

In this example:

• Elements of the vector BAD are set to the subscripts of the points of DATA that
are drop-outs using the WHERE function. The WHERE function returns a vec-
tor containing the subscripts of the non-zero elements of its (DATA LT 0).
This Boolean expression is a vector that is non-zero where the elements of
DATA are negative and is zero if positive.

 53

• The expression DATA(BAD – 1) is a vector which contains the subscripts
of the points immediately preceding the drop-outs, while similarly, the expres-
sion DATA(BAD + 1) is a vector containing the subscripts of the points
immediately after the drop-outs.

• The average of these two vectors is stored in DATA(BAD)— the points that
originally contained drop-outs.

Associated Variables in Assignment Statements

A special case occurs when using an associated file variable in an assignment state-
ment. For additional information regarding the ASSOC function, see Chapter 8,
Working with Data Files. When a file variable is referenced, the last (and possibly
only) subscript denotes the record number of the array within the file. This last sub-
script must be a simple subscript. Other subscripts and subscript ranges, except the
last, have the same meaning as when used with normal array variables.

An implicit extraction of an element or subarray in a data record may also be
performed:

A = ASSOC(1, FLTARR(200))

; Variable A associates the file open on unit 1 with records of
; 200-element floating point vectors.

X = A(0:99, 2)

; X is set to the first 100 points of record number 2, the third record of the file.

A(23, 16) = 12

; Sets the 24th point of record 16 to 12.

A(10, 12) = A(10:*, 12) + 1

; Points 10 to 199 of record 12 are incremented. Points 0 to 9 of
; that record remain unchanged.

Blocks of Statements
BEGIN

Statement1
...

Statementn

END

A block of statements is simply a group of statements that are treated as a single
statement. Blocks are necessary when more than one statement is the subject of a
conditional or repetitive statement, as in the FOR, WHILE, and IF statements.

54 PV-WAVE Programmer’s Guide

In general, the format of a FOR statement with a block subject is:

FOR variable = expression, expression DO BEGIN

statement
1

statement
2

...

...

...
statement

n

ENDFOR

All the statements between the BEGIN and the ENDFOR are the subject of the
FOR statement. The group of statements is executed as a single statement and is
considered to be a compound statement. Blocks may include other blocks.

Syntactically, a block of statements is composed of one or more statements of any
type, started by a BEGIN identifier and ended by an END identifier. PV-WAVE
allows the use of blocks wherever a single statement is allowed. Blocks may also
be nested within other blocks.

For example, the process of reversing an array in place might be written:

FOR I = 0, (N - 1) / 2 DO BEGIN

T = ARR(I)

ARR(I) = ARR(N - I - 1)

ARR(N – I – 1) = T

ENDFOR

The three statements between the BEGIN and ENDFOR are the subject of the FOR
statement. Each statement is executed one time during each iteration of the loop. If
the statements had not been enclosed in a block, only the first statement
(T = ARR(I)) would have been executed each iteration, and the remaining two
statements would have each been executed only once after the termination of the
FOR statement.

To ensure proper nesting of blocks of statements, the END terminating the block
may be followed by the block type as shown in the following table. The compiler
checks the end of each block, comparing it with the type of the enclosing statement.

NOTE Any block may be terminated by the generic END, although no type check-
ing will be performed.

 55

Listings produced by the PV-WAVE compiler indent each block four spaces to the
right of the previous level to improve the legibility of the program structure.

CASE Statement
CASE expression OF

expression: statement
...

...

expression: statement
ELSE: statement

ENDCASE

The CASE statement is used to select one, and only one, statement for execution
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. Each statement that is part of a
CASE statement is preceded by an expression which is compared to the value of
the selector expression. If a match is found, the statement is executed and control
resumes directly below the CASE statement.

The ELSE clause of the CASE statement is optional. If included, it must be the last
clause in the CASE statement. The statement after the ELSE is executed only if
none of the preceding statement expressions match. If the ELSE is not included and
none of the values match, an error will occur and program execution will stop.

An example of the CASE statement is:

CASE NAME OF

’LINDA’: PRINT, ’SISTER’

End Statements

End Statement Usage

ENDCASE CASE statement

ENDELSE IF statement, ELSE clause

ENDFOR FOR statement

ENDIF IF statement, THEN clause

ENDREP REPEAT statement

ENDWHILE WHILE statement

56 PV-WAVE Programmer’s Guide

; Executed if NAME = 'LINDA'

’JOHN’: PRINT, ’BROTHER’

; Executed if NAME = 'JOHN'

’HARRY’: PRINT, ’STEP-BROTHER’

ELSE: PRINT, ’NOT A SIBLING’

; Executed if no matches.

ENDCASE

Another example, below, shows the CASE statement with the number 1 as the
selector expression of the CASE. 1 is equivalent to true and is matched against each
of the conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
(X GT 50) AND (X LE 100): Y = 13 * X + 4
(X LE 200): BEGIN
Y = 14 * X - 5
Z = X + Y
END
ELSE: PRINT, ’X has illegal va1ue’

ENDCASE

In the CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Common Block Definition Statement

COMMON block_name, var1, var2,..., varn

The Common Block Definition statement creates a Common Block with the desig-
nated name (up to 31 characters long) and places the variables whose names follow
into that block. Variables defined in a Common Block may be referenced by any
program unit that declares that Common Block.

A Common Block Definition statement is useful when there are variables which
need to be accessed by several procedures. Any program unit referencing a Com-
mon Block may access variables in the block as though they were local variables.
Variables in a Common statement have a global scope within procedures defining
the same Common Block. Unlike local variables, variables in Common Blocks are
not destroyed when a procedure is exited.

The number of variables appearing in the Common Block Definition statement
determines the size of the Common Block. The first program unit (main program,
function, or procedure) defining the Common Block sets the size of the Common

 57

Block, which is fixed. Other program units may reference the Common Block with
the same or fewer number of variables.

Common Blocks share the same space for all procedures. Common Block variables
are matched variable to variable, unlike FORTRAN, where storage locations are
matched. The third variable in a given Common Block will always be the same as
the third variable in all declarations of the Common Block regardless of the size,
type or structure of the preceding variables.

The two procedures in the following example show how variables defined in Com-
mon Blocks are shared:

PRO ADD, A
COMMON SHARE1, X, Y, Z, Q, R
A = X + Y + Z + Q + R
PRINT, X, Y, Z, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHARE1, A, B, C, D
T = A - B - C - D
PRINT, A, B, C, D, T
RETURN

END

The variables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD is not used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an
error would occur when the COMMON definition in ADD was compiled. This is
because SUB has already declared the size of the Common Block, SHARE1, which
may not be extended.

Variables in Common Blocks may be of any type and may be used in the same man-
ner as normal variables. Variables appearing as parameters may not be used in
Common Blocks. There are no restrictions in regard to the number of Common
Blocks used, although each Common Block uses dynamic memory.

FOR Statement
There are two basic forms of the FOR statement:

FOR var = expr1, expr2 DO statement
Form 1: Increment of 1.

FOR var = expr1, expr2, expr3 DO statement

58 PV-WAVE Programmer’s Guide

Form 2: Variable increment.

The FOR statement is used to execute one or more statements repeatedly while
incrementing or decrementing a variable each repetition until a condition is met. It
is analogous to the DO statement in FORTRAN. There are two types of FOR state-
ments; one with an implicit increment of 1, and the other with an explicit
increment. If the condition is not met the first time the FOR statement is executed,
the subject statement is not executed.

NOTE The data type of the statement and the index variable are determined by the
type of the initial value expression.

Form 1: Implicit Increment

The FOR statement with an implicit increment of 1 is written as follows:

FOR var = expr1, expr2 DO statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The statement is executed, and the index variable is incremented
by one, until the index variable is larger than the second expression. This second
expression is called the limit expression.

Complex limit and increment expressions are converted to floating-point type.
expr2 is not evaluated as a Boolean expression with a True/False result, but rather
directly compared to the index variable I with True returned only if I ≤ expr2 .

An example of a FOR statement is:

FOR I = 1, 4 DO PRINT, I, I^2

which produces the output:

1 1

2 4

3 9

4 16

The index variable I is first set to an integer variable with a value of 1. The call to
the PRINT procedure is executed, then the index is incremented by 1. This is
repeated until the value of I is greater than 4, when execution continues at the state-
ment following the FOR statement.

 59

The next example displays the use of a block structure in place of the single state-
ment for the subject of the FOR statement. The example is a common process used
for computing a count-density histogram.

FOR K = 0, N - 1 DO BEGIN
C = A(K)
HIST(C) = HIST(C) + 1

ENDFOR

NOTE A HISTOGRAM function is provided in the Standard Library.

Another example is:

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

In this example, X is set to a floating-point variable and steps through the values
(1.5, 2.5, ..., 10.5).

The indexing variables and expressions may be integer, longword integer, floating-
point, or double-precision. The type of the index variable is determined by the type
of the first expression after the = character.

If you need to use very large integers in a FOR loop condition, be sure to designate
them as longword in the FOR loop statement. For example:

FOR i=300000L, 700000L DO BEGIN
. . .

ENDFOR

Form 2: Explicit Increment

The format of the second type of FOR statement is:

FOR var = expr1, expr2, expr3 DO statement

The first two expressions describe the range of numbers the variable will assume.
The third expression specifies the increment of the index variable. A negative incre-
ment allows the index variable to step downward. In this case, the first expression
must have a value greater than that of the second expression. If it does not, the state-
ment will not be executed.

The following examples demonstrate the second type of FOR statement:

FOR K = 100.0, 1.0, -1 DO ...

; Decrement K has the values: 100., 99., ...,2., 1.

FOR LOOP = 0, 1023, 2 DO ...

; Increments by 2. LOOP has the values 0, 2, 4,..., 1022.

60 PV-WAVE Programmer’s Guide

FOR MID = BOTTOM, TOP, (TOP - BOTTOM) / 4.0 DO ...

; Divides range from BOTTOM to TOP by 4.

CAUTION If the value of the increment expression is zero an infinite loop will
occur. A common mistake resulting in an infinite loop is a statement similar to the
following:

FOR X = 0, 1, .1 DO ...

The variable X is first defined as an integer variable because the initial value expres-
sion is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer type is zero. The correct form of the statement is:

FOR X = 0., 1, .1 DO ...

which defines X as a floating-point variable.

Function Declaration Statement

DECLARE FUNC, name1, name2, ..., namen

You can declare a function in the program unit in which the function appears. For-
ward declaration of the function (a declaration that occurs before the function
definition) allows the compiler to distinguish between function calls and array ele-
ment references, which have a similar syntax. As a result, program compilation is
more efficient for that particular program unit.

A backward declaration (a declaration that occurs after the function definition)
allows the compiler to recognize recursive calls to a function that is defined later in
the program unit.

The first call to a function also has the effect of declaring that function and increas-
ing the efficiency of the compiler for consecutive calls to that function.

Function Definition Statement

FUNCTION function_name, p1, p2, ..., pn

A function may be defined as a program unit containing one or more statements
and which returns a value. Once a function has been defined, references to the func-

 61

tion cause the program unit to be executed. All functions return a function value
which is given as a parameter in the RETURN statement used to exit the function.

Briefly the format of a function definition is, where name can contain up to 31
characters:

FUNCTION name, parameter1,..., parametern

Statement1

Statement2

...

...
RETURN, expression

END

For example, to define a function called AVERAGE that returns the average value
of an array:

FUNCTION AVERAGE, ARR

RETURN, TOTAL(ARR)/N_ELEMENTS(ARR)

END

Once the function AVERAGE has been defined, it is executed by entering the func-
tion name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement:

PRINT, AVERAGE(X^2)

squares the array X, passes this result to the AVERAGE function, and prints the
result.

Functions can take positional and keyword parameters. For more information on
parameters and parameter passing, see Positional Parameters and Keyword Param-
eters on page 65 and More On Parameters on page 66.

For more information on writing functions, see Chapter 9, Writing Procedures and
Functions.

Automatic Compilation of Functions and Procedures

PV-WAVE will automatically compile and execute a user-written function or pro-
cedure when it is first referenced if both of the following conditions are met:

• The source code of the function is in the current working directory or in a direc-
tory in the search path defined by the system variable !Path. For more
information setting the search path, see Appendix B, Modifying Your Environ-
ment. For more information on system variables, see System Variables on page
28.

62 PV-WAVE Programmer’s Guide

• The name of the file containing the function is the same as the function name
suffixed by .pro. The file name should be in lowercase letters.

NOTE User-written functions must be defined before they are referenced, unless
they meet the above conditions for automatic compilation. This restriction is nec-
essary in order to distinguish between function calls and subscripted variable
references. For more information on compiling functions and procedures, see
Executive Commands in the PV-WAVE Reference.

GOTO Statement

GOTO, label

The GOTO statement is used to transfer program control to the point in the pro-
gram specified by the label. An example of the GOTO statement is:

GOTO, JUMP1

statements . . .
.

.

.

JUMP1: X = 2000 + Y

In the above example, the statement at label JUMP1 is executed after the GOTO
statement, skipping intermediate statements. The label may also occur before the
reference of the GOTO to that label.

CAUTION Be careful in programming with GOTO statements. It is not difficult
to get into a loop that will never terminate if there is not an escape (or test) within
the statements spanned by the GOTO (and sometimes even when there is!).

GOTO statements are frequently subjects of IF statements:

IF A NE G THEN GOTO, MISTAKE

IF Statement
The basic forms of the IF statement are:

IF expression THEN statement

 63

IF expression THEN statement ELSE statement

The IF statement is used to execute conditionally a statement or a block of
statements.

The expression after the IF is called the condition of the IF statement. This expres-
sion (or condition) is evaluated, and if true, the statement following the THEN is
executed. If the expression evaluates to a false value the statement following the
ELSE clause is executed. Control passes immediately to the next statement if the
condition is false and the ELSE clause is not present.

Examples of the IF statement include:

IF A NE 2 THEN PRINT, ’A IS NOT TWO’

IF A EQ 1 THEN PRINT, ’A IS ONE’ ELSE $
PRINT, ’A IS NOT ONE’

The first example contains no ELSE clause. If the value of A is not equal to 2, A
IS NOT TWO is printed. If A is equal to 2, the THEN clause is ignored, nothing
is printed, and execution resumes at the next statement. In the second example
above, the condition of the IF statement is (A EQ 1). If the value of A is equal to
1, A IS ONE is printed, otherwise NOT ONE is printed.

Definition of True in an IF Statement
The condition of the IF statement may be any scalar expression. The definition of
true and false for the different data types is as follows:

• Byte, Integer and Longword — Odd integers are true, even integers are false.

• Floating-point, Double-precision floating-point and Complex — Nonzero val-
ues are true, zero values are false. The imaginary part of complex floating
numbers is ignored.

• String — Any string with a non-zero length is true, null strings are false.

In the following example, the logical expression is a conjunction of two relational
expressions.

IF (LON GT -40) AND (LON LE -20) THEN . . .

If both conditions — LON being larger than –40 and less than or equal to –20 —
are true then the statement following the THEN will be executed.

The THEN and ELSE clauses may also be in the form of a block (or group of state-
ments) with the delimiters BEGIN and END. (See Blocks of Statements on page
53.) To ensure proper nesting of blocks, you may use ENDIF to terminate the
block, instead of using the generic END.

Below is an example of the use of blocks within an IF statement.

64 PV-WAVE Programmer’s Guide

IF (expression) THEN BEGIN
. . .

. . .

. . .

ENDIF ELSE IF (expression) THEN BEGIN
. . .

. . .

. . .

ENDIF ELSE BEGIN

. . .

. . .

. . .

ENDELSE ;End of else clause

IF statements may be nested in the following manner:

IF P1 THEN S1 ELSE $

IF P2 THEN S2 ELSE $

. . .

. . .

. . .

IF Pn THEN Sn ELSE Sx

If condition P1 is true, only statement S1 is executed; if condition P2 is true, only
statement S2 is executed, etc. If none of the conditions are true statement Sx will
be executed. Conditions are tested in the order they are written. The above con-
struction is similar to the CASE statement except that the conditions are not
necessarily related.

Procedure Call Statement

PROCEDURE_NAME, p1, p2, ..., pn

The Procedure Call statement invokes a system, user-written, or externally defined
procedure. The parameters which follow the procedure’s name are passed to the
procedure. Control resumes at the statement following the Procedure Call state-
ment when the called procedure finishes.

Procedures may come from the following sources:

• System procedures built into the PV-WAVE executable file.

• User-written procedures compiled with the .RUN command.

 65

• User-written procedures that are compiled automatically. See
Automatic Compilation of Functions and Procedures on page 61.

• Standard Library procedures that are installed with PV-WAVE.

Examples
ERASE

This is a procedure call to a subroutine to erase the current window. There are no
explicit inputs or outputs. Other procedures have one or more parameters. For
example:

PLOT, Circle

calls the PLOT procedure with the parameter Circle.

Positional Parameters and Keyword Parameters

Parameters passed to procedures and functions are identified by their position or by
a keyword.

As their name indicates, the position of positional parameters establishes the cor-
respondence of the parameters in the call and those in the definition of the
procedure or function.

A keyword parameter is a parameter preceded by a keyword and an equal sign (=)
that identifies the parameter.

For example, the PLOT procedure can be instructed to not erase the screen and to
draw using color index 12 by either of the calls:

PLOT, X, Y, Noerase = 1, Color = 12

or:

PLOT, X, Y, Color = 12, /Noerase

The two calls produce identical results. Keywords may be abbreviated to the short-
est non-ambiguous string. The /Keyword construct is equivalent to setting the
keyword parameter to the value 1. For example, /Noerase is equivalent to
Noerase=1.

In the above examples, the parameter X is the first positional parameter, because it
is not preceded by a keyword. Y is the second positional parameter.

Calls may mix arguments with and without keywords. The interpretation of key-
word arguments is independent of their order. The placement of keyword
arguments does not affect the interpretation of positional parameters — keyword
parameters may appear before, after, or in the middle of the positional parameters.

66 PV-WAVE Programmer’s Guide

Keyword parameters offer the following advantages:

• Procedures and functions may have a large number of arguments, any of which
may be optional. Only those arguments that are actually used need be present
in the call.

• It is much easier to remember the names of keyword arguments, rather than
their order.

• Additional features can be added to existing procedures and functions without
changing the meaning or interpretation of other arguments.

More On Parameters
Parameters may be of any type or structure, although some system procedures, as
well as user-defined procedures, may require a particular type of parameter for a
specific argument.

Parameters may also be expressions which are evaluated, used in the call, and then
discarded. For example:

PLOT, SIN(Circle)

The sine of the array Circle is computed and plotted, then the result of the com-
putation is discarded.

Parameters are passed by value or by reference. Parameters that consist of only a
variable name are passed by reference. Expressions, constants, and system vari-
ables are passed by value. The two passing mechanisms are fundamentally
different. The called procedure or function may not return a value in a parameter
that is passed by value, as the value of the parameter is evaluated and passed into
the called procedure, but is not copied back to the caller. Changes made by the
called procedure are passed back to the caller if the parameter is passed by refer-
ence. For more details, see Parameter Passing Mechanism on page 228.

Procedure Definition Statement

PRO name, p1, p2, ..., pn

A sequence of one or more statements may be given a name, compiled and saved
for future use with the Procedure Definition statement.

Once a procedure has been successfully compiled, it may be executed using a pro-
cedure call statement interactively from the WAVE> prompt, from a main program,
or from another procedure or function.

 67

The general format for the definition of a procedure is, where name can be up to 31
characters long:

PRO name, param1, ..., paramn

Statement1,
Statement2

. . .

. . .
RETURN

END

For more information on writing procedures, see Chapter 9, Writing Procedures
and Functions.

Calling a user-written procedure that is in a directory in the search path (!Path)
causes the procedure to be read from the disk, compiled, saved, and executed, with-
out interrupting program execution.

OpenVMS USERS If you are running under OpenVMS, see OpenVMS
Procedure Libraries on page 233 for information on creating libraries of
procedures.

REPEAT Statement

REPEAT subject_statement UNTIL condition_expr

The REPEAT statement repetitively executes its subject statement until a condition
is true. The condition is checked after the subject statement is executed. Therefore,
the subject statement is always executed at least once.

Below are some examples of the use of the REPEAT statement:

A = 1

REPEAT A = A * 2 UNTIL A GT B

This code finds the smallest power of 2 that is greater than B. The subject statement
may also be in the form of a block, as shown in the following block of code that
sorts an array:

REPEAT BEGIN

NOSWAP = 1

; Init flag to true.

FOR 1 = 0, N - 2 DO IF ARR(I) GT ARR(I + 1)
THEN BEGIN
NOSWAP = 0

68 PV-WAVE Programmer’s Guide

; Swapped elements, clear flag.

T = ARR(I)

ARR(I) = ARR(I + 1)

ARR(I + 1) = T

ENDFOR

ENDREP UNTIL NOSWAP

; Keep going until nothing is moved.

The above example sorts the elements of ARR using the inefficient bubble sort
method. A more efficient way to sort array elements is to use the SORT function.

NOTE The ending statement for a REPEAT loop is ENDREP, not ENDREPEAT.

WHILE Statement

WHILE expression DO statement

WHILE statements are used to execute a statement repeatedly while a condition
remains true. The WHILE statement is similar to the REPEAT statement except
that the condition is checked prior to the execution of the statement.

When the WHILE statement is executed, the conditional expression is tested, and
if it is true, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement where the condition is again tested. This pro-
cess is repeated until the condition is no longer true, at which point the control of
the program continues at the next statement.

In the WHILE statement, the subject is never executed if the condition is initially
false.

Examples of WHILE statements are:

WHILE NOT EOF(1) DO READF, 1, A, B, C

In this example, data are read until the end-of-file is encountered.

The next example demonstrates one way to find the first point of an array greater
than or equal to a selected value assuming the array is sorted in ascending order
(the array contains N elements):

N = N_ELEMENTS(ARR)

; Determine number of elements in ARR.

I = 0

; Initializes index.

 69

WHILE (ARR(I) LT X) AND (I LT N)

DO I = I + 1

; Increments I until a smaller point is found or the end of
; the array is reached.

Another way to accomplish the same thing is with the statements:

P = WHERE(ARR GE X)

; P is a vector of the array subscripts where ARR(I) GE X.

I = P(0)

; Saves first subscript.

70 PV-WAVE Programmer’s Guide

71

CHAPTER

5

Using Subscripts with Arrays
Subscripts provide a means of selecting one or more elements of an array variable.
The values of one or more selected array elements are extracted when a subscripted
variable reference appears in an expression. Values are stored in selected array ele-
ments, without disturbing the remaining elements, when a subscript reference
appears on the left side of an assignment statement. The section Assignment State-
ment on page 48 discusses the use of the different types of assignment statements
when storing into arrays.

The subscripts of an array element denote the address of the element within the
array. In the simple case of a one-dimensional array, an n-element vector, elements
are numbered starting at 0 with the first element, 1 for the second element, and run-
ning to n – 1, the subscript of the last element. Arrays with multiple dimensions are
addressed by specifying a subscript expression for each dimension. For example, a
two-dimensional n x m array is addressed with a subscript of the form: (i, j), where
0 < i < n and 0 < j < m.

Syntax
The syntax of a subscript reference is:

variable_name(subscript_list)

Or:

(array_expression)(subscript_list)

The subscript list is simply a list of expressions, constants, or subscript ranges
which contains the values of the one or more subscripts. Subscript expressions are

72 PV-WAVE Programmer’s Guide

separated by commas if there is more than one subscript. In addition, multiple ele-
ments are selected with subscript expressions that contain either a contiguous range
of subscripts or an array of subscripts.

Subscript Reference Discussion
Subscripts may be used either to retrieve the value of one or more array elements
or to designate array elements to receive new values. The expression:

ARR(12)

denotes the value of the thirteenth element of ARR (because subscripts start at 0),
while the statement:

ARR(12) = 5

stores the number 5 in the thirteenth element of ARR without changing the other
elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. With PV-WAVE, like with FORTRAN, the first subscripts vary fastest
in memory.

If A is a 2-by-3 array, the command: PRINT,A prints the array like this:

A0,0 A1,0

A0,1 A1,1

A0,2 A1,2

On the other hand, the command: PM,A prints the array like this:

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

But regardless of how the array is printed, the values are stored in memory in the
same way: A0,0, A1,0, A0,1, A1,1, A0,2, A1,2. As another example, suppose B is a 2 X 2 X 2
array. Then, B is stored in memory in the order:

B0,0,0, B1,0,0, B0,1,0, B1,1,0, B0,0,1, B1,0,1, B0,1,1, B1,1,1

Elements of multidimensional arrays may also be specified using only one sub-
script, in which case the array is treated as a 1D array with the same number of
elements. For instance, in the previous examples, A(2) is the same element as
A(0,1), A(5) is the same element as A(1,2), and B(5) is the same as
B(1,0,1).

If an attempt is made to reference a non-existent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

 73

Subscripts may be any type of array or scalar expression. If a subscript expression
is not of type integer, a longword integer copy is made and used to evaluate the sub-
script. For example:

A(1.4) = A(1.6) = A(1)

Arrays (as well as scalars) can be assigned to an array element referenced by a sca-
lar subscript. For instance: A(S)=ARR, where ARR is an array. In this case, the
elements of ARR are stored sequentially into A beginning at the element A(S).

Examples
a = INDGEN(5) & a(2) = [10, 20] & PRINT, a

a = LONARR(4, 5) & a(5) = REPLICATE(1, 6) & PM, a

a = LONARR(4, 5) & a(1,1) = REPLICATE(1, 2, 3) & PM, a

“Extra” Dimensions
All “degenerate” trailing dimensions of size 1 are eliminated from arrays. Thus, the
statements:

A = INTARR(10, 5, 5, 1)

INFO, A

print the following:

A INT = Array(10, 5, 5)

This removal of superfluous dimensions is usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. There-

0 1 10 20 4

0 0 1 0 0

0 1 1 0 0

0 1 1 0 0

0 1 0 0 0

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

74 PV-WAVE Programmer’s Guide

fore, you can specify “extra” dimensions for an array as long as the extra
dimensions are all zero. For example, consider a vector defined as:

ARR = INDGEN(10)

The following are all valid references to the 6th element of ARR:

ARR(5)

ARR(5, 0)

ARR(5, 0, 0, *, 0)

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

Subscripting Scalars

References to scalars may be subscripted. All subscripts must be zero. For
example:

a = 5

PRINT, a(0)

a(0) = 6

PRINT, a

Subscript Ranges
Subscript ranges are used to select a subarray from an array by giving the starting
and ending subscripts of the subarray in each dimension.

Subscript ranges may be combined with scalar and array subscripts and with other
subscript ranges. Any rectangular portion of an array may be selected with sub-
script ranges.

There are four types of subscript ranges:

• A range of subscripts, written (e0 : e1), denoting all elements whose subscripts
range from the expression e0 to e1. e0 must not be greater than e1 (but it may
equal e1).

For example, if the variable VEC is a 50-element vector,

VEC(5 : 9)

is a 5-element vector composed of

[VEC(5), ..., VEC(9)]

 75

• All elements from a given element to the last element of the dimension, written
as (E : *).

Using the above example,

VEC(10 : *)

is a 40-element vector made of

[VEC(10), ..., VEC(49)]

• A simple subscript, (n). When used with multidimensional arrays, simple sub-
scripts specify only elements with subscripts equal to the given subscript in
that dimension.

• All elements of a dimension, written (*). This form is used with multidimen-
sional arrays to select all elements along the dimension.

For example, if ARR is a 10-by-12 array,

ARR(*, 11)

is a 10-element vector composed of elements

[ARR(0, 11), ARR(1, 11), ..., ARR(9, 11)]

Similarly,

ARR(0, *)

is the 1-by-12 array,

[ARR(0, 0), ARR(0, 1), ..., ARR(0, 11)]

Multidimensional subarrays may be specified using any combination of the above
forms. For example,

ARR(*, 0 : 4)

is a 10-by-5 array. Or, if ARR is a 5 X 10 X 15 X 20 array, then
ARR(0, 1:2, 3:*, *) is a 1 X 2 X 12 X 20 array.

Subscript Ranges

Form Meaning

E A simple subscript expression

e0 : e1 Subscript range from e0 to e1

E : * All points from element E to end

* All points in the dimension

76 PV-WAVE Programmer’s Guide

Structure of Subarrays
The dimensions of an extracted subarray are determined by the size in each dimen-
sion of the subscript range. In general, the number of dimensions is equal to the
number of subscripts. The size of a dimension is equal to 1 if a simple subscript
was used for that dimension; otherwise it is equal to the number of elements
selected by the range.

Degenerate dimensions (trailing dimensions whose size is equal to 1) are removed.
This was illustrated in the above example by the expression ARR(*, 11) which
resulted in a vector with a single dimension because the last dimension of the result
was 1 and was removed. On the other hand, the expression ARR(0, *) became
an array with dimensions of (1, 12) because the dimension with a size of 1 does
not appear at the end.

Using the examples of VEC, a 50-element vector, and A, a 10-by-12 array, some
typical subscript range expressions are:

VEC(5 : 10)

; Points 5 to 10 of VEC, a 6-element vector.

VEC(I - 1 : I + 1)

; 3-point neighborhood around I: [VEC(I – 1), VEC(I), VEC(I + 1)].

VEC(4 : *)

; Points in VEC from VEC(4) to the end, a 50 – 4 = 46-element
; vector.

A(3, *)

; A 1-by-12 array: [A(3, 0), A(3, 1), ..., A(3, 11)].

A(*, 0)

; A 10-element vector.

A(X - 1 : X + 1, Y - 1 : Y + 1)

; The 9-point neighborhood surrounding A(X,Y), a 3-by-3 array.

A(3 : 5, *)

; A 3-by-12 subarray.

One-dimensional range subscripts can be used with multidimensional arrays. For
example, if A is a 2 X 2 X 2 X 2 X 2 array, then A(*) is a 32-element vector containing
all the elements of A, and A(5:*) is a vector containing the last 27 elements of A.

Arrays as well as scalars can be assigned to array elements referenced by range
subscripts.

 77

Examples
a = FLTARR(5, 5) & a(*) = 1 & a(0:3,1:*) = 2 & PM, a

a = FLTARR(2, 4) & a(*) = INDGEN(8) & PM, a

a = DBLARR(3, 3, 3) & a(*,1:*,0) = INDGEN(6) & PM, a

a(*,*,2) = REPLICATE(1, 3, 3) & PM, a

a(0:0,2:2,2:*) = 2 & PM, a

1.00000 2.00000 2.00000 2.00000 2.00000

1.00000 2.00000 2.00000 2.00000 2.00000

1.00000 2.00000 2.00000 2.00000 2.00000

1.00000 2.00000 2.00000 2.00000 2.00000

1.00000 1.00000 1.00000 1.00000 1.00000

0.00000 2.00000 4.00000 6.00000

1.00000 3.00000 5.00000 7.00000

0.0000000
0.0000000
0.0000000

0.0000000
1.0000000
2.0000000

3.0000000
4.0000000
5.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
1.0000000
2.0000000

3.0000000
4.0000000
5.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

1.0000000
1.0000000
1.0000000

1.0000000
1.0000000
1.0000000

1.0000000
1.0000000
1.0000000

0.0000000
0.0000000
0.0000000

0.0000000
1.0000000
2.0000000

3.0000000
4.0000000
5.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

0.0000000
0.0000000
0.0000000

78 PV-WAVE Programmer’s Guide

See the section Assignment Statement on page 48 for more information describing
the assigning of values to subarrays.

Arrays as Subscripts to Other Arrays
Arrays may be used to subscript other arrays. Each element in the array used as a
subscript selects an element in the subscripted array. When used with subscript
ranges, more than one element is selected for each subscript element.

If no subscript ranges are present, the length and structure of the result is the same
as that of the subscript expression. The type of the result is the same as that of the
subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript, S, which is a vector, the process may be
written as:

assuming that the array A has n elements, and S has m elements. The result A(S)
has the same structure and number of elements as does the subscript vector S. Just
as with scalar subscripts and range subscripts, array subscripts can represent one-
dimensional indices into multidimensional arrays; thus, the dimensionality of A is
arbitrary.

If an element of the subscript array is less than or equal to zero, the first element of
the subscripted variable is selected. If an element of the subscript array is greater
than or equal to the last subscript in the subscripted variable (N, above), the last ele-
ment is selected.

Example

A = [6, 5, 1, 8, 4, 3]

B = [0, 2, 4, 1, -1, 10]

1.0000000
1.0000000
1.0000000

1.0000000
1.0000000
1.0000000

2.0000000
1.0000000
1.0000000

A S()

ASi
if 0 Si < n≤

A0 if Si 0<

An 1– if Si n≥ 
 
 
 
 

for 0 i m<≤()=

 79

C = A(B)

PRINT, C

6 1 4 5 6 3

The first element is 6 because it is in the zero position of A. The second is 1 because
the value in B of 2 indicates the third position in A, and so on. The last two elements
of C are the endpoints of A, because the last two subscripts of B are out of range.

As another example, assume the variable A is a 10-by-10 array. The expression:

A(INDGEN(10) * 11)

yields a 10-element vector equal to the diagonal elements of A. The one dimen-
sional subscripts of the diagonal elements, A0,0, A1,1, ..., A9,9 are 0, 11, 22, ..., 99
(the same as elements of the vector INDGEN(10) * 11).

The WHERE function, which returns a vector of subscripts, may be used to select
elements of an array using expressions similar to:

A(WHERE(A GT 0))

which results in a vector composed only of the elements of A that are greater than 0.

Combining Array Subscripts with Others
Array subscripts may be combined with:

• Subscript ranges

• Simple scalar subscripts

• Other array subscripts

When it encounters a multidimensional subscript that contains one or more sub-
script arrays, PV-WAVE builds an array of subscripts by processing each subscript,
from left to right. The resulting array of subscripts is then applied to the variable
that is to be subscripted.

As with other subscript operations, trailing degenerate dimensions (those with a
size of 1) are eliminated.

Combining Array Subscripts with Scalar or Range
Subscripts

When combining an n-element subscript array with an m-element subscript range,
the resulting subarray is of dimension nxm.

80 PV-WAVE Programmer’s Guide

For example, the expression A([1,3],5) yields the vector [A1,5, A3,5], and the
expression A([1, 3, 5], 7 : 9) yields a 3-by-3 array composed of the
elements:

Each element of the 3-element subscript array (1, 3, 5) is combined with each ele-
ment of the 3-element range (7, 8, 9).

Examples

The common process of zeroing the edge elements of a two-dimensional n-by-m
array is:

A(*, [0, M - 1]) = 0

A([0, N - 1], *) = 0

For another example of combining array and range subscripts, consider:

A = DBLARR(5, 10, 5, 10, 5)

B = [-1, 0, 5, 3.9]

INFO, A(B, *, 2:*, 1:3, 0)

<Expression> DOUBLE = Array(4, 10, 3, 3)

Combining with Other Subscript Arrays

If all subscripts are arrays, then all these arrays must have the same number of ele-
ments; in this case, each element of the first subscript array is combined with the
corresponding elements of the other subscript arrays.

For example:

a=FINDGEN(6,6) & PM, a([0,2,4], [1,3,5])

6.00000 (= A0,1)

20.0000 (= A2,3)

34.0000 (= A4,5)

Or, if A is a 3D array, then:

A([0,2], [1,3], [0,2]) = 10

assigns the value 10 to the elements A010, A232.

A1 7, A1 8, A1 9,

A3 7, A3 8, A3 9,

A5 7, A5 8, A5 9,

 81

If multiple array subscripts are mixed with scalars or ranges, then the resulting sub-
script array is the Cartesian product of all of the subscripts. For example, if A is a
3D array, then the expression A([0,2,3],[1,3],0) yields the 2D array:

Also, note that since extra “0 dimensions” are allowed, a 2D array A can be sub-
scripted with the Cartesian product of two subscript arrays. For example, the
expression A([0,2,3],[1,3],0) yields the 2D array:

Storing Elements with Array Subscripts
One or more values may be stored in selected elements of an array by using an
array expression as a subscript for the array variable appearing on the left side of
an assignment statement. Values are taken from the expression on the right side of
the assignment statement and stored in the elements whose subscripts are given by
the array subscript. The right-hand expression may be either a scalar or array.

See Assignment Statement on page 48 for details and examples of storing with vec-
tor subscripts.

Examples

A([2, 4, 6]) = 0

zeroes elements A(2), A(4), and A(6), without changing other elements of A.
The following statement:

A([2, 4, 6]) = [4, 16, 36]

is equivalent to the statements:

A(2) = 4

A(4) = 16

A(6) = 36

One way to create a square n-by-n identity matrix is:

A0 1 0, , A0 3 0, ,

A2 1 0, , A2 3 0, ,

A3 1 0, , A3 3 0, ,

A0 1, A0 3,

A2 1, A2 3,

A3 1, A3 3,

82 PV-WAVE Programmer’s Guide

A = FLTARR(N, N)

A(INDGEN(N)*(N + 1)) = 1.0

The expression INDGEN(N)*(N + 1) results in a vector containing the 1D sub-
scripts of the diagonal elements. Yet another way is to use two array subscripts:

A = FLTARR(N, N)

A(INDGEN(N), INDGEN(N)) = 1.0

The statement:

A(WHERE(A LT 0)) = -1

sets negative elements of A to minus 1.

Consider also the following examples:

a = INTARR(4, 4, 4) & a([0,2,3],[1,3],0:1) = 10 & PM, a

a = INTARR(4, 4) & a([0,2,3],[1,3],0) = INDGEN(6) & PM, a

a = INTARR(4, 4) & a(INDGEN(4), INDGEN(4)) = 10 & PM, A

0
0
0
0

10
0
10
10

0
0
0
0

10
0
10
10

0
0
0
0

10
0
10
10

0
0
0
0

10
0
10
10

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0 0 0 3

0 0 0 0

0 1 0 4

0 2 0 5

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

 83

Memory Order
To facilitate optimum performance, it is useful to know the memory order of the
elements in the array. Given a 2-by-3 array created with the statement

a = INTARR(2, 3)

the elements of A are ordered in memory as:

A0, 0 , A1, 0 , A0, 1 , A1, 1 , A0, 2 , A1, 2

Similarly, in arrays of dimension higher than two, the elements are stored such that
the first dimension varies fastest, the next dimension varies the next fastest, and so
on. For more information, see Subscript Reference Discussion on page 72.

Knowledge of the memory order is also important when attempting to subscript
multidimensional arrays with a single subscript, in which case the array is treated
as a vector with the same number of elements. In the above example, A(2) is the
same element as A(0,1) and A(5) is the same element as A(1,2).

Matrices
If A is an mxn array, the command

PRINT, A

yields:

The fact that the array is printed this way may disturb those who are used to the
linear algebra convention for listing a matrix. For this reason PV-WAVE is
equipped with a set of input/output routines that subscribe to the linear algebra con-
vention. RMF and PMF read and write files according to the linear algebra
convention, and RM and PM are the interactive versions of RMF and PMF. For
instance, the command:

PM, A

yields:

A0 0, …… Am 1, 0–

. .

. .

. .

A0 n 1–, …… Am 1, n– 1–

84 PV-WAVE Programmer’s Guide

NOTE Regardless of how the array is read in or printed out, memory storage order
is unaffected. Thus, the distinction between arrays and matrices in PV-WAVE is
completely superficial.

Reading and Printing Matrices Interactively

Matrices can be entered interactively using the RM procedure and printed to the
screen using PM (see the PV-WAVE Reference). In this example, a matrix is inter-
actively entered and printed along with its inverse.

RM, a, 3, 3

; Enter 3 by 3 matrix A.

row 0: 3 1 2

row 1: 4 5 1

row 2: 7 3 9

; User is prompted to enter the rows of the matrix.

PM, a

; Print the matrix.

 3.00000 1.00000 2.00000

 4.00000 5.00000 1.00000

 7.00000 3.00000 9.00000

PM, INVERT(a)

; Print the inverse of A.

0.823530 -0.0588235 -0.176471

-0.568628 0.254902 0.0980392

-0.450980 -0.0392157 0.215686

The matrix multiplication operator is “#”. For instance

RM, p, 4, 2

row 0: 2 4

row 1: 1 3

A0 0, …… A0 n 1–,

. .

. .

. .

Am 1, 0– …… Am 1, n– 1–

 85

row 2: 5 6

row 3: 0 7

; Enter 4 by 2 matrix P.

RM, q, 2, 3

; Enter 2 by 3 matrix Q.

row 0: 1 3 5

row 1: 2 4 6

PM, p # q

; Print the matrix product of P and Q.

10.0000 22.0000 34.0000

7.00000 15.0000 23.0000

17.0000 39.0000 61.0000

14.0000 28.0000 42.0000

Matrices also can be entered elementwise, starting with the (0, 0) subscript. As is
standard in mathematics, the first subscript refers to the row and the second to the
column. For example:

w = FLTARR(3, 3)

; Allocate w to be a 3 by 3 float array.

w(0, 0) = 1

w(0, 1) = 2

w(0, 2) = 3

w(1, 0) = 4

w(1, 1) = 5

w(1, 2) = 6

w(2, 0) = 7

w(2, 1) = 8

w(2, 2) = 9

; Assign values to w.

PM, w

; Print W as a matrix.

1.00000 2.00000 3.00000

4.00000 5.00000 6.00000

7.00000 8.00000 9.00000

PRINT, w

1.00000 4.00000 7.00000

2.00000 5.00000 8.00000

3.00000 6.00000 9.00000

; Print W as an array. Note that it is the transpose of the previous statement.

86 PV-WAVE Programmer’s Guide

In a matrix, the elements are stored columnwise; i.e., the elements of the 0-th col-
umn are first, followed by the elements of the 1-st row, etc. Continuing the above
example, the elements in the 0-th column (1, 4, 7) come first, followed by those in
the 1-st column (2, 5, 8), etc.

FOR k = 0, 8 DO PRINT, k, w(k)

 0 1.00000

 1 4.00000

 2 7.00000

 3 2.00000

 4 5.00000

 5 8.00000

 6 3.00000

 7 6.00000

 8 9.00000

Reading a Matrix From a File

In this example, the RMF procedure is used to read a matrix contained in an exter-
nal file. The file cov.dat contains the following data:

1.0 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1.0 0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1.0 0.355 0.27 0.254 0.452 0.219 0.504

0.471 0.506 0.355 1.0 0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.27 0.691 1.0 0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1.0 0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1.0 0.385 0.68

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.0 0.47

0.639 0.645 0.504 0.505 0.409 0.472 0.68 0.47 1.0

After reading the matrix, principal components are computed for a nine-variable
covariance matrix. (This example uses the PV-WAVE:IMSL Statistics
PRINC_COMP function.)

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

values = PRINC_COMP(covariances)

PM, values, Title = "Eigenvalues:"

Eigenvalues:

 4.67692

 1.26397

 87

 0.844450

 0.555027

 0.447076

 0.429125

 0.310241

 0.277006

 0.196197

Printing a Matrix to a File

This example retrieves a statistical data set using the PV-WAVE:IMSL Statistics
function STATDATA, then outputs the matrix to the file stat.dat.

stats = STATDATA(5)

; Get the data from STATDATA.

PM, stats

; Print the 13 by 5 matrix to standard output.

7.00000 26.0000 6.00000 60.0000 78.5000

1.00000 29.0000 15.0000 52.0000 74.3000

11.0000 56.0000 8.00000 20.0000 104.300

11.0000 31.0000 8.00000 47.0000 87.6000

7.00000 52.0000 6.00000 33.0000 95.9000

11.0000 55.0000 9.00000 22.0000 109.200

3.00000 71.0000 17.0000 6.00000 102.700

1.00000 31.0000 22.0000 44.0000 72.5000

2.00000 54.0000 18.0000 22.0000 93.1000

21.0000 47.0000 4.00000 26.0000 115.900

1.00000 40.0000 23.0000 34.0000 83.8000

11.0000 66.0000 9.00000 12.0000 113.300

10.0000 68.0000 8.00000 12.0000 109.400

; Print the 13 by 5 matrix to a file.

OPENW, unit, ’stat.dat’, /Get_Lun

PMF, unit, stats

; Use PMF to output the matrix.

CLOSE, unit

; Close the file.

Subarrays

Using subscript ranges, it is possible to extract submatrices. For instance, the 0-th
and 2-nd row of matrix w are extracted by using the following statements:

88 PV-WAVE Programmer’s Guide

PM, w

; Print W as a matrix.

1.00000 2.00000 3.00000

4.00000 5.00000 6.00000

7.00000 8.00000 9.00000

PM, w([0, 2], *)

1.00000 2.00000 3.00000

7.00000 8.00000 9.00000

Matrix Expressions

Complicated matrix expressions are possible. Using the matrices
defined above, the following statements compute the inverse of a:

PM, a

; Print the matrix.

3.00000 1.00000 2.00000

4.00000 5.00000 1.00000

7.00000 3.00000 9.00000

PM, a # INVERT(a)

; AA–1 should be identity. Error due to round off.

1.00000 0.00000 0.00000

1.19209e-07 1.00000 -1.19209e-07

9.53674e-07 -2.98023e-08 1.00000

In the following code segment, (3.5A + W) (QTQ) is computed:

PM, q

1.00000 3.00000 5.00000

2.00000 4.00000 6.00000

; Compute and print (3.5A + W)(QTQ).

PM, (3.5 * a + w) # (TRANSPOSE(q) # q)

288.000 654.000 1020.00

499.000 1131.00 1763.00

1049.50 2388.50 3727.50

89

CHAPTER

6

Working with Structures

Introduction to Structures
PV-WAVE supports structures and arrays of structures. A structure is a collection
of scalars, arrays, or other structures contained in a variable. Structures are useful
for representing data in a natural form, for transferring data to and from other pro-
grams, and for containing a group of related items of various types.

Before a structure can be used, it must be defined. When you define a structure, you
actually create a new data type. The definition includes a structure name and a list
of structure fields. Each structure field is given a tag name and tag definition (data
type). The tag definition may be an expression or a variable. It defines the data type
of the data that can be placed in the field. A structure definition, per se, does not
contain any data values; however, a variable of a particular structure type always
contains data.

A structure field may be defined as any type of data representable by PV-WAVE.
Fields may contain scalars, arrays of the eight basic data types, and even other
structures or arrays of structures.

Just as you cannot alter the basic definition of an integer or floating-point data type
in PV-WAVE, you cannot alter a structure definition after it has been created. You
can, however, delete a structure definition as long as it is not currently being refer-
enced by any variables. See the next section for more information on deleting
structure definitions.

When structure definitions are referred to, they must be enclosed in braces. For
example:

90 PV-WAVE Programmer’s Guide

PRINT, {struct_name}

The braces distinguish structure definitions from variable names, function names,
or other identifiers.

Defining and Deleting Structures
A structure is created by executing a structure definition expression. This is an
expression of the following form:

{ Structure_name, Tag_name1, : Tag_def1, ... : ...,
Tag_namen : Tagdefn }

Tag names must be unique within a given structure, although the same tag name
may be used in more than one structure. Structure and tag names follow the same
rules as all PV-WAVE identifiers: they must begin with a letter, following charac-
ters may be letters, digits, or the underscore or dollar sign characters, and case is
ignored.

As mentioned above, each tag definition is a constant, variable, or expression
whose type and dimension defines the type and dimension of the field. The result
of a structure definition expression is a structure definition that is global in scope
and can be used to create variables of the particular structure type.

A structure that has already been defined may be referred to by simply enclosing
the structure’s name in braces:

variable = { Structure_name }

The variable created as a result of this command is a structure of the designated
name with all of its fields filled with zeros or null strings.

The variable created by the above statement and the structure definition
{Structure_name} are separate entities. The variable is said to be of type
{Structure_name}. The definition {Structure_name} is analogous to any data type,
such as integer or double. Just as any number of values can be of type integer, any
number of variables may reference a given structure definition.

When referring to a structure definition, the tag names need not be present, as in:

variable = { Structure_name, expr1, ..., exprn }

All of the expressions are converted to the type and dimension of the original tag
definition. If a structure definition of the first form (where the tag names are
present) is executed and the structure already exists, each tag name and the struc-

 91

ture of each tag field definition must agree with the original definition or an error
will result.

Example of Defining a Structure

Assume a star catalog is to be processed. Each entry for a star contains the follow-
ing information: Star name, right ascension, declination, and an intensity measured
each month over the last 12 months. A structure for this information is defined with
the statement:

STAR = { CATALOG, NAME: ’’, RA: 0.0, $
DEC: 0.0, INTEN: FLTARR(12) }

This structure definition is the basis for all examples in this chapter.

The above statement defines a structure type named CATALOG in a variable named
STAR, which contains four fields. The tag names are NAME, RA, DEC, and INTEN.
The first field, with the tag NAME, contains a scalar string as given by its tag defi-
nition; the following two fields each contain floating-point scalars, and the fourth
field, INTEN, contains a 12-element floating-point array. Note that the type of the
constants, 0.0, is floating point. If the constants had been written as 0 the fields RA
and DEC would contain integers.

Defining a Structure within a Structure

The following example shows how to embed or nest a structure within another
structure definition.

STAR = {CATALOG, NAME:’’, RA=0.0}

; Create structure, STAR, of type CATALOG.

STAR2 = {CATALOG2, POS:0.0, DEC:0}

; Create a second structure, STAR2, of type CATALOG2.

ALL = {TOTAL, TAG1:{CATALOG}, TAG2:STAR2}

; Create a third structure ALL which contains the previously defined
; structures as fields. Note that the tag definition can be either the
; name of a structure definition ({CATALOG}) or a variable of type
; structure (STAR2).

Deleting a Structure Definition

The DELSTRUCT procedure lets you delete a structure definition, as long as the
structure definition is not referenced by any variables. To determine if a structure
definition is referenced, use the STRUCTREF procedure. Variables that are local
to a procedure or function can be deleted only by exiting the procedure or function.

92 PV-WAVE Programmer’s Guide

You can delete variables at the $MAIN$ level with the DELVAR procedure.
Because structure definitions can include other structure definitions, the parent
structure definition must be deleted before any nested structure definitions can be
deleted.

Deleting a structure definition frees all the memory used to store the structure
name, the tag names, and the information about the data type of each structure ele-
ment. If you want to delete a structure to free memory, then you must delete all
referenced variables as well. However, if you simply want to reuse the structure
name, then you do not have to delete all the referenced variables. Use the Rename
keyword with the DELSTRUCT procedure. This changes the name of the structure
to a new unique name and frees the original name for reuse. This new name is cho-
sen by the system. You cannot specify the name directly. All variables that
referenced the original structure name will automatically reference the new name.

For more information on DELSTRUCT and STRUCTREF, see the PV-WAVE
Reference.

Creating Unnamed Structures

As noted previously, a typical structure definition consists of a name and a list of
fields. You can also create a structure that you do not name.

Unnamed structures are useful if you:

• do not want to use a structure definition globally.

• do not want to invent new names for structure definitions.

• want the structure definition to be deleted automatically when it is no longer
referenced.

• want to create a structure-type variable that contains an array field that can
vary.

Scope of Named and Unnamed Structures

Named structure definitions are global in scope. A named structure definition is
created only once and then can be referenced by any number of variables. It is
important to note that a named structure definition is not associated directly with
any particular variable.

An unnamed structure, on the other hand, is closely associated with a specific vari-
able. When the variable that is associated with an unnamed structure is deleted, so
is the unnamed structure definition.

 93

Syntax of an Unnamed Structure Definition

The syntax of an unnamed structure definition is:

x = {, tag_name1: tag_def1, tag_namen: tag_defn}

The data type of variable x references the unnamed structure definition. Unlike
named structure definitions, when all variables that reference an unnamed structure
definition are deleted, the unnamed structure definition is also deleted. If you copy
a variable that references an unnamed structure definition (e.g., y = x), then both
variables reference the same unnamed structure definition. Only when both vari-
ables are deleted will the unnamed structure definition be deleted.

Creating Variable-length Array Fields

The unnamed structure definition can be useful if you want to create a structure def-
inition that contains array fields whose lengths can change. For example, suppose
you want to create several variables that have the same structure except that one
element is an array that you want to have different lengths for different variables.
Using named structures, you would have to create a different structure for each case
(because named structure definitions cannot be altered). For example:

a={structa, xdim:2, ydim:4, arr:intarr(2,4)}

b={structb, xdim:2, ydim:8, arr:intarr(2,8)}

However, the unnamed structure allows you to solve this problem. For example, the
following function returns a structure-type variable whose tag names are the same,
but whose array length is different for each variable:

function my_struct, x, y

RETURN, { , xdim:x,ydim:y, array:intarr(x,y)}

END

Now, you can create a and b as follows:

a = my_struct(2, 4)

b = my_struct(2, 8)

Internal Names of Unnamed Structures

PV-WAVE generates a name internally for an unnamed structure definition. This
name always begins with a $. This ensures that an unnamed structure definition will
never conflict with a named structure definition (because identifiers cannot begin
with $).

The INFO command lets you see this internal name:

94 PV-WAVE Programmer’s Guide

INFO, a, /Struct

*** Structure $2, 3 tags, 20 length:

XDIM INT 2

YDIM INT 4

ARRAY INT Array(2, 4)

CAUTION Do not attempt to use the internal name for an unnamed structure in
any other command. For example:

c = {$2}

or

PRINT, STRUCTREF({$2})

In these cases, the $ character is interpreted as a line continuation character. The
remainder of the line after $ is ignored, and PV-WAVE waits for you to enter the
rest of the command on the next line. No error message is displayed until you enter
another line that does not contain a $.

Structure References
The basic syntax of a reference to a field within a structure is:

Variable_name . Tag_name

Variable_name must be a variable that contains a structure;
Tag_name is the name of the field and must exist for the structure.

If the field referred to by the tag name is itself a structure, the tag name may option-
ally be followed by one or more additional tag names. For example:

VAR.TAG1.TAG2

This nesting of structure references may be continued up to ten levels. Each tag
name, except possibly the last, must refer to a field that contains a structure.

Subscripted Structure References

In addition, a subscript specification may be appended to the variable or tag names
if the variable is an array of structures, or if the field referred to by the tag contains
an array:

Variable_name . Tag_name(Subscripts)

Variable_name(Subscripts) . Tag_name ...

 95

or

Variable_name(Subscripts) . Tag_name(Subscripts)

Each subscript is applied to the variable or tag name it immediately follows.

The syntax and meaning of the subscript specification is similar to simple array
subscripting: it may contain a simple subscript, array of subscripts, or a subscript
range. See Chapter 6, Using Subscripts, for more information about subscripts.

If a variable or field containing an array is referenced without a subscript specifi-
cation, all elements of the item are affected. Similarly, when a variable that
contains an array of structures is referenced without a subscript but with a tag
name, the designated field in all array elements is affected.

The complete syntax of references to structures is:

Structure_ref := Variable_name [(subscripts)] . Tags

Tags := [Tags .] Tag

Tag := Tag_name [(subscripts)]

Optional items are enclosed in square brackets, []. For example, all of the follow-
ing are valid structure references:

A.B

A.B(N, M)

A(12).B

A(3:5).B(*, N)

A(12).B.C(X, *)

The semantics of storing into a structure field using subscript ranges are slightly
different than that of simple arrays. This is because the dimension of arrays in fields
is fixed. See Storing into Structure Array Fields on page 97.

Examples of Structure References

The name of the star contained in STAR is referenced as STAR.NAME, the entire
intensity array is referred to as STAR.INTEN, while the nth element of
STAR.INTEN isSTAR.INTEN(N). The following are valid statements using the
CATALOG structure:

STAR = {CATALOG, NAME: ’SIRIUS’, RA: 30., $
DEC: 40., INTEN: INDGEN(12)}

; Store a structure of type CATALOG into variable STAR. Define
; the values of all fields.

96 PV-WAVE Programmer’s Guide

STAR.NAME = ’BETELGEUSE’

; Set name field. Other fields remain unchanged.

PRINT, STAR.NAME, STAR.RA, STAR.DEC

; Print name, right ascension, and declination.

Q = STAR.INTEN(5)

; Set Q to the value of the 6th element of STAR.INTEN. Q will be a floating-point scalar.

STAR.RA = 23.21

; Set RA field to 23.21.

STAR.INTEN = 0

; Zero all 12 elements of intensity field. Because the type and size of
; STAR.INTEN are fixed by the structure definition, the semantics of
; assignment statements are somewhat different than with normal variables.

B = STAR.INTEN(3:6)

; Store 4th through 7th elements of INTEN field in variable B.

STAR.NAME = 12

; The integer 12 is converted to string and stored in the name field
; because the field is defined as a string.

MOON = STAR

; Copy STAR to MOON. The entire structure is copied and MOON
; contains a CATALOG structure.

Using INFO with Structures

Use INFO, /Structure to determine the type, structure, and tag name of each
field in a structure. In the example above, a structure was stored into variable
STAR. The statement:

INFO, /Structure, STAR

prints the following information:

** Structure CATALOG, 4 tags, 60 length:

NAME STRING '(null)'

RA FLOAT 0.0

DEC FLOAT 0.0

INTEN FLOAT Array(12)

Calling INFO with the Structure keyword and no parameters prints a list of all
defined structures and tag names. In addition to the Structure keyword, the User-
struct and Sysstruct INFO keywords can also be used to obtain information about
structures. See Chapter 12, Getting Session Information, for information on these
keywords.

 97

Parameter Passing with Structures

As explained in Parameter Passing Mechanism on page 228, PV-WAVE passes
simple variables by reference and everything else by value.

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the pro-
cedure are passed back to the caller.

Fields within a structure are passed by value. For example, to print the value of
STAR.NAME:

PRINT, STAR.NAME

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence STAR.NAME is an expression and is passed by value. This
works as expected unless the called procedure returns information in the parameter,
as in the call to READ:

READ, STAR.NAME

which does not read into STAR.NAME, but interprets its parameter as a prompt
string. The proper code to read into the field is:

B = STAR.NAME

; Copy type and attributes to variable.

READ, B

; Read into a simple variable.

STAR.NAME = B

; Store result into field.

Storing into Structure Array Fields

As was mentioned above, the semantics of storing into structure array fields is
slightly different than storing into simple arrays. The main difference is that with
structures a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use
the subscript of the lower-left corner, not a range specification.

Other differences occur because the size and type of a field are fixed by the original
structure definition and the normal PV-WAVE semantics of dynamic binding are
not applicable.

The rules for storing into array fields are:

98 PV-WAVE Programmer’s Guide

Rule 1

VAR.TAG = scalar_expr

The field TAG is an array. All elements of VAR .TAG are set to
scalar_expr. For, example:

STAR.INTEN = 100

; Sets all 12 elements of STAR.INTEN to 100.

Rule 2

VAR.TAG = array_expr

Each element of array_expr is copied to the array VAR.TAG. If
array_ expr contains more elements than does the destination array an
error results. If it contains fewer elements than VAR.TAG, the unmatched
elements remain unchanged. Example:

STAR.INTEN = FINDGEN(12)

; Sets STAR.INTEN to the 12 numbers 0, 1, 2, ..., 11.
STAR.INTEN = [1, 2]

; Sets STAR.INTEN(0) to 1 and STAR.INTEN(1) to 2. The
; other elements remain unchanged.

Rule 3

VAR.TAG(subscript) = scalar_expr

The value of the scalar expression is simply copied into the designated ele-
ment of the destination. If subscript is an array of subscripts, the scalar
expression is copied into the designated elements. Example:

STAR.INTEN(5) = 100

; Sets the 6th element of STAR.INTEN to 100.
STAR.INTEN([2, 4, 6]) = 100.

; Sets elements 2, 4, and 6 to 100.

Rule 4

VAR.TAG(subscript) = array_expr

Unless VAR.TAG is an array of structures, the subscript must be an array.
Each element of array_expr is copied into the element of VAR.TAG given
by the corresponding element subscript. Example:

STAR.INTEN([2, 4, 6]) = [5, 7, 9]

; Sets elements 2, 4, and 6 to the values 5, 7, and 9.

 99

Rule 5

VAR .TAG (subscript_range) = scalar_expr

The value of the scalar expression is stored into each element specified by
the subscript range. Example:

STAR.INTEN(8 : *) = 5

; Sets elements 8, 9, 10, and 11, to the value 5.

Rule 6

VAR.TAG (subscript_range) = array_expr

Each element of the array expression is stored into the element designated
by the subscript range. The number of elements in the array expression
must agree with the size of the subscript range. Example:

STAR.INTEN(3 : 6) = findgen(4)

; Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and
; 3, respectively.

See Creating Variable-length Array Fields on page 93 for information on placing
variable-length arrays in structures.

Creating Arrays of Structures
An array of structures is simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow essentially the same rules as simple arrays.

The easiest way to create an array of structures is to use the REPLICATE function.
The first parameter to REPLICATE is a reference to the structure of each element.
Using the above example of a star catalog and assuming the CATALOG structure
has been defined, an array which contains 100 elements of the structure is created
with the statement:

CAT = REPLICATE({ CATALOG }, 100)

Alternatively, since the variable STAR contains an instance of the structure
CATALOG:

CAT = REPLICATE(STAR, 100)

Or, to define the structure and an array of the structure in one step:

CAT = REPLICATE({ CATALOG, NAME : ’’, RA: 0.0, $
DEC : 0.0, INTEN : FLTARR(12) }, 100)

100 PV-WAVE Programmer’s Guide

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are general and lead to many possibilities, only a
small number of which can be explained here. In general what seems reasonable
usually works.

Examples of Arrays of Structures

Using the above definition in which the variable CAT contains a star catalog of
CATALOG structures:

CAT.NAME = ’EMPTY’

; Set the NAME field of all 100 elements to EMPTY.

CAT(I) = {CATALOG, ’BETELGEUSE’, 12.4, $
54.2, FLTARR(12)}

; Set the ith element of CAT to the contents of the CATALOG structure.

CAT.RA = INDGEN(100)

; Store a 0.0 into CAT(0).RA, 1.0 into CAT(1).RA, ..., 99.0 into CAT(99).RA.

PRINT, CAT.NAME + ’,’

; Prints name field of all 100 elements of CAT, separated by commas.

I = WHERE(CAT.NAME EQ ’SIRIUS’)

; Find index of star with name of SlRIUS.

Q = CAT.INTEN

; Extract intensity field from each entry. Q will be a 12-by-100 floating point array.

PLOT, CAT(5).INTEN

; Plot intensity of 6th star in array CAT.

CONTOUR, CAT(5 : 50).INTEN(2:8)

; Make a contour plot of the (7, 46) floating-point array taken from
; months (2:8) and stars (5:50).

CAT = CAT(SORT(CAT.NAME))

; Sort the array into ascending order by names. Store the result back into CAT.

MONTHLY = CAT.INTEN # REPLICATE(1,100)

; Determine the monthly total intensity of all stars in array. MONTHLY
; is now a 12-element array.

Structure Input and Output
Structures are read and written using the formatted and unformatted I/O procedures
READ, READF, PRINT, PRINTF, READU, and WRITEU. Structures and arrays

 101

of structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input and Output with Structures

Writing a structure with PRINT, or PRINTF and the default format, outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{ }”. Each array begins a new line.

For example, printing the variable STAR, as defined in the first example in this
chapter, results in the output:

{ SIRIUS 30.0000 40.0000

0.000001.000002.000003.00000
4.000005.000006.000007.00000
8.000009.0000010.000011.0000

}

When reading a structure with READ, or READF and the default format, white
space should separate each element. Reading string elements causes the remainder
of the input line to be stored in the string element, regardless of spaces, etc.

A format specification may be used with any of these procedures overriding the
default formats. The length of string elements is determined by the format specifi-
cation (i.e., to read the next 10 characters into a string field, use an A10 format).
For more information about format specification, see Explicitly Formatted Input
and Output on page 155.

Unformatted Input and Output in Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element without interpretation or modification, except
in the case of strings. Each data type, except strings, has a fixed length expressed
in bytes; this length, with the addition of padding, is also the number of bytes read
or written for each element.

All instances of structures contain an even number of bytes. As with most C com-
pilers, PV-WAVE begins fields that are not of byte type on an even byte boundary.
Thus, a “padding byte” may appear after a byte field to cause the following non-
byte type field to begin on an even byte. A padding byte is never added before a
byte or byte array field. For example, the structure:

{EXAMPLE, T1: 1B, T2: 1}

102 PV-WAVE Programmer’s Guide

occupies four bytes. A padding byte is added after field T1 to cause the integer field
T2 to begin on an even byte boundary.

String Input and Output

Strings are exceptions to the above rules because the length of strings within struc-
tures is not fixed. For example, one instance of the {CATALOG} structure may
contain aNAME field with a five-character name, while another instance of the same
structure may contain a 20-character name.

When reading into a structure field that contains a string, PV-WAVE reads the num-
ber of bytes given by the length of the string. If the string field contains a 10-
character string, 10 characters are read. If the data read contains a null byte, the
length of the string field is truncated, and the null and following characters are
discarded.

When writing fields containing strings with the unformatted procedure WRITEU,
PV-WAVE writes each character of the string and does not append a null byte.

String Length Issues

Reading into or writing out of structures containing strings with READU or
WRITEU is tricky when the strings are not the same length. For example, it would
be difficult for a C program to read variable-length string data written from a PV-
WAVE application because PV-WAVE does not append a null byte to the string
when it is written out. And from the other side of the coin, it is not possible to read
into a string element using READU unless the number of characters to read is
known. One way around this problem is to set the lengths of the string elements to
some maximum length using the STRING function with a format specification.

For example, it is easy to set the length of all NAME fields in the CAT array to 20
characters:

CAT.NAME = STRING(CAT.NAME, Format=’(A20)’)

This statement will truncate names larger than 20 characters long and will pad with
blanks those names shorter than 20 characters. The structure or structure array may
then be output in a format suitable to be read by C or FORTRAN programs.

To read into the CAT array from a file in which each NAME field occupies, for exam-
ple, 26 bytes:

CAT = REPLICATE({ CATALOG, STRING(’ ’, $
Format=’(A26)’), 0., 0., FLTARR(12) }, 100)

; Make a 100-element array of CATALOG structures, storing a
; 26-character string in each NAME field.

 103

READU, 1, CAT

; Read the structure.

As mentioned above, 26 bytes will be read for each NAME field. The presence of a
null byte in the file will truncate the field to the correct number of bytes.

Advanced Structure Usage
Facilities exist to process structures in a general way using tag numbers rather than
tag names. Tags may be referenced using their index, enclosed in parenthesis, as
follows:

Variable_name . (Tag_index)

The tag index ranges from 0 to the number of fields minus 1.

The N_TAGS function returns the number of fields in a structure. The
TAG_NAMES function returns a string array containing the names of each tag.

Example of Tag Indices

Using tag indices, and the above-mentioned functions, we specify a procedure
which reads into a structure from the keyboard. The procedure prompts you with
the type, structure, and tag name of each field within the structure:

PRO READ_STRUCTURE, S

; A procedure to read into a structure, S, from the keyboard with
; prompts.

NAMES = TAG_NAMES(S)

; Get the names of the tags.

FOR I = 0, N_TAGS(S)-1 DO BEGIN

; Loop for each field.
A = S.(I)

; Define variable A of same type and structure as the ith field.
INFO, S.(I)

; Use INFO to print the attributes of the field.
READ, ’Enter value for field ’, $

NAMES(I), ’: ’, A

; Prompt user with tag name of this field, and then read into variable A.
 S.(I) = A

; Store back into structure from A.
ENDFOR

END

104 PV-WAVE Programmer’s Guide

Note, in the above procedure the READ procedure reads into the variable A rather
than S.(I), because S.(I) is an expression, not a simple variable reference.
Expressions are passed by value; variables are passed by reference. The READ
procedure prompts you with parameters passed by value and reads into parameters
passed by reference.

Working with Lists and Associative Arrays
Lists and associative arrays allow you to create dynamic data structures in PV-
WAVE. Lists contain collections of variables and/or expressions. An associative
array is like a list, except each element in an associative array is given a unique
name. This name is then used to reference its associated array element.

Unlike other kinds of arrays, the elements of a list or associative array do not have
to be the same data type. Furthermore, the contents and size of lists and associative
arrays can be modified dynamically, while an application is running.

NOTE A list or associative array definition creates a new data type.

Figure 6-1 A list, shown on top, consists of an array of variables and expressions, which do
not have to be of the same data type. An associative array, shown on the bottom, consists
of pairs of key names (strings) and values (variables or expressions). A list is referenced
using subscript numbers, just like a 1D array. The elements of an associative array are ref-
erenced by key name.

Defining a List

Use the LIST function to create a list:

result = LIST(expr1 ,..., exprn)

where expr1 , ..., exprn are expressions or variables. These expressions or variables
are the elements of the list array.

var1 var2 expr1 var3list_name =

key1 key2 key3assarr_name = var1 var2 expr1

...

...

 105

The elements of a list can be any of the eight basic PV-WAVE data types, other
structures or arrays of structures, and other lists or associative arrays. In addition,
lists and associative arrays can be used as structure fields.

Example

A list is created using the LIST function. The elements in the list do not have to
have the same data type.

lst = LIST(1B, 2.2, ’3.3’, {,a:1, b:lindgen(2)})

The INFO command shows the contents of the list.

INFO, lst, /Full

LST LIST= List(4)

BYTE= 1

FLOAT = 2.20000

STRING = ’3.3’

STRUCT = ** Structure $1, 2 tags, 24 length:

A INT 1

B LONG Array(2)

The PRINT command also shows the contents of the list.

PRINT, lst
{ 1 2.200003.3{ 1 0 1}

Defining an Associative Array

Use the ASARR function to create an associative array. You can call ASARR in the
following two ways:

result = ASARR(key1, expr1 , ..., keyn, exprn)

where key1, expr1 , ..., keyn, exprn are pairs of key names (strings) and expressions
or variables. A key name is a string that uniquely identifies the expression or vari-
able that immediately follows.

result = ASARR(keys_arr, values_list)

where keys is an array of key names (strings) and values is a list array containing
the expressions and/or variables. The first element in the keys array is paired with
(and uniquely identifies) the first element in the values array, and so on.

106 PV-WAVE Programmer’s Guide

Example 1

An associative array is created using the first form of the ASARR function,
described previously. Key names and values are specified as separate parameters.
as = ASARR(’byte’, 1B, ’float’, 2.2, ’string’,$

’3.3’, ’struct’, {,a:1, b:lindgen(2)})

Example 2

An associative array, equivalent to the array in Example 1, is created using the sec-
ond form of the ASARR function, described previously. An array of key names is
created first, followed by an array of values. Note that the values do not have to be
of the same data type.

as=ASARR([’byte’, ’float’, ’string’, ’struct’], $
LIST(1B, 2.2, ’3.3’, {,a:1, b:lindgen(2)}))

The INFO command shows the contents of the associative array.

INFO, as, /Full

AS AS. ARR = Associative Array(4)

byte BYTE = 1

struct STRUCT = ** Structure $3, 2 tags, 12 length:

A INT 1

B LONG Array(2)

float FLOAT = 2.20000

string STRING = ’3.3’

The PRINT command also shows the contents of the array.

PRINT, as

{’byte’ 1 ’struct’{ 1 0 1} ’float’ 2.20000 ’string’3.3 }

Defining a List within a Structure within an Associative
Array

The following example shows how to nest a structure and a list within an associa-
tive array. This example has applications in GUI tool development, where
associative arrays can be used to store information about the attributes of a GUI
tool.

strDef = {Main_Data_Str, attrs:ASARR(), vars: LIST()}

; Define a data structure to hold variables and attributes for a GUI tool.

dataStr = ASARR()

; Create an empty associative array that will hold the GUI tool data structure.

 107

; This array will be filled in later, possibly in another procedure.

dataStr(’Wg1’) = {Main_Data_Str}

; Call the tool Wg1.

dataStr(’Wg1’).attrs(’size’) = [512, 512]

; Set a size attribute for the Wg1 tool.

dataStr(’Wg1’).vars = LIST(’VAR1’, ’VAR2’)

; Set a list of variables for the Wg1 tool.

How to Reference a List

To reference elements in a list, follow the same rules as you would to reference ele-
ments of any 1D array:

variable_name(subscript_list)

where variable_name is a variable that contains a list, and subscript_list is a list of
expressions, constants, or subscript ranges containing the values of one or more
subscripts.

Nested lists are subscripted like multi-dimensional arrays:

variable_name(subscript, subscript, ...)

NOTE If the elements of nested lists are of type structure or associative array, they
follow the same rules for referencing structures or associative arrays.

How to Reference an Associative Array

The basic syntax of a reference to a element of an associative array is:

variable_name (key_name)

where variable_name must be a variable that contains an associative array, and
key_name is the name of the key (a string) and must exist for the associative array.

Embedded, nested associative arrays use a subscripting scheme similar to that of
multi-dimensional arrays:

variable_name(key_name1, key_name2, ...)

NOTE If the elements of nested associative arrays are of type structure or list, they
follow the rules for subscripting structures or lists.

108 PV-WAVE Programmer’s Guide

Supported Operations for Lists

You can perform the following kinds of operations on lists.

Insert

Insert elements expr1 , ..., exprn between the (i–1)-th and i-th element of the list.

lst = [lst(0:i-1), expr1,..., exprn, lst(i:*)]

Append

Append elements expr1, ..., exprn after the last element in the list.

lst = [lst, expr1,..., exprn]

Prepend

Prepend elements expr1, ..., exprn before the first element in the list.

lst = [expr1,...,exprn, lst]

Replace

Replace elements between element start and element end with the elements expr1,
..., exprn .

lst = [lst(0:start), expr1,...exprn, lst(end:*)]

Delete

Delete elements between element start and element end.

lst = [lst(0:start), lst(end:*)]

Create Sublists

The method for creating sublists is the same as creating subarrays. For example:

sublist = lst(from:to)

; Create a sublist from a specific range of elements.

toend = lst(from:*)

; Create a sublist from a specified element to the last element.

startto = lst(0:to)

; Create a sublist from the first element to a specified element.

sublist = lst([0,2,5])

; Create a sublist containing specified elements only.

 109

Enumeration

Lists can be referenced in loops just like other kinds of arrays:

FOR i = 0, N_ELEMENTS(lst) - 1 do BEGIN

lst(i) = lst(i) + 1

; do something with the variable
ENDFOR

Supported Operations For Associative Arrays

You can perform the following kinds of operations on associative arrays:

Create a New Element

If the associative array asa exists, the following statement adds a new expression
to the array with the given key name:

asa(’newkey’) = expr

Concatenate

The following statement concatenates the associative arrays asa1, asa2, ... , asan in
the associative array asa_new.

asa_new = [asa1, asa2,..., asan]

Subset

The following statement creates a new associative array that is a subset of an exist-
ing associative array.

NOTE Only the key names are required to specify the subset.

asa_sub = asa([’key1’, ’key2’])

Retrieve Keys

The ASKEYS function returns the key names for an associative array.

keys = ASKEYS(asa)

The following statements show how you can enumerate associative array elements.

keys = ASKEYS(asa)

for i = 0, N_ELEMENTS(asa) - 1 do asa(keys(i)) = expr

110 PV-WAVE Programmer’s Guide

Test for Keys

The ISASKEY function lets you test for the presence of a key name in an associa-
tive array.

result = ISASKEY(asa, ’key’)

Lists, Associative Arrays Input and Output

To read and write lists and associative arrays, use the procedures READ, READF,
PRINT, and PRINTF. Lists and associative arrays are transferred in much the same
way as simple data types, with each element of the list or associative array trans-
ferred in order.

Writing a List or Associative Array with PRINT or PRINTF

You can write a list or an associative array with PRINT or PRINTF. By default,
each element of the list or associative array is output in the default format of the
element’s data type. The entire list or associative array is enclosed in { } (braces).
Each value of an associative array element is preceded by the key name enclosed
in ” ” (double quotes).

Example

The contents of an associative array are printed with the PRINT command. This
example uses the same code that was used previously to demonstrate nesting.

strDef = {Main_Data_Str, attrs:ASARR(), vars: LIST()}

; Define a data structure to hold variables and attributes for a GUI tool.

dataStr = ASARR()

; Create an empty associative array that will hold the GUI tool data structure.
; This array will be filled in later, possibly in another procedure.

dataStr(’Wg1’) = {Main_Data_Str}

; Call the tool Wg1.

dataStr(’Wg1’).attrs(’size’) = [512, 512]

; Set a size attribute for the Wg1 tool.

dataStr(’Wg1’).vars = LIST(’VAR1’, ’VAR2’)

; Set a list of variables for the Wg1 tool.

PRINT, dataStr

; Print the contents of the associative array.

{’Wg1’{{’size’ 512 512}{ VAR1 VAR2}}}

 111

Reading a List or Associative Array with READ or READF

You can read data into an associative array or list using the READ or READF func-
tion. The method for doing this is similar to reading data into a structure; however,
associative array elements must be read in a particular order. You can determine
this order with the ASKEYS function, as shown in the following example:

as = ASARR(’byte’, 1B, ’float’, 2.2, ’string’,$
’hello’, ’struct’, {,a:1, b:lindgen(2)})

; Create an associative array.

PRINT, ASKEYS(as)
byte struct float string

; Get the correct order of elements in the associative array. Note that the order
; is different than the order of the parameters in the ASARR function used to
; create the array.

READ, as

: 4 5 6 7 8.8 hello

; Read in some data. Input to READ and READF must be separated by at least
; one space.

PRINT, as
{”byte” 4 ”struct”{ 5 6 7 }
”float” 8.80000 ”string” hello}

112 PV-WAVE Programmer’s Guide

113

CHAPTER

7

Working with Text
Working with text in PV-WAVE is equivalent to working with strings. A string is a
sequence of 0 to 32,767 characters. Strings have dynamic length (they grow or
shrink to fit), and there is no need to declare the maximum length of a string prior
to using it. As with any data type, string arrays can be created to hold more than a
single string. In this case, the length of each individual string in the array depends
only on its own length, and is not affected by the lengths of the other string
elements.

Example String Array
In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element,
and is created using the statement:

TREES = [’Beech’, ’Birch’, ’Mahogany’, $
’Maple’, ’Oak’, ’Pine’, ’Walnut’]

Executing:

PRINT, ’>’ + TREES + ’<’

results in the output:

>Beech< >Birch< >Mahogany< >Maple< >Oak< >Pine< >Walnut<

114 PV-WAVE Programmer’s Guide

Basic String Operations
PV-WAVE supports several basic string operations.

Concatenating Strings

The addition operator, +, is used to concatenate strings.

Formatting

The STRING function is used to format data into a string.

Converting to Upper or Lower Case

The STRLOWCASE function returns a copy of its string argument converted to
lower case. Similarly, the STRUPCASE function converts its argument to upper
case.

Removing White Space

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Determining String Length

The STRLEN function returns the length of its string argument.

Manipulating Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract sub-
strings from their string arguments.

Concatenating Strings
The addition operator concatenates strings. For example, the command:

A = ’This is ’ + ’a concatenation example.’

PRINT, A

results in the output:

This is a concatenation example.

The following statements build a scalar string containing a list of the names found
in the TREES string array separated by commas:

 115

NAMES = ’’

; The list of names.

FOR I = 0, 6 DO BEGIN

IF (I NE 0) THEN NAMES = NAMES + ’, ’

; Add comma before next name.

NAMES = NAMES + TREES(I)

; Add the new name to the end of the list.

ENDFOR

PRINT, NAMES

; Show the resulting list.

Running the above statements gives the result:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut

String Formatting
The STRING function has the form:

result = STRING(Expression1, ..., Expressionn)

It converts its parameters to characters, returning the result as a string expression.
It is very similar to the PRINT statement, except that its output is placed into a
string rather than being output to the screen. As with PRINT, the Format keyword
can be used to explicitly specify the desired format. See the discussions of free for-
mat and explicitly formatted I/O in Choosing Between Free or Fixed (Explicitly
Formatted) ASCII I/O on page 148 for details on data formatting.

As a simple example, the following statements:

A = STRING(Format=’("The values are:", $
/, (I))’, INDGEN(5))

; Produce a string array.

INFO, A

; Show its structure.

FOR I = 0, 5 DO PRINT, A(I)

; Print the result.

produce the following output:

A STRING = Array(6)

The values are:

0
1

116 PV-WAVE Programmer’s Guide

2
3
4

Using STRING with Byte Arguments

There is a close association between a string and a byte array — a string is simply
an array of bytes that is treated as a series of ASCII characters. It is therefore con-
venient to be able to switch between them easily.

When STRING is called with a single argument of type byte and the Format key-
word is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing
the byte values from the original argument. Thus, the result has one less dimension
than the original argument. A two-dimensional byte array becomes a vector of
strings, a byte vector becomes a scalar string. However, a byte scalar also becomes
a string scalar. For example, the statement:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output:

Hello

This occurs because the argument to STRING, as produced by the array concate-
nation operator [], is a byte vector. Its first element is 72Bwhich is the ASCII code
for “H”, the second is 101B which is an ASCII “e”, and so forth.

As discussed in the section Explicitly Formatted Input and Output on page 155, it
is easier to read fixed length string data from binary files into byte variables instead
of string variables. It is therefore convenient to read the data into a byte array and
use this special behavior of STRING to convert the data into string form.

Another use for this feature builds strings that have unprintable characters in them
in a way that doesn’t actually require entering the character directly. This results in
programs that are easier to read, and which also avoid file transfer difficulties.
(Some forms of file transfer have problems transferring unprintable characters).

For example:

tab = STRING(9B)

; 9 is the decimal ASCII code for the tab character.

bel = STRING(7B)

; 7 is the decimal ASCII code for the bell character.

PRINT, ’There is a’, tab, ’tab here.’, bel

; Output a line containing a tab character, and ring the terminal bell.

Executing these statements gives the output:

 117

There is a tab here.

and rings the bell.

Applying the STRING function to a byte array containing a null (zero) value will
result in the resulting string being truncated at that position. Thus, the statement:

PRINT, STRING([65B, 66B, 0B, 67B])

produces the output:

AB

because the null byte in the third position of the byte array argument terminates the
string and hides the last character.

The BYTE function, when called with a single argument of type string, performs
the inverse operation to that described here, resulting in a byte array containing the
same byte values as its string argument. For additional information about the
BYTE function, see Type Conversion Functions on page 32.

Converting Strings to Upper or Lower Case
The STRLOWCASE and STRUPCASE functions convert their arguments to lower
or upper case. They have the form:

result = STRLOWCASE(string)
result = STRUPCASE(string)

where string is the string to be converted to lower or upper case.

The following statements generate a table of the contents of TREES showing each
name in its actual case, lower case, and upper case:

FOR I = 0, 6 DO PRINT, TREES(I), STRLOWCASE(TREES(I)), $
STRUPCASE(TREES(I)), Format = ’(A,T15,A,T30,A)’

The resulting output from running this statement is:

Beech beech BEECH
Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE
Oak oak OAK
Pine pine PINE
Walnut walnut WALNUT

118 PV-WAVE Programmer’s Guide

A common use for case folding occurs when writing procedures that require input
from the user. By folding the case of the response, it is possible to handle responses
written in any case. For example, the following statements can be used to ask “Yes
or No” style questions:

ANSWER = ’’

; Create a string variable to hold the response.

READ, ’Answer Yes or No: ’, ANSWER

IF (STRUPCASE(ANSWER) EQ ’YES’) THEN
PRINT, ’Yes’ else PRINT, ’No’

; Compare the response to the expected answer.

Removing White Space from Strings
The STRCOMPRESS and STRTRIM functions remove unwanted white space
(tabs and spaces) from a string. This can be useful when reading string data from
arbitrarily formatted strings.

STRCOMPRESS returns a copy of its string argument with all white space
replaced with a single space, or completely removed. It has the form:

result = STRCOMPRESS(string)

where string is the string to be compressed. The default action is to replace each
section of white space with a single space. Use of the Remove_All keyword causes
white space to be completely eliminated. For example:

A = ’ This is a poorly spaced sentence.’

; Create a string with undesirable white space. Such a string might
; be the result of reading user input with a READ statement.

PRINT, ’>’, STRCOMPRESS(A), ’<’

; Print the result of shrinking all white space to a single blank.

PRINT, ’>’, STRCOMPRESS(A, /REMOVE_ALL), ’<’

; Print the result of removing all white space.

results in the output:

> This is a poorly spaced sentence.<
>Thisisapoorlyspacedsentence.<

STRTRIM returns a copy of its string argument with leading and/or trailing white
space removed. It has the form:

result = STRTRIM(string[, flag])

 119

where string is the string to be trimmed and flag is an integer that indicates the spe-
cific trimming to be done. If flag is 0, or is not present, trailing white space is
removed. If it is 1, leading white space is removed. Both are removed if it is equal
to 2.

As an example:

A = ’ This string has leading and ’ + $
’trailing white space ’

; Create a string with unwanted leading and trailing blanks.

PRINT, ’>’, STRTRIM(A), ’<’

; Remove trailing white space.

PRINT, ’>’, STRTRIM(A, 1), ’<’

; Remove leading white space.

PRINT, ’>’, STRTRIM(A, 2), ’<’

; Remove both.

Executing these statements produces the output:

> This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

When processing string data, it is often useful to be able to remove leading and
trailing white space and shrink any white space in the middle down to single
spaces. STRCOMPRESS and STRTRIM can be combined to handle this:

A = ’ Yet another poorly spaced ’ + $
’sentence.’

; Create a string with undesirable white space.

PRINT, ’>’, STRCOMPRESS(STRTRIM(A, 2)), ’<’

; Eliminate unwanted white space.

Executing these statements gives the result:

>Yet another poorly spaced sentence.<

Determining the Length of Strings
The STRLEN function obtains the length of a string. It has the form:

result = STRLEN(string)

where string is the string for which the length is required.

For example, the following statement:

120 PV-WAVE Programmer’s Guide

PRINT, STRLEN(’This sentence has 31 ’ +$
’characters’)

results in the output:

31

while the following statement prints the lengths of all the names contained in the
array TREES:

PRINT, STRLEN(TREES)

The resulting output from running this statement is:

5 5 8 5 3 4 6

Manipulating Substrings
The STRPOS, STRPUT, and STRMID routines locate, insert, and extract sub-
strings from their string arguments.

The STRPOS function is used to search for the first occurrence of a substring. It
has the form:

result = STRPOS(object, search_string[, pos])

where object is the string to be searched, search_string is the substring to search
for, and pos is the character position (starting with position 0) at which the search
is begun. The argument pos is optional. If it is omitted, the search is started at the
first character (character position 0). The following statements count the number of
times that the word dog appears in the string dog cat duck rabbit dog
cat dog:

ANIMALS = ’dog cat duck rabbit dog cat dog’

; The string to search — dog appears 3 times.

I = 0

; Start searching in character position 0

CNT = 0

; Number of occurrences found

WHILE (I NE -1) DO BEGIN

I = STRPOS(ANIMALS, ’dog’, I)

; Search for an occurrence
IF (I NE -1) THEN BEGIN CNT = CNT + 1 & $
I = I + 1 & END

; If one is found, count it and advance to the next character position.

ENDWHILE

PRINT, ’Found ’, cnt, " occurrences of ’dog’"

 121

Running the above statements produces the result:

Found 3 occurrences of ’dog’

The STRPUT procedure inserts the contents of one string into another. It has the
form:

STRPUT, destination, source [, position]

where destination is the string to be inserted into, source is the string to be inserted,
and position is the first character position within destination at which source will
be inserted. The argument position is an optional argument. If it is omitted, the
insertion is started at the first character (character position 0). The following state-
ments use STRPOS and STRPUT to replace every occurrence of the word dog
with the word CAT in the string dog cat duck rabbit dog cat dog:

ANIMALS = ’dog cat duck rabbit dog cat dog’

; The string to modify — dog appears 3 times.

WHILE (((I = STRPOS(ANIMALS, ’dog’))) NE -1) DO STRPUT, ANIMALS,
’CAT’, I

; While any occurrence of dog exists, replace it.

PRINT, ANIMALS

Running the above statements produces the result:

CAT cat duck rabbit CAT cat CAT

The STRMID function extracts substrings from a larger string. It has the form:

result = STRMID(expression, position, length)

where expression is the string from which the substring will be extracted, position
is the starting position within expression of the substring (the first position is posi-
tion 0), and length is the length of the substring to extract. If there are not length
characters following position, then the substring will be truncated. The following
statements use STRMID to print a table matching the number of each month with
its three-letter abbreviation:

MONTHS = ’JANFEBMARAPRMAYJUNJULAUGSEP’ +$
’OCTNOVDEC’

; String containing all the month names.

FOR I = 1, 12 DO PRINT, I,’ ’,
STRMID(MONTHS, (I - 1) * 3, 3)

; Extract each name in turn. The equation (I–1)* 3 calculates
; the position within MONTH for each abbreviation.

The result of executing these statements is:

1 JAN

122 PV-WAVE Programmer’s Guide

Using Non-string and Non-scalar Arguments
Most of the string processing routines described in this chapter expect at least one
argument, which is the string on which they act.

If the argument is not of string type, it is converted to string type according to the
same default formatting rules that are used by the PRINT, or STRING routines.
The function then operates on the converted result. Thus, the statement:

PRINT, STRLEN(23)

returns the result:

8

because the argument 23 is first converted to the string
' 23' which happens to be a string of length eight.

If the argument is an array instead of a scalar, the function returns an array result
with the same structure as the argument. Each element of the result corresponds to
an element of the argument.

For example, the following statements:

A = STRUPCASE(TREES)

; Get an uppercase version of TREES.

INFO, A

; Show that the result is also an array.

PRINT, TREES

; Display the original.

2 FEB

3 MAR

4 APR

5 MAY

6 JUN

7 JUL

8 AUG

9 SEP

10 OCT

11 NOV

12 DEC

 123

PRINT, A

; Display the result.

results in the output:

A STRING = Array(7)

Beech Birch Mahogany Maple Oak Pine Walnut

BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the indi-
vidual descriptions in the PV-WAVE Reference.

Using Regular Expressions
To use the PV-WAVE string handling functions STRMATCH, STRSPLIT, and
STRSUBST, you must understand how regular expressions work.

Regular expressions are used in UNIX-based utilities such as grep, egrep, awk,
and ed. UNIX users are probably familiar with the powerful pattern matching
capabilities of regular expressions.

NOTE Regular expressions are not the same as wildcard characters. See the sec-
tion Regular Expressions vs. Wildcard Characters on page 127 for information on
this common source of confusion.

This section provides an elementary introduction to regular expressions. Addi-
tional sources of information on regular expressions are listed at the end of this
section.

Simple Regular Expressions: A Brief Introduction

This section introduces some simple regular expression examples. More complex
examples are presented in Practical Regular Expression Examples on page 126.

Regular expressions can be very complex. Indeed, entire books have been written
on the subject of regular expressions. Regular expressions normally consist of
characters that you wish to match and special characters that perform specific pat-
tern matching functions. For a list of commonly used special characters see Basic
Special Characters Used In Regular Expressions on page 125.

In PV-WAVE, the STRMATCH, STRSPLIT, and STRSUBST commands take reg-
ular expression arguments to perform pattern matching operations. The following
examples demonstrate the use of regular expressions in the STRMATCH function.

124 PV-WAVE Programmer’s Guide

Matching a Single Character

The regular expression special character ’.’ (dot) matches any single character
except a newline.

For example, the regular expression used in the STRMATCH function:

result=STRMATCH(string, ’.at’)

matches any string containing the following sequence of characters:
bat

cat

mat

oat

Matching Zero or More Characters

The regular expression special character ’*’ (asterisk) matches zero or more of
the preceding character.

For example, the regular expression used in the STRMATCH function:

result=STRMATCH(string, ’x*y’)

matches the following strings (zero or more “x” characters, followed by a single
“y”):
y

xy

xxy

xxxy

Matching One or More Characters

The regular expression special character ’+’ (plus) matches one or more of the
preceding character.

For example, the regular expression used in the STRMATCH function:

result=STRMATCH(string, ’x+y’)

matches the following strings:
xy

xxy

xxxy

 125

Other Special Characters

Other characters — such as brackets, braces, parentheses, back-slashes and so on
— also have meaning in a regular expression, depending on the regular expression
syntax used.

See the table in the following section for a list of the most basic regular expression
special characters.

Basic Special Characters Used In Regular Expressions

The following table lists the most basic regular expression special characters and
explains what they match.

Special
Character

Matches

. any single character except newline

^ the first character of the string (when used as the first character in the
regular expression)

$ the last character of the string (when used as the last character in the
regular expression)

* zero or more of the preceding character. (This character is a modifier,
which means that it specifies how many times you expect to see the
preceding character. Therefore, this character is only significant if it is
preceded by another character.)

+ one or more of the preceding character. (This character is also a modi-
fier, because it must be preceded by another character.)

? zero or one of the preceding character. (This character is also a modifier,
because it must be preceded by another character.)

[...] a single character that is in the enclosed group of characters; either a list
of characters, like [abc], or a range of characters, like [0-9], or both [0-9
ABC w-z]

[^ ...] any character except those enclosed in the square brackets, like [^0-9]

| acts as an OR operator, separating two regular expressions

() encloses sub-expressions (used for grouping and for the registers
variable in the STRMATCH function)

126 PV-WAVE Programmer’s Guide

Escaping Special Characters

To match a special character as you would a normal character, you must “escape
it” by preceding it with a backslash (\). Note, however, that in PV-WAVE strings,
two backslashes translate to a single backslash. For example, to match a period (.)
in a regular expression in a PV-WAVE function, you must use ’\\.’

NOTE To match a single backslash in a PV-WAVE string, you have to use two
pairs of backslashes ’\\\\’. Each pair, in PV-WAVE strings, makes a single
backslash, thus you end up with a single escaped backslash. In other words, the first
pair of backslashes is the “escape” character, and the second pair is the “escaped”
backslash.

TIP If you get confused writing strings with multiple backslashes in PV-WAVE,
you can print the string to see what you get. For example:

PRINT, ’\\\\’

\\

Practical Regular Expression Examples

Assume that string is a string array defined in PV-WAVE. The following PV-
WAVE commands demonstrate the regular expression pattern matching used in the
STRMATCH command.

result=STRMATCH(string, ’a’)

Matches any string containing the character ’a’.

result=STRMATCH(string, ’^[CcBb]at’)

Matches any string beginning (^) with Cat, bat, and so on: ’Cat Woman’,
’catatonic’, ’Batman, the animated series’; but does not match: ’ cat’
(begins with a space), ’cab’, and so on.

result=STRMATCH(string, ’Ll+’)

Matches any string containing ’L’ followed by one or more occurrences of ’l’: ’Get
a Llama’ matches; ’larry the llama’ does not match (first l in llama is lower
case).

result=STRMATCH(string, ’^[^C].*x$’)

Matches a string that starts (^) with any character that is not ’C’ ([^C]), and is fol-
lowed by zero or more other characters (.*), and ends with ’x’ (x$). The patterns
’ux’, ’under stdfx’, and ’corx’ match; ’x’ does not match (x matches the
[^C], but there’s nothing to match the x$).

 127

result=STRMATCH(string, ’\\.’)

Matches any string containing a period. ’3.14159’ matches; ’the quick brown
fox’ does not match. Remember that it takes two backslashes in a PV-WAVE string to
produce the single backslash that “escapes” the dot (.), as explained previously.

result=STRMATCH(string, ’.’)

Matches any string containing any character (that is, any non-null string).

result=STRMATCH(string, ’^$’)

Matches only empty strings (start and end with nothing in between).

result=STRMATCH(string, ’^ *$’)

Matches either blank or null strings (Between the beginning (^) and the end ($) there
are only zero or more spaces (*)).

result=STRMATCH(string, ’^...$’)

Matches only three-character strings.

result=STRMATCH(string, ’^...+$’)

Matches strings three characters or longer.

result=STRMATCH(string, ’^[\011]*[-+]?[0-9]+[\011]*$’)

This interesting example matches any integer number, possibly surrounded by spaces
and/or tabs. This expression means:
From the beginning of the string (^), zero or more spaces or tabs (\011 is the octal
ASCII number for a tab character), zero or one sign [-+], one or more digit [0-9],
zero or more spaces/tabs, and finally match the end of string.

Regular Expressions vs. Wildcard Characters

Many users understandably confuse wildcard characters and regular expressions,
because both are used for pattern matching, and because some of the same charac-
ters, like asterisk (*), question mark (?), and square brackets ([]), are used in both,
yet have different meanings.

NOTE Wildcard characters are commonly used in file matching contexts on
Microsoft Windows systems. On UNIX systems, wildcards are used in the Bourne
shell and C shell, as well as in the commands find and cpio. The most common
wildcard is the asterisk (*), which matches any group of characters.

A common misconception is that the asterisk (*) is a wildcard character in regular
expressions. In regular expressions, asterisk (*) means “match zero or more of the
preceding character.”

To make a “wildcard” (that is, an expression that matches anything) with regular
expressions, you must use ’.*’ (dot asterisk). This expression means, “match
zero or more of any character.”

128 PV-WAVE Programmer’s Guide

Example of Wildcards vs. Regular Expressions

For example, most computer users have used the asterisk (*) as a wildcard charac-
ter in system commands such as ls and dir. For example:

dir file.*

is a wildcard expression that matches anything that begins with “file.”, such as
file.c, file.o, file.dat, file.pro, and so on.

However, the regular expression character * means something entirely different
from the wildcard character *. In regular expressions, the asterisk means match
zero or more of the preceding character.

Therefore, the regular expression, ’file.*’, would match:

file.dat

myfile.c

myfile

myfiles

This result is quite different from the wildcard example shown previously.

Regular Expressions are Versatile

You can, of course, construct a regular expression that is equivalent to the wildcard
expression shown previously. Here is a regular expression that performs the same
pattern matching function as the wildcard expression file.*:

’^file\\..*’

Here, the caret (^) matches the beginning of the string. The “\\.” matches a single
dot (.), and the “.*” matches zero or more of any characters.

For More Information

For an excellent explanation of regular expressions, see:

• UNIX Power Tools, Jerry Peek, Tim O’Reilly, and Mike Loukides, O’Reilly &
Associates/Bantam, 1993.

• Mastering Regular Expressions: Powerful Techniques for Perl and Other
Tools, Jeffry Friedl, O’Reilly & Associates, 1997.

Many general books on UNIX programming contain information on regular
expressions. In addition, books on the Perl programming language usually explain

 129

regular expressions in detail (Perl uses regular expressions extensively). For exam-
ple, see:

• Programming Perl, Larry Wall, Tom Christiansen, and Randal L. Schwartz,
O’Reilly & Associates, Inc., Second Edition, 1996.

UNIX users can find regular expressions explained in the man page for the ed
command.

130 PV-WAVE Programmer’s Guide

131

CHAPTER

8

Working with Data Files
PV-WAVE provides many alternatives for working with data files. There are few
restrictions imposed on data files and there is no unique PV-WAVE format. This
chapter describes input and output methods and routines, and gives examples of
programs that read and write data using PV-WAVE, C, and FORTRAN commands.

NOTE If you work with Hierarchical Data Format (HDF) files, then refer also to
The PV-WAVE HDF Interface in the PV-WAVE Reference for details on how to
access HDF functions from within PV-WAVE.

Simple Examples of Input and Output
PV-WAVE variables point to portions of memory that are set aside during a session
to store data. The first step in analyzing data is usually to transfer it into PV-WAVE
variables.

This section provides a “birds-eye view” of how PV-WAVE I/O (Input/Output)
works by providing some examples showing how data is transferred in and out of
variables.

Example 1 — Input

The following example illustrates how easy it is to read a single column of data
points contained in the file data1.dat into a variable flow. The data points can
then be plotted. The file data1.dat contains the data points:

132 PV-WAVE Programmer’s Guide

23.2

34.7

78.1

46.5

44.4

Try entering the following commands to read and plot the data points:

status = DC_READ_FREE(’data1.dat’, flow)

; DC_READ_FREE handles the opening and closing of the file. It
; takes the values in the file “data1.dat” and places them into a
; floating-point variable named flow. The variable flow is dimensioned
; to match the number of points read from the file. The returned value
; status can be checked to see if the process completed successfully.

PLOT, flow

; Display the variable flow in a window.

With two commands, the data is transferred from the file into the variable flow
and displayed in a window.

An alternate set of commands that achieves a similar result is shown below.

flow = FLTARR(9)

; Define a variable that holds a single column of data containing
; 9 data points. Even though there are only 5 data points in the
; file, the array is made larger so that data points can be added later.

OPENR, 1, ’data1.dat’

; Open the file “data1.dat” for reading.
READF, 1, flow

; Read the data from the file into the variable flow.
CLOSE, 1

; Close the file.
PLOT, flow

; Display the variable flow in a window.

Example 2 — Output

Here’s a simple example showing how you can transfer data from a variable to a
file:

ylow = [77, 63, 42, 56]

; Define ylow to be a vector of integers.

status = DC_WRITE_FREE(’data2.dat’, ylow, $
/Column)

; DC_WRITE_FREE handles the opening and closing of the file. It
; takes the values in “ylow” and stores them in a file named
; “data2.dat”. Because the Column keyword was supplied, each

 133

; value is written on a different line of the file. The returned value
; status can be checked to see if the process completed successfully.

Or you can use the OPENW command to create a new file that contains these same
values:

OPENW, 2, ’data3.dat’

; Open the file “data3.dat” for writing.
PRINTF, 2, ’77’

PRINTF, 2, ’63’

PRINTF, 2, ’42’

PRINTF, 2, ’56’

; Write the values to the file, each value on a new line.
CLOSE, 2

; Close the file.

Now use the following commands to change a data point in the existing file
data3.dat:

OPENU, 1, ’data3.dat’

; Open the file “data3.dat” for updating.
PRINTF, 1, ’89’

; Replaces the value 77 with the new value 89.
CLOSE, 1

; Close the file.

Now the contents of data3.dat look like:

89

63

42

56

Conclusion

These two examples have introduced you to a few of the commands that are avail-
able for reading and writing data. The rest of this chapter elaborates on the various
commands and concepts that you need to know to confidently transfer data in and
out of PV-WAVE.

Opening and Closing Files
PV-WAVE has several commands for opening and closing data files; you select the
command that matches the way you intend to use the file.

134 PV-WAVE Programmer’s Guide

Opening Files

Before a file can be processed by PV-WAVE, it must be opened and associated with
a number called the logical unit number, or LUN for short. All I/O is done by spec-
ifying the LUN, not the filename.

The LUN is supplied as part of the function call. For example, to open the file
named data.dat for reading on file unit 1, you would enter the following
command:

OPENR, 1, ’data.dat’

Once the file is opened, you can choose between several I/O routines. Each routine
fills a particular need — the one to use depends on the particular situation. Refer to
the examples in this chapter to get an idea of how (and when) to open and close
data files.

NOTE If you are using one of the I/O routines that start with the letters “DC”, you
do not need to explicitly open and close the file, because these steps happen auto-
matically. For more details, refer to Functions for Simplified Data Connection on
page 146.

Basic Commands for Opening Files

The three main OPEN commands are listed in the following table:

The general form for using any of the OPEN procedures is:

OPENx, unit, filename

where unit refers to the logical file unit that will be allocated for opening the file
named filename, and x is either an R, W, or U, depending on which of the three
OPEN commands you choose to use.

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. Under UNIX and Windows,
if the named file already exists, the previous contents are
destroyed. Under OpenVMS, a file with the same name and a
higher version number is created.

OPENU Opens an existing file for input and output.

 135

NOTE The three commands shown above recognize keywords that modify their
normal behavior. Some keywords are generally applicable, while others only have
effect under a given operating system. For more information about keywords, refer
to the descriptions for the OPENR, OPENW, and OPENU procedures. These
descriptions can be found in the PV-WAVE Reference.

When to Open the File for I/O (Input/Output)

Usually you must open the file before any I/O can be performed. But there are two
situations where you don’t need to open the file before doing any I/O:

• Reserved LUNs — There are three file units that are always open — in fact,
the user is not allowed to close them. These files are standard input (usually
the keyboard), standard output (usually the workstation’s screen), and stan-
dard error output (usually the workstation’s screen). These three files are
associated with LUNs 0, –1, and –2 respectively. Because these file units are
always open, you do not need to open them prior to using them for I/O. For
more information about the three reserved file units, refer to Reserved Logical
Unit Numbers (–2, –1, 0) on page 136.

• Simplified I/O Routines — Any I/O function that begins with the two letters
“DC” automatically handles the opening and closing of the file unit. This group
of functions has been provided to simplify the process of getting your data in
and out of PV-WAVE. For more information about the DC I/O functions, refer
to Functions for Simplified Data Connection on page 146.

Closing Files

Always close the file when you are done using it. Closing a file removes the asso-
ciation between the file and its LUN and thus frees the LUN for use with a different
file. There is usually an operating-system-imposed limit on the number of files you
may have open at once. Although this number is large enough that it rarely causes
problems, you may occasionally need to close a file before opening another file. In
any event, it is a good idea to only keep needed files open.

Closing a LUN is done with the CLOSE procedure. For example, to close file unit
1, enter this command:

CLOSE, 1

Also, remember that PV-WAVE closes all open files as it shuts down. Any LUN
you allocated is automatically deallocated when you exit PV-WAVE with the EXIT
or QUIT command.

136 PV-WAVE Programmer’s Guide

NOTE If FREE_LUN is called with a file unit number that was previously allo-
cated by GET_LUN, it calls CLOSE before deallocating the file unit.

Logical Unit Numbers (LUNs)
PV-WAVE logical unit numbers are in the range {–2…128}; they are divided into
three groups:

Reserved Logical Unit Numbers (–2, –1, 0)

0, –1, and –2 are special file units that are always open within PV-WAVE:

• 0 (zero) — The standard input stream, which is usually the keyboard. This
implies that the statement:

READ, X

is equivalent to

READF, 0, X

The user would then enter the values of X from the keyboard, as shown in the
following statements:

READ, X

: 0.2, 0.4, 0.6

The line preceded with the colon (:) denotes user input.

• –1 (negative 1) — The standard output stream, which is usually the worksta-
tion’s screen. This implies that the statement:

PRINT, X

is equivalent to

PRINTF, -1, X

The following command can be used to send a message to the screen:

PRINT, ’Hello World.’

The following line:

Hello World.

is sent to the workstation’s screen.

 137

• –2 (negative 2) — The standard error stream, which is usually the worksta-
tion’s screen.

Because the READ and PRINT procedures automatically use the standard input
and output streams (files) by default, basic ASCII
I/O is extremely simple.

Operating System Dependencies

The reserved files units have a special meaning which is operating-system depen-
dent, as explained in the following sections:

UNIX

The reserved LUNs are equated to stdin, stdout, and stderr respectively.
This means that the normal UNIX file redirection and pipe operations work with
PV-WAVE. For example, the shell command:

% wave < wave.inp > wave.out &

causes PV-WAVE to execute in the background, reading its input from the file
wave.inp and writing its output to the file wave.out.

OpenVMS

The reserved LUNs are equated to SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR respectively. This means that the DCL DEFINE statement can be
used to redefine where PV-WAVE gets commands and writes its output. It also
means that PV-WAVE can be used in command and batch files.

Logical Unit Numbers for General Use (1…99)

These are file units for normal interactive use. When using PV-WAVE interactively,
you can select any number in this range.

The following statements show how a string, “Hello World.”, could be sent to a file
named hello.dat:

OPENW, 1, ’hello.dat’

; Open LUN 1 for hello.dat with write access.

PRINTF, 1, ’Hello World.’

; Insert the string “Hello World.” into the file hello.dat.

CLOSE, 1

; You're done with the file, so close it.

138 PV-WAVE Programmer’s Guide

Logical Unit Numbers Used by GET_LUN/FREE_LUN
(100…128)

These are file units that are managed by the GET_LUN and FREE_LUN proce-
dures. GET_LUN and FREE_LUN provide a standard mechanism for routines to
obtain a LUN.

GET_LUN allocates a file unit from a pool of free units in the range {100…128}.
This unit will not be allocated again until it is released by a call to FREE_LUN.
Meanwhile, it is available for the exclusive use of the program that allocated it.

CAUTION When writing procedures and functions, be sure not to explicitly
assign file unit numbers in the range {100…128}. If a procedure or function reads
or writes to an explicitly assigned file unit, there is a chance it will conflict with
other routines that are using the same unit. Always use the GET_LUN and
FREE_LUN procedures to manage LUNs.

Sample Usage — GET_LUN and FREE_LUN

A typical procedure that needs a file unit might be structured in the following way:

PRO demo
OPENR, Unit, ’file.dat’, /GET_LUN

; Get a unique file unit and open the file.

.

. (Other commands go here.)

.

FREE_LUN, Unit

; Return the file unit number. Since the file is still open,
; FREE_LUN will automatically call CLOSE.

END

NOTE All procedures and functions that open files, including those that you write
yourself, should use GET_LUN and FREE_LUN to obtain file units. Never use a
file unit in the range {100…128} unless it was previously allocated with
GET_LUN.

 139

How is the Data File Organized?
In ASCII files, the file can either be organized by rows or columns; the fact that
ASCII files are human-readable helps you interpret their contents. In binary files,
however, the organization of the file may be considerably less clear; you need to
know something about the application that created the file, and understand the
operating system under which the application was running to fully understand the
organization of the file.

Column-Oriented ASCII Data Files

A column-oriented data file is one that contains multiple data values arranged in
columns; because it is ASCII, the data is human-readable. At the end of each row
is a control character, such as Ctrl-J or Ctrl-M, that forces a line feed and carriage
return.

In a column-oriented file, the values in each column are related in some way; ulti-
mately, you will probably want to group all the data in each column into a different
variable for further analysis. A typical column-oriented data file is shown in Figure
8-1.

NOTE Not all files that contain columns of values contain column-oriented data.
For example, if you are reading every value in the file into the same variable, the
file is probably a row-oriented file, despite its apparent columnar organization. The
organization of row-oriented files is discussed further in Row-Oriented ASCII Data
Files on page 140.

140 PV-WAVE Programmer’s Guide

Figure 8-1 Typical file organization for a column-oriented ASCII data import file. In this
example, the first column of data is associated with a variable named Month, the second col-
umn with a variable named Hour, the third column with a variable named Fahrenheit, the
fourth column with a variable named CO, and the fifth column with a variable named SO2.

Row-Oriented ASCII Data Files

A row-oriented data file is one that contains multiple data values arranged in a con-
tinuous stream; because it is ASCII, the data is human-readable. When reading this
kind of file, the size of the variables in the variable list determines how many values
get transferred. The data type of the variables also influences how the data gets
interpreted, because if the data is not the expected type, PV-WAVE performs type
conversion as it reads the data. A typical row-oriented data file is shown in Figure
8-2.

JAN 0 33.4110 0.5382 0.2683
JAN 2 33.7718 0.3849 0.2465
JAN 4 34.2258 0.3116 0.2465
JAN 6 34.6347 1.4532 0.4215
JAN 8 38.8444 2.0452 0.7581
JAN 10 44.7400 0.7629 0.7511
JAN 12 47.4997 0.2935 0.6559
JAN 14 47.5487 0.8376 0.7142
JAN 16 44.5487 0.8376 0.7142
JAN 18 39.4317 1.5540 0.5852
JAN 20 36.9194 0.8124 0.4210
JAN 22 35.4489 0.6462 0.3712
FEB 0 30.4813 0.4902 1.2768
FEB 2 29.8589 1.3381
FEB 4 29.9985 0.3262
FEB 6 33.8292
FEB 8
FEB 10

Name: Month

Name: Hour

Name: Fahrenheit

Name: CO

Name: SO2

Type: Integer

Type: Float
Dimension 1: *

Type: Float
Dimension 1: *

Type: Float
Dimension 1: *

Type: String
Dimension 1: *

Dimension 1: *

 141

Figure 8-2 Typical file organization for a row-oriented ASCII data import file. Spaces are
being used as the delimiter to separate adjacent data values. In this example, the first group
of data is associated with a variable named Source, the second group with a variable named
Date, the third group with a variable named Bin, the fourth group with a variable named
Chute, the fifth group with a variable named Mill, and the sixth group with a variable named
Phase_Shift.

How Long is a Record?

It can be important to understand the concept of records, especially if you are per-
forming certain types of I/O. The following sections discuss records, both in the
context of formatted and unformatted data.

UNIX and OpenVMS USERS Differences between the UNIX and OpenVMS
operating systems are also noted, when they exist.

Reykjavik_Labs 921130 4.325 6.876 9.801 4.672 9.456 7.439
9.992 5.870 8.943 7.865 8.549 8.023 6.239 7.348 6.902 5.019
8.348 4.679 4.981 8.437 8.541 7.088 8.659 5.459 9.451 5.672
7.562 8.348 7.121 5.992 3763 3284 7898 8214 6995 7092
1932 3023 7116 8075 7098 3285 5182 6647 8127 6894 9341
3879 3867 2309 7645 8015 0xFF 0xA9 0x23 0x48 0x8D
0x2F 0xFF 0x0C 0xD2 0x4E 0x31 0x3A 0xA8 0xE4 0x23
0x90 0x8B 0xCC 0x1D 0x18 0x38 0x8E 0x37 0x72 0xBB
0x45 0x91 0x4B 0x3E 0x59 0x77 0x7E 0x97 0x22 0x1F
0xFF 0xFF 0x45 0xFD 0xFA 0xFB 0x11 0x39 0x47 0x3B
0x9A 0x67 0x43 0x29 0xF1 0x56 0x22 0xFD 0xDA 0x11
0x59 0x51 0xF1 0xFA 0x88 0x67 0xDA 0x45 0x77 (.993,
.921) (.432, .887) (.734, .821) (.691, .459) (.238, .457) (.891,
.457) (.589, .495) (.576, .832) (.601, .734) (.902, .729) (.934,
.782) (.554, .348) (.776, .892) (.340, .915) (.817, .412) (.667,
.456) (.992, .480) (.739, .308) (.812, .394) (.234, .981) (.803,
.345) (.544, .923) (.845, .342) (.567, .912) (.423, .934) (.856,

Name: Source

Name: Date

Name: Bin

Name: Chute

Name: Mill

Name: Phase_Shift

Type: Integer
Dimensions: 22-by-1

Type: Byte

Type: Complex
Dimensions: 8-by-4

Type: String
Scalar

Type: Integer
Scalar

Type: Float
Dimensions: 10-by-3

Dimensions: 8-by-8

142 PV-WAVE Programmer’s Guide

Record Length in ASCII (Formatted) Files

In an ASCII text file, the end-of-line is signified by the presence of either a Ctrl-J
or a Ctrl-M character, and a record extends from one end-of-line character to the
next. However, there are actually two kinds of records:

✔ physical records

✔ logical records

For column-oriented files, the amount of data in a physical record is often sufficient
to provide exactly one value for each variable in the variable list, and then it is a
logical record, as well. For row-oriented files, the concept of logical records is not
relevant, since data is merely read as contiguous values separated by delimiters,
and the end-of-line is interpreted as yet another delimiter.

Changing the Logical Record Size

If you are using one of the DC_READ routines for simplified I/O, and you are read-
ing column-oriented data, you can use a command line keyword to explicitly define
a different logical record size, if you wish. The “DC” routines are introduced in
Functions for Simplified Data Connection on page 146.

NOTE By default, PV-WAVE considers the physical record to be one line in the
file, and the concept of a logical record is not needed. So in most cases, you do not
need to define a logical record. But if you are using logical records, the physical
records in the file must all be the same length.

For more details about the keywords that control logical record size, refer to the
descriptions for the DC_READ_FIXED and DC_READ_FREE routines; these
descriptions are found in the PV-WAVE Reference.

Record Length in Binary (Unformatted) Files

Binary data is a continuous stream of ones and zeros. To fully understand the orga-
nization of binary files, you need to know something about the application that
created the file, and understand the operating system under which the application
was running. You would then choose variables for the variable list that match that
organization. The type and size of the variables in the variable list establish a
framework by which the ones and zeros in the file are interpreted.

UNIX and OpenVMS USERS For binary files, neither the concept of physical
or logical records is relevant, although when using PV-WAVE in an OpenVMS
environment, the concept of records (at the operating system level) may still affect

 143

your work. For an example showing why you must consider record length when
working in an OpenVMS environment, refer to Record-Oriented I/O in OpenVMS
Binary Files on page 143.

For more information about how the operating system affects the transfer of binary
data, refer to Reading UNIX FORTRAN-Generated Binary Data on page 183 and
Reading OpenVMS FORTRAN-Generated Binary Data on page 186.

Number of Records in a File

OpenVMS USERS In the OpenVMS operating system, the number of records
in a file is always known because that information is included in the file header
description. For an example of how to view the header description for an Open-
VMS file, refer to Creating Indexed Files on page 207.

UNIX USERS In the UNIX operating system, files are not divided into records,
unless the application or individual that created it chose to organize it by records
when creating the file.

Record-Oriented I/O in OpenVMS Binary Files

All OpenVMS files are divided into records at the operating system level. The basic
rule of I/O with record-oriented binary files is that the form of the input and output
statements should match. For instance, the statements:

WRITEU, unit, A

WRITEU, unit, B

WRITEU, unit, C

generate three output records, and should be later input with statements of the
form:

READU, unit, A

READU, unit, B

READU, unit, C

In contrast, the statement:

WRITEU, unit, A, B, C

generates a single output record, and should be later input with the single
statement:

READU, unit, A, B, C

144 PV-WAVE Programmer’s Guide

NOTE In the examples shown above, it is assumed that the type and size of vari-
ables A, B, and C is the same during both the writing and the reading of the data.
Otherwise, the data is interpreted differently by the READU commands than it was
interpreted previously by the WRITEU commands.

For more information about OpenVMS files, refer to OpenVMS-Specific Informa-
tion on page 204; that section contains more information on how OpenVMS
handles files.

Example — Transferring Record-Oriented Data Under OpenVMS

When writing to OpenVMS files, PV-WAVE always transfers at least a single
record of data. If the amount of data required exceeds a single record, more I/O
occurs. For example, these commands open a file with 80 character records:

OPENW, unit, "filename", 80

The statement:

WRITEU, unit, FINDGEN(512)

causes 2048 bytes to be output (each floating point value takes 4 bytes), and thus
causes 26 records to be output (2048/80 = 25.6). The last record is not entirely full,
and is padded at the end with zeroes.

On later input, the same rule is applied in reverse — 26 records are read, and the
unused portion of the last one is discarded.

UNIX USERS This example does not apply to the UNIX operating system, since
UNIX files are not record-oriented.

Types of Input and Output
PV-WAVE divides I/O into two categories. These are summarized, along with a
brief discussion of advantages and disadvantages, in the following table:

 145

Each Type of I/O has Pros and Cons

The type of I/O you use will be determined by considering the advantages and dis-
advantages of each method. Also, when transferring data to or from other programs
or systems, the type of I/O is determined by the application. The following sugges-
tions are intended to give a rough idea of the issues involved, although there are
always exceptions:

• Data that needs to be human readable should be written using a human-read-
able character set. The two main character sets in use are ASCII and EBCDIC;
the PV-WAVE documentation assumes that you are using ASCII. The PV-
WAVE routines for human-readable I/O are listed in ASCII I/O — Free Format
on page 149 and ASCII I/O — Fixed Format on page 149.

• Images and large data sets are usually stored and manipulated using binary I/
O in order to minimize processing overhead. The ASSOC function is often the
natural way to access such data, and thus is an important function to under-
stand. The ASSOC function is discussed in Associated Variable Input and
Output on page 194.

Comparison of Binary and Human-Readable Input/Output

Advantages Disadvantages

Binary I/O Binary I/O is the simplest and most
efficient form of I/O.

Binary data is more compact than
ASCII data

Binary data is not always portable.
Binary data files can only be moved
easily to and from computers that
share the same internal data represen-
tation.

Binary data is not directly human
readable, so you can’t type it to a
workstation’s screen or edit it with a
text editor.

ASCII I/O ASCII data is very portable. It is
easy to move ASCII data files to
various computers, even comput-
ers running different operating sys-
tems, as long as they all use the
ASCII character set.

ASCII data can be edited with a
text editor or typed to the worksta-
tion’s screen because it uses a
human readable format.

ASCII I/O is slower than binary I/O
because of the need to convert
between the internal binary represen-
tation and the equivalent ASCII char-
acters.

ASCII data requires more space than
binary data to store the same infor-
mation.

146 PV-WAVE Programmer’s Guide

• Images stored in the TIFF format can be easily transferred using the
DC_READ_TIFF and DC_WRITE_TIFF functions. Device Independent Bit-
map (DIB) images can be transferred with the DC_READ_DIB and
DC_WRITE_DIB functions. Other images, either 8-bit or 24-bit, are trans-
ferred with the DC_READ_*_BIT and DC_WRITE_*_BIT functions, where
the * represents either an 8 or a 24, depending on the type of image data that
you have. The various DC routines that can be used to transfer image data are
discussed in Input and Output of Image Data on page 175.

• Data that needs to be portable should be written using the ASCII character set.
Another option is to use XDR (eXternal Data Representation) binary files by
specifying the Xdr keyword with the OPEN procedures. This is especially
important if you intend to exchange data between computers with markedly
different internal binary data formats. XDR is discussed in External Data Rep-
resentation (XDR) Files on page 188.

• For ASCII files, freely formatted I/O is easier to use than explicitly formatted
I/O, and is almost as easy as binary I/O, so it is often a good choice for small
files where there is no strong reason to prefer one method over another. Free
format I/O is discussed in Free Format Input and Output on page 151.

• The easiest routines to use for the transfer of both images and formatted ASCII
data are the DC_READ and DC_WRITE routines. They are easy to use
because they automatically handle many aspects of data transfer, such as open-
ing and closing the data file. The “DC” routines are introduced in the next
section, Functions for Simplified Data Connection.

Functions for Simplified Data Connection

PV-WAVE includes a group of I/O functions that begin with the two letters “DC”;
this group of functions has been provided to simplify the process of getting your
data in and out of PV-WAVE. This group of I/O functions does not replace the
READ, WRITE, and PRINT commands, but does provide an easy-to-understand
alternative for most I/O situations.

NOTE The DC_* routines that import and export ASCII data do not support the
transfer of data into or from structures. An exception to this is the !DT, or date/time,
structure. It is possible to transfer date/time data using DC_* routines.

The functions DC_READ_FREE and DC_READ_FIXED are well-suited for read-
ing column-oriented data; there is no need to use the looping construct necessitated
by other PV-WAVE procedures used for reading formatted data. The functions
DC_WRITE_FREE and DC_WRITE_FIXED are equally well-suited for writing

 147

column-oriented ASCII data files. To see a figure showing a sample column-ori-
ented file, refer to Figure 8-1 on page 140.

The DC functions are easy to use because they automatically handle many aspects
of data transfer, such as opening and closing the data file. Another advantage of the
DC I/O commands is that they recognize C-style format strings, even though all
other PV-WAVE I/O routines recognize only FORTRAN-style format strings.

NOTE By default, DC_WRITE_FREE generates CSV (Comma Separated Value)
ASCII data files, and the corresponding function, DC_READ_FREE, easily reads
CSV files.

For specific information about any of the DC routines, refer to examples later in
this chapter, or refer to individual function descriptions in the PV-WAVE Refer-
ence. For information on the two routines used to perform DC routine error
checking, refer to Other I/O Related Routines on page 150.

Binary I/O Routines

Binary I/O transfers the internal binary representation of the data directly between
memory and the file without any data conversion. Use it for transferring images or
large data sets that require higher efficiency. The routines for binary I/O are shown
in the following table:

Routines for Binary Input/Output

Function Description

READU Read binary data from the specified file unit.

WRITEU Write binary data to the specified file unit.

DC_WRITE_8_BIT
DC_READ_8_BIT

Write (or read) binary 8-bit data to (or from)
a file without having to explicitly choose a
LUN.

DC_WRITE_24_BIT
DC_READ_24_BIT

Write (or read) binary 24-bit data to (or from)
a file without having to explicitly choose a
LUN.

DC_WRITE_TIFF
DC_READ_TIFF

Write (or read) TIFF image data. You do not
have to explicitly choose a LUN.

ASSOC Map an array definition to a data file,
providing efficient and convenient direct
access to binary data.

148 PV-WAVE Programmer’s Guide

For more information about the routines shown in the previous table, refer to Input
and Output of Binary Data on page 174, Associated Variable Input and Output on
page 194, and Getting Input from the Keyboard on page 203.

ASCII I/O Routines

ASCII data is useful for storing data that needs to be human readable or easily por-
table. ASCII I/O works in the following manner:

• Input — ASCII characters are read from the input file and converted to an
internal form.

• Output — The internal binary representation of the data is converted to ASCII
characters that are then written to the output file.

PV-WAVE provides a number of routines for transferring ASCII data; these rou-
tines are listed in ASCII I/O — Free Format on page 149 and ASCII I/O — Fixed
Format on page 149.

Choosing Between Free or Fixed (Explicitly Formatted) ASCII I/O

ASCII I/O is subdivided further into two categories; the two categories are com-
pared below.

Fixed Format I/O

You provide an explicit format string to control the exact format for the input or
output of the data. For a column-oriented data file, with data going into more than
one variable, this implies that the values in the input or output file line up in well-
defined, fixed-width columns, as shown earlier in Figure 8-1 on page 140.

Because the data values end up being restricted to certain locations on the line, this
style of I/O is called fixed format I/O. The exact format of the character data is spec-
ified to the I/O procedure using a format string (via the Format keyword). If no
format string is given, default formats for each type of data are applied.

Free Format I/O

PV-WAVE uses default rules to format the data and uses delimiters to differentiate
between different data values in the file. During input, the values in the file do not

GET_KBRD Read single characters from the keyboard.

Routines for Binary Input/Output (Continued)

Function Description

 149

have to line up with one another because PV-WAVE is not imposing a rigid struc-
ture (format) on the file.

You do not have to decide how the data should be formatted because, in the case of
input, PV-WAVE automatically looks for delimiters separating data values, and in
the case of output, automatically places delimiters between adjacent data values.
Because the values are “free” to be anywhere on the line, as long as they are clearly
separated by delimiters, this style of I/O is called free format I/O.

ASCII I/O — Free Format

For all the routines listed in the previous table, you do not have to provide a format
string to transfer the data. (Because the values in the file are all separated with
delimiters, no format string is needed.) The free format I/O routines are discussed
in more detail in Free Format Input and Output on page 151.

ASCII I/O — Fixed Format

Routines for Freely Formatted ASCII I/O

Procedure Description

PRINT Write ASCII data to the standard output file
(LUN –1).

READ Read ASCII data from the standard input file
(LUN 0).

PRINTF
READF

Write (or read) ASCII data to (or from) the
specified LUN.

DC_WRITE_FREE
DC_READ_FREE

Write (or read) ASCII data to (or from) a file
without having to explicitly choose a LUN.

Routines for Explicitly Formatted ASCII I/O

Procedure Description

PRINT Write ASCII data to the standard output file
(LUN –1).

READ Read ASCII data from the standard input file
(LUN 0).

PRINTF
READF

Write (or read) ASCII data to (or from) the
specified LUN.

150 PV-WAVE Programmer’s Guide

For all the routines shown in the previous table, you use the Format keyword to pro-
vide the format string that is used to transfer the data. The first routines listed
(PRINT, READ, PRINTF, READF) recognize FORTRAN-like formats; the DC
routines accept either C or FORTRAN format strings. The explicit format I/O rou-
tines are discussed in more detail in Explicitly Formatted Input and Output on page
155.

NOTE The STRING function can also generate ASCII output that is sent to a
string variable instead of a file. For more information about the STRING function,
refer to a later section, Using the STRING Function to Format Data on page 173.

Other I/O Related Routines

In addition to performing I/O to an open file, there are several routines that provide
other file management capabilities. These additional routines are shown in the
following table:

DC_WRITE_FIXED
DC_READ_FIXED

Write (or read) ASCII data to (or from) a file
without having to explicitly choose a LUN.

Additional I/O Routines

Procedure Description

GET_LUN
FREE_LUN

Allocate and free LUNs.

FINDFILE Locate files that match a file specification.

FLUSH Ensure all buffered data for a LUN has actually
been written to the file.

POINT_L
UN

Position the file pointer.

EOF Check for the end-of file condition.

INFO, /Files Print information about open files.

FSTAT Get detailed information about any LUN.

Routines for Explicitly Formatted ASCII I/O (Continued)

Procedure Description

 151

For additional information about DC_ERROR_MSG and DC_OPTIONS, refer to
their descriptions in the PV-WAVE Reference. For more information about the rest
of the routines shown in the previous table, refer to a later section, Miscellaneous
File Management Tasks on page 199.

Free Format Input and Output
Free format ASCII I/O is extremely easy to use. The main advantage of free for-
matted ASCII I/O is that you do not have to provide a format string to format the
data, because you assume that adjacent values are separated by delimiters.

The routines for performing freely formatted ASCII I/O are listed in ASCII I/O —
Free Format on page 149.

Free Format Input

Input is performed on scalar variables. In other words, array and structure variables
are treated as collections of scalar variables. For example:

Z_hi = INTARR(5)

READ, Z_hi

causes PV-WAVE to read (from the standard input stream) five separate values to
fill each element of the variable Z_hi.

Input data must be separated by commas or white space (tabs and blank spaces).

If the current input line is empty and there are variables left to be filled, another line
is read. If the current input line is not empty but there are no variables left to be
filled, the remainder of the line is ignored.

When reading into a variable with data type String, all characters remaining in the
current input line are placed into the string.

DC_ERROR_MSG Returns the text string associated with the nega-
tive status code generated by a “DC” data
import/export function that does not complete
successfully.

DC_OPTIONS Sets the error message reporting level for
all “DC” import/export functions.

Additional I/O Routines (Continued)

Procedure Description

152 PV-WAVE Programmer’s Guide

When reading into numeric variables, PV-WAVE attempts to convert the input into
a value of the expected type. Decimal points are optional and exponential (scien-
tific) notation is allowed. If a floating-point value is provided for an integer
variable, the value is truncated.

Importing String Data

When PV-WAVE reads strings using free formats, it reads to the end of the line. For
this reason, it is usually convenient to place string variables at the end of the list of
variables to be input. For example, if S is a string variable and I is an integer, do
not do this:

READ, S, I

; Read into the string first.

: hello world 34

; PV-WAVE prompts for input. The user enters a string value
; followed by an integer.

: 34

; Because this is a freely formatted read statement, and the READ
; procedure does not recognize delimiters inside strings, the entire
; previous line was placed into the string variable S, and PV-WAVE
; still expects a value to be entered for I. Consequently, PV-WAVE
; prompts for another line.

PRINT, S

; Show the result of S.

results in the output:

’Hello world 34’

Importing Data into Complex Variables

Complex scalar values are treated as two floating-point values. When reading into
a variable of complex type, the real and imaginary parts must be separated by a
comma and surrounded by parentheses. If only a single value is provided, it is taken
as the real part of the variable, and the imaginary part is set to zero.

Here are some examples of how to enter complex data from the keyboard:

Z_lo = COMPLEX(0)

; Create a complex variable.

READ, Z_lo

: (3,4)

; PV-WAVE prompts for input: Z_lo is set to COMPLEX(3,4).

READ, Z_lo

 153

: 50

; PV-WAVE prompts for input: Z_lo is set to COMPLEX(50,0).

Importing Data into a Structure

The following statements demonstrate how to load data into a complicated struc-
ture variable and then print the results:

A = {alltypes, a:0b, b:0, c:0L, d:1.0, e:1D,$
f:complex(0), g:’string’, e:fltarr(5)}

; Create a structure named “alltypes” that contains all eight of
; the basic data types, as well as a floating-point array.

READ, A

: 1 2 3 4 5 (6,7) eight

; Read freely formatted ASCII data from the standard input;
; PV-WAVE prompts for input. Enter values for the first six numeric
; fields of A, and the string. Notice that the complex value was
; specified as (6,7). If the parentheses had been omitted, the complex
; field of A would have received the value COMPLEX(6,0), and the 7
; would have been used for the next field. When reading into a string
; variable with the READ procedure, and no format string has been
; provided, PV-WAVE starts from the current point in the input and
; continues to the end of the line. Thus, the values intended for the
; rest of the structure are entered on a separate line, as shown in the next step.

: 9 10 11 12 13

; There are still fields of A that have not received data, so PV-WAVE
; prompts for another line of input.

PRINT, A

; Show the result.

Executing these statements results in the following output:
{ 1 2 3 4.00000 5.0000000

(6.00000, 7.00000) eight

9.00000 10.0000 11.0000 12.0000 13.0000 }

When producing the output, PV-WAVE uses default formats for formatting the val-
ues, and attempts to place as many items as possible onto each line. Because the
variable A is a structure, curly braces, “{” and “}”, are placed around the output.
The default formats are shown in Free Format Output on page 155.

Importing Date/Time Data

The following statements show how to read a file that contains some data values
and also some chronological information about when those data values were
recorded. The name of the file is events.dat:

154 PV-WAVE Programmer’s Guide

01/01/92 05:45:12 10

02/01/92 10:10:10 15.89

05/15/92 02:02:02 14.2

This example shows how to use the DC_READ_FREE function to read this data.
When using DC_READ_FREE, the date data and the time data can be placed into
the same date/time structure using predefined templates. To see a complete list of
the date/time templates, refer to Date/Time Templates on page 159.

To read the date/time from the first two columns into date/time variables and then
read the third column of floating point data into another variable, use the following
statements:

date1 = REPLICATE({!DT},3)

; The system structure definition of date/time is !DT. Date/time
; variables must be defined as !DT arrays before being used if the
; date/time data is to be read as such.

status = DC_READ_FREE("events.dat", $
date1, date1, float1, /Column, $
Dt_Template=[1,-1])

; The variables date1 is used twice, once to read the date data and
; once to read the time data.

To see the values of the variables, you can use the PRINT command:

FOR I = 0,2 DO BEGIN

PRINT, date1(I), float1(I)

; Print one row at a time.
ENDFOR

Executing these statements results in the following output:
{ 1992 01 01 05 45 12.00 } 10.0000

{ 1992 02 01 10 10 10.00 } 15.8900

{ 1992 05 15 02 02 02.00 } 14.2000

Because date1 is a structure, curly braces, “{” and “}”, are placed around the out-
put. When displaying the values of date1 and float1, PV-WAVE uses default
formats for formatting the values, and attempts to place as many items as possible
onto each line.

For more information about the internal organization of the !DT system structure,
refer to Working with Date/Time Data in the PV-WAVE User’s Guide. For more
information about using the DC_READ_FREE function with date/time data, refer
to its description in the PV-WAVE Reference.

 155

Free Format Output

The format used to output numeric data is determined by the data type.

NOTE When writing string data, each string (or element of a string array) is writ-
ten to the file, flanked with a delimiter on each side. This implies that the strings
should not contain delimiter characters if you intend use free format input at a later
time to read the file.

The current output line is filled with characters until one of the following happens
(in the following order):

(a) There is no more data to output.

(b) The output line is full. The line width is controlled by the device char-
acteristics, as determined by the terminal characteristics (tty), or the file’s
record characteristics (disk file).

(c) An entire row is output in the case of multidimensional arrays.

When writing the contents of a structure variable to a file, its contents are bracketed
with curly braces, “{” and “}”.

Explicitly Formatted Input and Output
Explicit formatting allows a great deal of flexibility in specifying exactly how
ASCII data is formatted. Formats are specified using a syntax that is very similar

Output Formats Used When Writing Data

Data Type
Output Formats Used by PRINT, PRINTF, and
DC_WRITE_FREE

Byte I4

Integer I8

Long Integer I12

Float G13.6

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

String A (character data)

156 PV-WAVE Programmer’s Guide

to that used in FORTRAN or C format statements. Scientists and engineers already
familiar with FORTRAN or C will find PV-WAVE formats easy to write.

The routines for performing explicitly (fixed) formatted ASCII I/O are listed in
ASCII I/O — Fixed Format on page 149.

All data is handled in terms of basic data types. Thus, an array is considered to be
a collection of scalar data elements, and a structure is processed in terms of its basic
components. Complex scalar values are treated as two floating-point values.

Using FORTRAN or C Formats for Data Transfer

All formatted ASCII I/O routines recognize FORTRAN-style format strings, and
for formatted I/O routines that begin with the prefix “DC”, C-style format strings
can be used, as well. The format string specifies the format in which data is to be
transferred as well as the data conversion required to achieve that format.

FORTRAN and C data transfer codes are discussed in more detail in Appendix A,
FORTRAN and C Format Strings. You can also find examples of using format
codes with any of the descriptions of the commands for transferring explicitly for-
matted data; these descriptions are in the PV-WAVE Reference.

How is the Format String Interpreted?

The variable names provided in a call to an I/O routine comprise the variable list.
The variable list specifies the data to be moved between memory and the file. The
Format keyword can be included in the parameter list of an ASCII I/O routine to
provide a format string that explicitly specifies the appearance of the transferred
data.

The format string is traversed from left to right, processing each record terminator
and format code until an error occurs, or until no variables are left in the variable
list. In FORTRAN-style formats, the comma field separator serves no purpose
except to delimit the format codes.

When reading or writing data from the file, the data is formatted according to the
format string. If the data type of the input data does not agree with the data type of
the variable that is to receive the result, PV-WAVE performs type conversion if pos-
sible, and otherwise, issues a type conversion error and stops.

If the last closing parenthesis of the format string is reached and there are no vari-
ables left in the variable list, then format processing terminates. If, however, there
are still variables to be processed in the variable list, then part or all of the format
specification is reused. This process is called format reversion, and is discussed
more in Format Reversion on page 157.

 157

In a FORTRAN-style format string, when a slash (/) or newline (↵) record termi-
nator is encountered, the current record is completed and a new one is started. For
output, this means that a new line is started. For input, it means that the rest of the
current input record is ignored, and the next input record is read.

When a format code that does not transfer data is encountered, it is processed
according to its meaning. When a format code that transfers data is encountered, it
is matched up with the next entry in the variable list. All recognized format codes
are listed in Appendix A, FORTRAN and C Format Strings.

CAUTION It is an error to specify a variable list with a format string that doesn’t
contain a format code that transfers data to or from the variable list. Because the
command expects to transfer data to the variables in the variable list, an infinite
loop would result. For example, consider the following statement:

PRINTF, 1, names, years, salary, Format= $
’("Name", 28X, "Year", 4X, "Total Salary")’

This statement results in a message stating that an infinite loop is detected (because
no data is being transferred to the named variables), and thus execution is being
halted. On the other hand, the following statement is acceptable because there are
no variables included as part of the parameter list:

PRINTF, 1, Format= $
’("Name", 28X, "Year", 4X, "Total Salary")’

Should I Use a FORTRAN or C Format?

The only functions that recognize the C format strings are those that begin with the
prefix “DC”. The DC functions are the ones that have been designed specifically to
simplify the process of transferring data.

All other procedures and functions that transfer data recognize only the FOR-
TRAN-style format statements. The FORTRAN format codes that are recognized
by PV-WAVE are listed in Appendix A, FORTRAN and C Format Strings.

Format Reversion

Format reversion is a way to transfer a lot of data with a format string that, at first
glance, seems to be “too short”. When using format reversion, the current record is
terminated, a new one is started, and format control reverts to the first group repeat
specification that does not have an explicit repeat factor.

NOTE If you are using a C-style format string, the entire format string is reused.

158 PV-WAVE Programmer’s Guide

If the format does not contain a group repeat specification, format control returns
to the initial opening parenthesis of the format string. For example, the command:

PRINT, Format = $
’("The values are: ", 2("<", I1, ">"))’, INDGEN(6)

results in the output:

The values are: <0><1>

<2><3>

<4><5>

The process involved in generating this output is:

1) Output the string, “The values are:”.

2) Process the group specification and output the first two values. The end
of the format specification is encountered, so end the output record. Data
remains, so revert to the group specification

2("<", I1, ">")

using format reversion.

3) Repeat the second step until no data remains, and then for output, end
the output record, or for input, stop reading data values.

At this point, format processing is complete. To see other examples of format rever-
sion, refer to Appendix A, FORTRAN and C Format Strings.

Transferring Date/Time Data

PV-WAVE supports the transfer of date/time data in and out of data files. Some
examples of date/time data which you may wish to read are:

10/20/92 12:00:10.90

21/01/93 11:06:29.0875

10-JAN-1992 12:46

MAR:1993 $25440.0

Although there are several ways to read data/time data, you would want to choose
the method that makes the most sense for your application and best matches the
style of program you are writing:

• Use classical programming constructs — With this method, you open the
file, loop to read the data, close the file, and run the data through one of the
date/time conversion routines. This method is shown below in Method 1 —
Read the File with READF on page 160.

 159

• Use one of the DC_READ routines — With this method, you define one or
more variables that use the date/time system structure organization, and then
use DC_READ_FIXED or DC_READ_FREE to transfer the data into those
variables using date/time templates. This method is shown in Method 2 —
Read the File with DC_READ_FIXED on page 162.

Method 2 utilizes the DC_READ routines. As discussed in Functions for Simpli-
fied Data Connection on page 146, the DC routines have been provided as yet
another alternative for the process of transferring data in and out of PV-WAVE.

Date/Time Templates

The templates that can be used with the formatted ASCII I/O routines are shown in
the following table.

Positive template numbers are for transferring date data, while negative template
numbers are for transferring time data. To see examples of the types of data that
can be transferred using each of these templates, refer to Working with Date/Time
Data in the PV-WAVE User’s Guide.

Templates for Transferring Date/Time Data

Number Template Description

1 MM*DD*YY[YY]

2 DD*MM*YY[YY]

3 ddd*YY[YY]

4 DD*mmm[mmmmmm]*YY[YY]

5 [YY]YY*MM*DD

–1 HH*MnMn*SS[.SSSS]

–2 HHMnMn

M = Month, D = Day, Y = Year, H = Hour, Mn = Minute, S = Second

The asterisk (*) shown above represents a delimiter that separates the different
fields of data. The delimiter can also be a slash (/), a colon (:), a hyphen (-), or a
comma (,).

160 PV-WAVE Programmer’s Guide

Example — Reading Date/Time Data

Assume that you have a file, chrono.dat, that contains some data values,
including a three-character label showing where the data was recorded, and also
some chronological information about when those data values were recorded:

LAM 10/02/90 09:32:00 10.00 32767

COS 10/02/90 09:36:00 15.89 99999

SNV 10/02/90 09:37:00 14.22 87654

Method 1 — Read the File with READF

To read the label from the first column into a string variable, the date and time from
the second and third columns into one date/time variable and read the fourth and
fifth columns of data into another two variables, use the following commands:

loc = STRARR(3) & calib = LONARR(3)

date1 = STRARR(3) & time1 = STRARR(3)

decibels = FLTARR(3)

; Create variables to hold the location, calibration, date, time,
; and decibel level.

OPENR, 1, ’chrono.dat’

; Open data file for input.

locs = ’ ’ & date1s = locs & time1s = date1s

; Define scalar strings.

calibs = 1L

; Define a long integer scalar.

I = 0

; Initialize counter.

WHILE (NOT EOF(1)) DO BEGIN

; Loop over each record of data.
READF, 1, locs, date1s, $

time1s, decibelss, calibs, Format = $
"(A3, 2(1X, A8), 1X, F5.2, 1X, I5)"

; Read scalars; the first three are string variables, the fourth is
; a float, and the fifth one is an integer.

loc(I) = locs & date1(I) = date1s & $
time1(I) = time1s & calib(I) = calibs $
& decibels(I) = decibelss

; Store in each vector.
IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & $

STOP, "Too many records."

; Increment counter and check for too many records.

ENDWHILE

 161

CLOSE, 1

; Close the file.

my_dt_arr = STR_TO_DT(date1, time1, $
Date_Fmt=1, Time_Fmt = –1)

; Use one of the conversion utilities, STR_TO_DT, to convert
; the strings to date/time data. The variable date1 uses
; Template 1, while the variable time1 uses Template –1. The
; result array, my_dt_arr, holds both the MM/DD/YY and the
; HH:MM:SS data.

Another alternative is to read the time and date data as integers instead of strings.
This is the approach you must take if your time/date data does not have the custom-
ary delimiters separating the months, days, and years, or the hours, minutes, and
seconds, as shown in the sample file below:

LAM 100290 093200 10.00 32767

COS 100290 093600 15.89 99999

SNV 100290 093700 14.22 87654

In this situation, instead of defining date1 and time1 to be strings, you would
define different variables — one for each component of the date/time data:

year = INTARR(3) & mon = year & day = year

hour = INTARR(3) & min = hour & sec = hour

; Define integer arrays to hold the months, days, years, hours,
; minutes, and seconds data.

years = 0 & mons = 0 & days = 0

hours = 0 & mins = 0 & secs = 0

; Define integer scalars for use inside the read loop.

loc = STRARR(3) & calib = LONARR(3)

decibels = FLTARR(3)

; Create variables to hold the location, calibration, and decibel level.

locs = ’ ’ & calibs = 1L

; Initialize string and long integer scalars.

OPENR, 1, ’chrono.dat’

; Open data file for input.

I = 0

; Initialize counter.

WHILE NOT EOF(1) DO BEGIN

; Beginning of read loop.
READF, 1, locs, mons, days, years, $

hours, mins, secs, $
decibelss, calibs, Format = $
"(A3, 2(1X, 3(I2)), 1X, F5.2, 1X, I5)"

162 PV-WAVE Programmer’s Guide

; Read scalars; the first one is a string variable, the next six
; are integer variables, the eighth is a float, and the ninth one is an integer.

year(I) = years & mon(I)= mons

day(I) = days & hour(I) = hours

min(I) = mins & sec(I) = secs

; Store in each vector.
IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & $

STOP, "Too many records."

; Increment counter and check for too many records.

ENDWHILE

CLOSE, 1

Now that the date/time data has been read into variables, these variables can be
used as input to the conversion utility, VAR_TO_DT:

my_dt_arr = VAR_TO_DT(year, mon, day, hour, min, sec)

; Use one of the conversion utilities, VAR_TO_DT, to convert the
; variables to date/time format.

Regardless of whether you read the data as strings and use the STR_TO_DT func-
tion for conversion, or read the data as integer values and use the VAR_TO_DT
function for conversion, the value of the my_dt_arr array is the same. You can
easily view the contents of my_dt_arr using the PRINT command:

PRINT, my_dt_arr

{ 1990 10 2 9 32 0.00000 86946.397 0 }

{ 1990 10 2 9 36 0.00000 86946.400 0 }

{ 1990 10 2 9 37 0.00000 86946.401 0 }

Because the variable my_dt_arr is a structure, curly braces, “{” and “}”, are
placed around the output. For more information about the internal organization of
date/time structures, refer to Working with Date/Time Data in the PV-WAVE User’s
Guide.

Method 2 — Read the File with DC_READ_FIXED

The following statements present another method for reading date/time data into
variables (the same data that was used for Method 1). Because this method utilizes
the DC_READ_FIXED function, it is able to use a C-style format string to read the
data. The data file is repeated below for your convenience:

LAM 10/02/90 09:32:00 10.00 32767

COS 10/02/90 09:36:00 15.89 99999

SNV 10/02/90 09:37:00 14.22 87654

 163

This method automatically handles the string to date and string to time conversion,
although it does require that the date/time variable, date1, be predefined as a date/
time system structure:

date1 = REPLICATE({!DT},3)

; The system structure definition of date/time is !DT. Date/time
; variables must be defined as !DT structure arrays before being
; used if the date/time data is to be read as such.

loc = STRARR(3) & calib = LONARR(3)

decibels = FLTARR(3)

; Explicitly define the string, integer, and floating-point vectors.

status = DC_READ_FIXED("chrono.dat", $
loc, date1, date1, decibels, calib, $
/Column, Format="%s %8s %8s %f %d", $
Dt_Template=[1,-1])

; DC_READ_FIXED handles the opening and closing of the file.
; It transfers the values in “chrono.dat” to the variables in the
; variable list, working from left to right. The variable date1
; appears in the variable list twice, once to read the date data
; and once to read the time data.

Notice how in this method, the variable date1 is specified twice. Because date1
is defined as a date/time structure, it has predefined tags for the various classes of
chronological information. By including date1 in the variable list twice, both the
date data and the time data is combined in the same !DT structure, using two dif-
ferent date/time templates (1 for date values and –1 for time values).

For more information about the internal organization of the !DT system structure,
refer to Working with Date/Time Data in the PV-WAVE User’s Guide.

Reading, Sorting, and Printing Tables of Formatted Data

Explicitly formatted I/O has the power and flexibility to handle almost any kind of
formatted data. A common use of explicitly formatted I/O is to read and write
tables of data.

Example — Reading Data From a Word-Processing Application

Frequently, data files are produced by a word-processing or spreadsheet application
program. This example shows how to import this kind of data into variables.

Method 1 — Read the File with READF

Consider a data file containing employee data records. Each employee has a name
(String – 16 columns) and the number of years they have been employed (Integer

164 PV-WAVE Programmer’s Guide

– 3 columns) on the first line. The next two lines contain their monthly salary for
the last twelve months. A sample file named bullwinkle.wp with this format
might look like:

Bullwinkle 10
1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0

Boris 11
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25

Natasha 10
950.0 1050.0 1350.0 410.0 797.0 200.36

2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11
1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following statements read data with the above format and produce a summary
of its contents:

OPENR, 1, ’bullwinkle.wp’

; Open data file for input.

name = ’’ & years = 0 & salary = FLTARR(12)

; Create variables to hold the name, number of years, and monthly
; salaries. The type of each variable is automatically determined by
; the type of initial value it is given.

PRINT, ’Name Years Yearly Salary’

; Output a heading for the summary.

PRINT, ’--’

; Output a ruling line for the heading.

WHILE (NOT EOF(1)) DO BEGIN

; Loop over each employee.
READF, 1, name, years, salary, $

Format = "(A16, I3, 2(/, 6F10.2))"

; Read the data on the next employee.
PRINT, Format = "(A16, I5, 5X, F10.2)",$

name, years, TOTAL(salary)

; Output the employee information. Use the TOTAL function
; to compute the yearly salaries from the monthly salaries.

ENDWHILE

CLOSE, 1

 165

The output from executing the statements shown above is:

DC_READ_FIXED is not used in this method because the file, as it is shown on
page 164, is neither a column-organized file or a row-organized file; it falls some-
where in between. In other words, the name and years-of-service data are organized
by columns, while the yearly salary data is organized in rows. But the file can be
rearranged, as shown below in the next method, and then using
DC_READ_FIXED becomes a viable (and time-saving) option.

Method 2 — Read the File with DC_READ_FIXED

Suppose the file was much longer than we are able to show in this example, and
you wanted to use PV-WAVE’s powerful data connection and table building utili-
ties to read and process the data. If the file was organized a bit differently,
DC_READ_FIXED could be used to read the data. Then, the BUILD_TABLE
function could be used to quickly organize the data in a table structure. The new
file organization is shown below:

Bullwinkle Boris Natasha Rocky
10 11 10 11

1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0

400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25

950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0

1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

Name Years Yearly Salary

Bullwinkle 10 32501.09

Boris 11 6805.35

Natasha 10 14257.36

Rocky 11 32500.50

166 PV-WAVE Programmer’s Guide

The following statements read the data file shown above and display a summary of
its contents on the screen:

name = STRARR(4) & years = INTARR(4)

salary = FLTARR(12, 4)

; Create variables to hold the name, number of years, and monthly
; salaries.

status = DC_READ_FIXED(’bullwinkle.wp’, $
name, years, salary, Format= "(4A16, " + $
"/, I3, 3(10X,I3), /, 48(F7.2, 3X))", $
Ignore=["$BLANK_LINES"])

; DC_READ_FIXED handles the opening and closing of the file. It
; transfers the values in “bullwinkle.wp” to the variables in the variable
; list, working from left to right. The two slashes in the format string
; force DC_READ_FIXED to switch to a new record in the input file.
; When reading row-oriented data, each variable is “filled up” before
; any data is transferred to the next variable in the variable list. The
; value of the Ignore keyword insures that all blank lines are skipped
; instead of being interpreted as data.

PRINT, ’Name Years Yearly Salary’

PRINT, ’--’

; Print a heading and ruling line for the heading.

yearly_salary = FLTARR(4)

FOR I = 0,3 DO BEGIN

; One row at a time, total the monthly salaries.
yearly_salary(I) = TOTAL(salary[*,I])

; Use array subscripting notation to total all twelve months of
; salary for each employee.

ENDFOR

zz = BUILD_TABLE(’name, years, yearly_salary’)

; Create a table structure, with each column of information being an
; individual tag of the structure.

FOR I = 0,3 DO BEGIN

; Print one row at a time.
PRINT, Format="(A16, 3X, I5, 5X, F10.2)", $

zz(I).name, zz(I).years, zz(I).$
yearly_salary

; Print the employee information. Each column of information
; is now a tag of the zz table.

ENDFOR

 167

NOTE You do not need to understand structures to work with tables. For a com-
parison of tables and structures, refer to the Creating and Querying Tables in the
PV-WAVE User’s Guide.

Just like in Method 1, the output from executing the statements shown above is:

Now you could easily enter commands to sort the table, using a variety of criteria.
Suppose you want to rearrange the table (in descending order) so that the employee
with the highest salary is listed first:

by_val = QUERY_TABLE(zz, $
’* Order By yearly_salary Desc’)

FOR I = 0,3 DO BEGIN

; Print one row at a time.
PRINT, Format="(A16, 3X, I5, 5X, F10.2)", $

by_val(I).name, by_val(I).years, $
by_val(I).yearly_salary

; Print the employee information. Each column of information
; is a tag of the by_val table.

ENDFOR

The output is now sorted in descending order by yearly salary:

Now suppose you want to rearrange the table (in ascending alphabetical order) so
that the employees are listed alphabetically:

Name Years Yearly Salary

Bullwinkle 10 32501.09

Boris 11 6805.35

Natasha 10 14257.36

Rocky 11 32500.50

Name Years Yearly Salary

Bullwinkle 10 32501.09

Rocky 11 32500.50

Natasha 10 14257.36

Boris 11 6805.35

168 PV-WAVE Programmer’s Guide

by_val = QUERY_TABLE(zz, ’* Order By name’)

FOR I = 0,3 DO BEGIN

; Print one row at a time.
PRINT, Format="(A16, 3X, I5, 5X, F10.2)", $

by_val(I).name, by_val(I).years, $
by_val(I).yearly_salary

; Print the employee information.
ENDFOR

The output is now sorted in ascending alphabetic order:

For more information about functions for sorting and organizing table structures,
and the keywords that can be used inside the QUERY_TABLE sort string, refer to
the PV-WAVE User’s Guide.

Reading Records Containing Multiple Array Elements

Frequently, data is written to files with each record containing single elements of
more than one array. For example, a file might contain observations of altitude,
pressure, temperature, and velocity, with each line (or record) containing a value
for each of the four variables. Data files like this are called record-oriented files,
and PV-WAVE offers several different ways to read them, as shown below.

Example 1 — Column-oriented FORTRAN Write

A FORTRAN program that writes the data and the PV-WAVE program that reads
the data are shown below:

FORTRAN Write

This FORTRAN program writes the data by creating an array with as many col-
umns as there are variables and as many rows as there are elements.

DIMENSION ALT(100), PRES(100), TEMP(100),

C VELO(100)

Name Years Yearly Salary

Boris 11 6805.35

Bullwinkle 10 32501.09

Natasha 10 14257.36

Rocky 11 32500.50

 169

OPEN (UNIT=1, STATUS=’NEW’, FILE=’aptv.dat’)

.

. Other commands go here.

.

WRITE (1,’(4(1x, G15.5))’)

C (ALT(I), PRES(I), TEMP(I), VELO(I), I = 1,100)

END

PV-WAVE Read (Method 1)

The data is read into an array, the array is transposed storing each variable as a row,
and each row is extracted and stored in a one-dimensional variable.

OPENR, 1, ’aptv.dat’

; Open file for input.

A = FLTARR(4,100)

; Define variable to hold 100 observations of data, 4 values per
; observation.

READF, 1, A

; Read the data.

A = TRANSPOSE(A)

; Transpose array so that columns become rows.

alt = A(*,0) & pres = A(*,1) &

temp = A(*,2) & velo = A(*,3)

; Extract the altitude, pressure, temperature, and velocity data from
; variable A.

CLOSE, 1

; Close the file.

PV-WAVE Read (Method 2)

In this method, the data is read by calling DC_READ_FIXED, one of the DC rou-
tines for simplified I/O:

status = DC_READ_FIXED(’aptv.dat’, alt, $
pres, temp, velo, /Column, Format="%f")

; DC_READ_FIXED transfers the values in “aptv.dat” to the variables
; alt, pres, temp, and velo. One value from each record is transferred
; to each variable. DC_READ_FIXED creates the variables as
; floating-point vectors, with a length that matches the number of
; values transferred into the variables. DC_READ_FIXED handles
; the opening and closing of the file.

The variables could now be easily placed into a table structure with the following
command:

170 PV-WAVE Programmer’s Guide

aptv = BUILD_TABLE(’alt, pres, temp, velo’)

; Create a table structure, with each column of information being an
; individual tag of the table.

For more information about what can be done with data once it is placed into a table
structure, refer to an earlier example on page 165, or refer to the PV-WAVE User’s
Guide.

Notice that the variables were not predefined with the FLTARR function, as they
were with Method 1. Because the variables were not predefined,
DC_READ_FIXED creates them all as one-dimensional floating-point arrays
dimensioned to match the number of records in the file. For example, suppose that
each column of data in aptv.dat contained 280 values. All four variables (alt,
pres, temp, and velo) would be created and dimensioned as 280 element
vectors.

Example 2 — Row-oriented FORTRAN Write

The same data values may be written without the implied DO list, writing all ele-
ments for each variable contiguously and simplifying the FORTRAN write
program:

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),

C VELO(100)

OPEN (UNIT=1, STATUS=’NEW’, FILE=’aptv.dat’)

.

. Other commands go here.

.

WRITE (1,’(4(1x,G15.5))’) ALT, PRES, TEMP,

C VELO

END

PV-WAVE Read (Method 1)

Read the data as an uninterrupted stream of values. In other words, read the file as
though it contains row-oriented data.

alt = FLTARR(100)

; Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt

; Create more floating-point arrays, all the same size as alt.

OPENR, 1, ’aptv.dat’

; Open file for input.

 171

READF, 1, alt, pres, temp, velo

; Read the data.
CLOSE, 1

; Close the file.

PV-WAVE Read (Method 2)

DC_READ_FIXED can be used to read row-oriented data; in fact, this happens by
default when the Column keyword is omitted from the function call. However,
when you are reading row-oriented data, the import variables must be pre-dimen-
sioned so that DC_READ_FIXED knows how many values to store in each of the
variables included in the variable list:

alt = FLTARR(100)

; Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt

; Create more floating-point arrays, all the same size as alt.

status = DC_READ_FIXED(’aptv.dat’, alt, $
pres, temp, velo, Format="%f")

; DC_READ_FIXED handles the opening and closing of the file. It
; reads values from aptv.dat and stores them in the variables alt, pres,
; temp, and velo. By default, the data is read as row-oriented data.
; The returned value status can be checked to see if the process
; completed successfully.

The format string shown in this example (Method 2) may be used only if all of the
variables in the variable list are typed as floating-point, because the same C format
string is used over and over to read all the data values. For more information on for-
mat reversion, (the process of re-using format strings when reading or writing
data), refer to Format Reversion on page 157.

NOTE If the variable list contained other data types besides floating-point, the for-
mat string would have to be more specific, such as the one used in the next example.
Another alternative is to use DC_READ_FREE (instead of DC_READ_FIXED) to
read the file, and then you aren’t required to supply any format string.

Example 3 — Using a FORTRAN Format String to Read Multiple Array
Elements

Assume that the data used is the same as that of the previous examples, but a fifth
variable, the name of an observer (which is a string), has been added to the variable
list. The FORTRAN output routine and PV-WAVE input routine are shown below:

172 PV-WAVE Programmer’s Guide

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),

C VELO(100)

CHARACTER*10 OBS(100)

OPEN (UNIT = 1, STATUS = ’NEW’, FILE =

C ’aptvo.dat’)

.

. Other commands go here.

.

WRITE (1,’(4(1X,G15.5), 2X, A)’) (ALT(I),

C PRES(I), TEMP(I), VELO(I), OBS(I), I = 1,100)

END

PV-WAVE Read (Method 1)

This method involves defining the arrays, defining a scalar variable to contain each
value in one record, then writing a loop to read each line into the scalars, and finally
storing the scalar values into each array:

OPENR, 1, ’aptvo.dat’

; Access file. This example reads files containing from 0 to 100 records.

alt = FLTARR(100)

; Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt

; Create more floating-point arrays, all the same size as alt.

obs = STRARR(100)

; Define string array.

obss = ’ ’

; Define scalar string.

I = 0

; Initialize counter.

WHILE NOT EOF(1) DO BEGIN

; Beginning of read loop.
READF, 1, alts, press, $

temps, velos, obss, $
Format="(4(1X, G15.5), 2X, A10)"

; Read scalars; the last one is a string variable, and by default,
; the first four are floating-point variables.

alt(I) = alts & pres(I) = press

temp(I) = temps & velo(I) = velos

obs(I) = obss

; Store in each vector.

 173

IF I LE 99 THEN I = I+1 ELSE CLOSE,1 & $
STOP, "Too many records."

; Increment counter and check for too many records.

ENDWHILE

CLOSE, 1

; Close the file.

If desired, after the file has been read and the number of observations is known, the
arrays may be truncated to the correct length using a series of statements similar to:

alt = alt(0:I-1)

The above represents a worst case example. Reading is greatly simplified by writ-
ing data of the same type contiguously and by knowing the size of the file. Another
alternative is to use Method 2, shown below.

TIP One frequently used technique is to include the number of observations in the
first record so that when reading the data the size is known.

PV-WAVE Read (Method 2)

The DC_READ_FIXED function is ideal for situations such as this one, where the
columns are treated as different data types or the number of lines or records in the
file is not known.

obs = STRARR(100)

; Define string array; let other variables use default floating-point data
; type.

status = DC_READ_FIXED(’aptvo.dat’, $
alt, pres, temp, velo, obs, /Column, $
Format="(4(1X, G15.5), 2X, A10)", $
Resize=[1, 2, 3, 4, 5])

; DC_READ_FREE handles the opening and closing of the file. It
; reads values from aptvo.dat and stores them in the variables alt,
; pres, temp, velo, and obs. The data is being read as column
; oriented data.
; Because the Resize keyword was included with the function call, all
; five variables are resizable and are redimensioned to match the
; number of values actually transferred from the file. The returned
; value status can be checked to see if the process completed successfully.

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. You
can even think of it as a version of PRINT that places its ASCII output into a string

174 PV-WAVE Programmer’s Guide

variable instead of a file. If the output is a single line, the result is a scalar string. If
the output has multiple lines, the result is a string array, with each element of the
array containing a single line of the output.

Example 1 — STRING Function without Format Keyword

Three variations using the STRING function are shown below:

abc = STRING([65B,66B,67B])

abc = STRING([byte(’A’),byte(’B’),byte(’C’)])

abc = STRING(’A’+’B’+’C’)

In all three cases, abc has the same value, the string scalar 'ABC'.

Example 2 — STRING Function with Format Keyword

The following statements:

A = STRING(Format=’("The values are:", ’ + $
’, (I))’, INDGEN(5))

; Create a string array named A.

INFO, A

; Display information about A.

FOR I = 0, 5 DO PRINT, A(I)

; Print the result.

produce the following output:

A STRING = Array(6)

The values are:
0
1
2
3
4

For additional details about the STRING function, see its description in the PV-
WAVE Reference.

Input and Output of Binary Data
Binary I/O involves the transfer of data between a file and memory without conver-
sion to and from a character representation. Binary I/O is used when efficiency is
important and portability is not an issue; it is faster and requires less space than
human-readable I/O.

 175

NOTE Binary I/O is almost always used for the transfer of image data, such as
TIFF images, or 8- and 24-bit images.

PV-WAVE provides many procedures and functions for performing binary I/O;
they are listed in Binary I/O Routines on page 147. All of these routines are
described in this section except ASSOC and GET_KBRD; these important func-
tions are discussed in Associated Variable Input and Output on page 194 and
Getting Input from the Keyboard on page 203.

Input and Output of Image Data

Images are frequently stored using either 8-bit or 24-bit binary data. 8-bit data is
capable of displaying 28 different colors, while 24-bit data is capable of displaying
224 different colors.

Windows USERS Windows NT does not support the display of 24-bit color.

Images are treated in the same manner as any variable. Images may be either square
or rectangular. There is no restriction placed on the size of images; the limiting fac-
tors are the maximum amount of virtual memory available to you by the operating
system and the processing time required.

8-bit and 24-bit Image Data

Image data is usually stored in either an 8-bit or 24-bit format:

• 8-bit Format — Images in 256 shades of gray or 256 discrete colors (some-
times known as “pseudo-color”).

• 24-bit Format — 3-color RGB (8 bits Red/8 bits Green/8 bits Blue) images.

8-bit images must be stored in a 2-dimensional variable, and 24-bit images must be
stored in a 3-dimensional variable. For more information about how the RGB infor-
mation in 24-bit image data is stored, refer to Image Interleaving on page 178.

NOTE Your workstation or device must support 24-bit color mode if you intend
to view 24-bit images with PV-WAVE.

Image Data Input

Image data can be imported using either the READU or the ASSOC commands.
However, one of the easiest ways to import image data is to use either the

176 PV-WAVE Programmer’s Guide

DC_READ_8_BIT or DC_READ_24_BIT functions. For example, if the file
hero.img contains a 786432 byte 24-bit image-interleaved image, the function
call:

status = DC_READ_24_BIT(’hero.img’, hero, Org=1)

reads the file hero.img and creates a 512-by-512-by-3 image-interleaved byte
array named hero.

When you do not pre-dimension the variable, PV-WAVE creates either a two- or
three-dimensional byte variable, depending on whether you are using
DC_READ_8_BIT or DC_READ_24_BIT. It also checks the total number of
bytes in the file and automatically dimensions the import variable such that it
matches the organization of the file.

To see a complete list of the image sizes that PV-WAVE checks for as it reads image
data, refer to the function descriptions for DC_READ_8_BIT and
DC_READ_24_BIT; you can find these descriptions in the PV-WAVE Reference.

NOTE If you don’t want PV-WAVE guessing the dimensions of the variable, you
need to explicitly dimension it.

For 8-bit image data, dimension the variable as w-by-h, where w and h are the width
and height of the image in pixels. For 24-bit image data, the image variable should
be dimensioned in the following manner:

• Pixel Interleaved — Dimension the import variable as 3-by-w-by-h, where w
and h are the width and height of the image in pixels.

• Image Interleaved — Dimension the import variable as w-by-h-by-3, where
w and h are the width and height of the image in pixels.

For a comparison of pixel interleaving and image interleaving, refer to Image Inter-
leaving on page 178.

TIP One popular way of importing binary image data is with the ASSOC
command. The advantages of this method are described further in Advantages of
Associated File Variables on page 195.

Image Data Output

Image data can be exported using either the WRITEU or the ASSOC commands.
However, one of the easiest ways to output image data is to use either the
DC_WRITE_8_BIT or DC_WRITE_24_BIT functions. For example, if
fft_flow is a 600-by-800 byte array containing image data, the function call:

 177

status = DC_WRITE_8_BIT(’fft_flow1.img’, fft_flow)

creates the file fft_flow1.img and uses it to store the image data contained in
the variable fft_flow.

The dimensionality of the output image variable should be the same as discussed
in the previous section for image data input.

TIP One popular way of exporting binary image data is with the ASSOC
command. The advantages of this method are described further in Advantages of
Associated File Variables on page 195.

TIFF Image Data

The TIFF (Tag Image File Format) is a standard format for encoding image data.
Visual Numerics’ TIFF I/O follows the guidelines set forth in a Technical
Memorandum, Tag Image File Format Specification, Revision 5.0 (FINAL),
published jointly by Aldus Corporation and Microsoft® Corporation.

The two functions provided specifically for transferring TIFF images are:

DC_READ_TIFF
DC_WRITE_TIFF

These functions are easy to use. For example, if the variable maverick is a 512-
by-512 byte array, the function call:

status = DC_WRITE_TIFF(’mav.tif’, maverick, $
Class=’Bilevel’, Compress=’Pack’)

creates the file mav.tif and uses it to store the image data contained in the vari-
able maverick. The created TIFF file is compressed and conforms to the TIFF
Bilevel classification.

For additional details about the DC_READ_TIFF and DC_WRITE_TIFF func-
tions, see their descriptions in the PV-WAVE Reference.

Compressed TIFF Files

TIFF files can be compressed if you are interested in saving disk space. Com-
pressed TIFF files will take slightly longer to open than uncompressed TIFF files,
but are a smart choice if you are willing to trade off a slightly slower access time
for reduced file size.

Only TIFF class Bilevel (Class 'B') images can be compressed.

178 PV-WAVE Programmer’s Guide

TIFF Conformance Levels

When using DC_READ_TIFF and DC_WRITE_TIFF, you are able to select the
class (level of TIFF conformance) that you wish to follow. The four conformance
levels are:

• Bilevel — All pixels are either black or white; no shades of gray are supported.

• Grayscale — Each pixel is described by eight bits (a byte). With eight bits, 28

shades of gray can be represented.

• Palette Color — Each pixel is described by eight bits (a byte), so 28 discrete
colors can be represented. During output, you must supply a colortable that can
be stored with the image; you do this using the Palette keyword.

• RGB Full Color — Each pixel is described by 24 bits (1 byte red, 1 byte green,
and 1 byte blue). With 24 bits, 224 full RGB colors can be represented.

If Palette Color is selected, you must supply (using the Palette keyword) a 3-by-
256 array of integers that describes the colortable to be used by the TIFF image.

If RGB Full Color is selected, the export variable must be a w-by-h-by-3 byte
image interleaved array. (The letters w and h denote the width and height of the
image, respectively.) Pixel interleaved 24-bit data cannot be exported to a TIFF file.
The details of pixel interleaving and image interleaving are described in the next
section.

Image Interleaving

Interleaving is the method used to organize the bytes of red, green, and blue image
data in a 24-bit image. In other words, each of the basic colors requires 1 byte (8
bits) of storage for each pixel on the screen; the question is whether to store the
color data as RGB triplets, or to group all the red bytes together, all the green bytes
together, and all the blue bytes together. The two options are shown below:

For more information about how the image variable should be dimensioned to
match the various interleaving methods, refer to Image Data Input on page 175.

Pixel Interleaving Image Interleaving

RGBRGBRGBRGB RRRRRRRRRRRR

RGBRGBRGBRGB GGGGGGGGGGGG

RGBRGBRGBRGB BBBBBBBBBBBB

 179

READU and WRITEU

READU and WRITEU provide basic binary (unformatted) input and output capa-
bilities.WRITEU writes the contents of its variable list directly to the file, and
READU reads exactly the number of bytes required by the size of its parameters.
Both procedures transfer binary data directly, with no interpretation or formatting.

The general form for using either READU or WRITEU is:

READU, unit, var1,...,varn

WRITEU, unit, var1,...,varn

where vari represents one or more variables (or expressions in the case of output).

Transferring Data with READU and WRITEU

Example 1 — C Program Writes, PV-WAVE Reads

The following C program produces a file containing employee records. Each record
stores the first name of the employee, the number of years they have been
employed, and their salary history for the last 12 months.

C Program Write

#include <stdio.h>

main()

{

static struct rec {
char name [16]; /* Employee's name */
int years; /* Years with company*/
float salary[12]; /* Salary for last */

/* 12 months */

} employees[] = {

{"Bullwinkle", 10,
{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0, 5000.0, 3000.0,
1000.12, 3500.0, 6000.0, 900.0} },

{"Boris", 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0, 200.0, 100.0,
100.0, 50.0, 60.0, 0.25} },

{"Natasha", 10,
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36, 2600.0, 2000.0,
1500.0, 2000.0, 1000.0, 400.0} },

{"Rocky", 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37, 5000.0, 3000.0,

180 PV-WAVE Programmer’s Guide

1000.01, 3500.0, 6000.0, 900.12} }

};

FILE *outfile;

outfile = fopen("bullwinkle.dat", "w");

(void) fwrite(employees, sizeof(employees), 1, outfile);

(void) fclose(outfile);

}

Running this program creates the file bullwinkle.dat containing the
employee records.

PV-WAVE Read

The following PV-WAVE statements can be used to read the data in
bullwinkle.dat:

str16 = STRING(REPLICATE(32b,16))

; Create a string with 16 characters so that the proper number
; of characters will be input from the file. REPLICATE is used to
; create a byte array of 16 elements, each containing the ASCII
; code for a space (32). STRING turns this byte array into a string containing 16 blanks.

A = REPLICATE({employees, name:str16, $
years:0L, salary:fltarr(12)}, 4)

; Create a structure of four employee records to receive the
; input data.

OPENR, 1, ’bullwinkle.dat’

; Open the file for input.

READU, 1, A

; Read the data.

CLOSE, 1

; Close the file.

For other examples of how to read bullwinkle.dat with PV-WAVE, refer to
Reading, Sorting, and Printing Tables of Formatted Data on page 163.

Example 2 — PV-WAVE Writes, C Program Reads

PV-WAVE Write

The following PV-WAVE program creates a binary data file containing a 5-by-5
array of floating-point values:

OPENW, 1, ’float.dat’

; Open a file for output.

 181

WRITEU, 1, FINDGEN(5, 5)

; Write a 5-by-5 array with each element set equal to its one-dimensional index.

CLOSE, 1

; Close the file.

C Program Read

The file float.dat can be read and printed by the following C program:

#include <stdio.h>

main()

{
float data[5][5];

FILE *infile;

int i, j;

infile = fopen("float.dat", "r");

(void) fread(data, sizeof(data), 1, infile);

(void) fclose(infile);

for (i = 0; i < 5; i++)
{

for (j = 0; j < 5; j++) printf("%8.1f",
data[i][j]);

printf("\n");

}

}

Running this program results in the following output:

 0.0 1.0 2.0 3.0 4.0

 5.0 6.0 7.0 8.0 9.0

10.0 11.0 12.0 13.0 14.0

15.0 16.0 17.0 18.0 19.0

20.0 21.0 22.0 23.0 24.0

Binary Transfer of String Variables

The only basic data type that does not have a fixed size is the string data type. A
string variable has a dynamic length that is dependent only on the length of the
string currently assigned to it. Thus, although it is always possible to know the
length of the other types, string variables are a special case. PV-WAVE uses the fol-
lowing rules to determine the number of characters to transfer:

• Input — Input enough bytes to fill the currently defined length of the string
variable.

182 PV-WAVE Programmer’s Guide

• Output — Output the number of bytes contained in the string. This number is
the same number that would be returned by the STRLEN function. In other
words, the output string contains only the characters in the string and does not
include a terminating null byte.

These rules imply that when reading into a string variable from a file, you must usu-
ally know the length of the original string so as to be able to initialize the
destination string to the correct length. The following example demonstrates the
problem and shows how to use the STRLEN function to programmatically initial-
ize the string length.

Examples of Binary String Data Transfer

For example, the following statements:

OPENW, 1, ’temp.txt’

; Open a file.

WRITEU, 1, ’Hello World’

; Write an 11-character string.

POINT_LUN, 1, 0

; Rewind the file.

A = ’ ’

; Prepare a 9-character string.

READU, 1, A

; Read the string in again.

PRINT, A

; Show what was input.

CLOSE, 1

produces the following output because the receiving variable A was not long
enough:

Hello Wor

The only solution to this problem is to know the length of the string being input.
One way to do this is to store the length of the string(s) in the file at the time the
file is created. The following statements demonstrate a technique for doing this:

hello = ’Hello World’

; Define a string variable that contains the desired string.

len = 0

len = STRLEN(hello)

; Initialize an integer variable, and then use it to store the length of
; the string variable.

 183

OPENW, 1, ’temp.txt’

; Open a file.

WRITEU, 1, len

; Write the string length to the file.

WRITEU, 1, hello

; Now write the string to the file.

Now that the string length (an integer), followed by the string, have been stored in
the file, prepare to read the string back into PV-WAVE:

len_input = 0

READU, 1, len_input

; Initialize an integer variable, and then use it to read the string length.

A = STRING(REPLICATE(32b, len_input))

; Create a string of the desired length, initialized with blanks. The
; result of the call to REPLICATE is a byte array with the necessary
; number of elements, each element initialized to 32, which is the
; ASCII code for a blank. When this byte array is passed to STRING,
; it is converted to a scalar string containing this number of blanks.

READU, 1, A

; Read the string.

PRINT, A

; Show what was input.

CLOSE, 1

produces the following output:

Hello World

This example takes advantage of the special way in which the BYTE and STRING
functions convert between byte arrays and strings. See the descriptions of the
BYTE and STRING functions for additional details. These descriptions are alpha-
betically arranged in the PV-WAVE Reference.

Reading UNIX FORTRAN-Generated Binary Data

Although the UNIX operating system considers all files to be an uninterpreted
stream of bytes, FORTRAN considers all I/O to be done in terms of logical records.
In order to reconcile the FORTRAN need for logical records with the UNIX oper-
ating system, UNIX FORTRAN programs add a longword count before and after
each logical record of data. These longwords contain an integer count giving the
number of bytes in that record.

184 PV-WAVE Programmer’s Guide

The use of the F77_Unformatted keyword with the OPENR statement informs PV-
WAVE that the file contains binary data produced by a UNIX FORTRAN program.
When a file is opened with this keyword, PV-WAVE interprets the longword counts
properly, and is able to read and write files that are compatible with FORTRAN.

Example — UNIX FORTRAN Program Writes, PV-WAVE Reads

The following UNIX FORTRAN program produces a file containing a 5-by-5 array
of floating-point values, with each element set to its one-dimensional subscript. It
is thus a FORTRAN implementation of the FINDGEN function for the special case
of a 5-by-5 array.

FORTRAN Write

INTEGER I, J

REAL DATA(5, 5)

OPEN(1, STATUS = "new", FILE = "mydata",

FORM = "unformatted")

DO 100 J = 1, 5

DO 100 I = 1, 5

DATA(I,J) = ((J-1) * 5) + (I-1)

100 CONTINUE

WRITE(1) DATA

END

Running this program creates a file mydata that contains the array of numbers.

PV-WAVE Read (Method 1)

The following PV-WAVE statements can be used to read this file and print its
contents:

OPENR, 1, ’mydata’, /F77_Unformatted

; Open the file. The F77_Unformatted keyword lets PV-WAVE know
; that the file contains binary data produced by a UNIX FORTRAN
; program.

A = FLTARR(5, 5, /Nozero)

; Create an array to hold the data. The command executes faster
; because the Nozero keyword disables the automatic zeroing of
; each value that normally occurs.

READU, 1, A

; Read the data in a single input operation.

PRINT, A

; Print the result.

 185

CLOSE, 1

; Close the file.

Executing these PV-WAVE statements results in the following output:

0.0000 1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000 9.0000

10.0000 11.0000 12.0000 13.0000 14.0000

15.0000 16.0000 17.0000 18.0000 19.0000

20.0000 21.0000 22.0000 23.0000 24.0000

PV-WAVE Read (Method 2)

Because binary data produced by UNIX FORTRAN programs are interspersed
with these “extra” longword record markers, it is important that the PV-WAVE pro-
gram read the data in the same way that the FORTRAN program wrote it. For
example, consider the following attempt to read the above data file one row at a
time:

OPENR, 1, ’mydata’, /F77_Unformatted

; Open the file. The F77_Unformatted keyword lets PV-WAVE know
; that the file contains binary data produced by a UNIX FORTRAN
; program.

A = FLTARR(5, /Nozero)

; Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN

; One row at a time.
READU, 1, A

; Read a row of data.
PRINT, A

; Print the row.
ENDFOR

CLOSE, 1

; Close the file.

Executing these PV-WAVE statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000

%End of file encountered. Unit: 1.

File: mydata

%Execution halted at $MAIN$ (READU).

186 PV-WAVE Programmer’s Guide

This program read the single logical record written by the FORTRAN program as
if it were written in five separate records. Consequently, it reached the end of the
file after reading the first five values of the first record.

For information about using similar commands to read a segmented record file cre-
ated on an OpenVMS system, refer to the example in the next section.

Reading OpenVMS FORTRAN-Generated Binary Data

By default, OpenVMS FORTRAN programs create data files using segmented
records, a scheme used by FORTRAN to write data records with lengths that
exceed the actual record lengths allowed by OpenVMS.

In segmented record files, a single segmented record is written as one or more
actual OpenVMS records. Each of the actual records has a two-byte control field
prepended that allows FORTRAN to reconstruct the original record.

Example — OpenVMS FORTRAN Program Writes, PV-WAVE Reads

OpenVMS FORTRAN Write

The following OpenVMS FORTRAN program produces a file containing a 5-by-5
array of floating-point values, with each element set to its one-dimensional sub-
script. It is thus a FORTRAN implementation of the PV-WAVE FINDGEN
function for the special case of a 5-by-5 array:

INTEGER I, J

REAL DATA(5, 5)

OPEN(1, STATUS = "new", FILE = "mydata",

FORM = "unformatted")

DO 100 J = 1, 5

DO 100 I = 1, 5

DATA(I,J) = ((J-1) * 5) + (I-1)

100 CONTINUE

WRITE(1) DATA

END

Running this program creates a file mydata that contains the array of numbers.

PV-WAVE Read (Method 1)

PV-WAVE is able to read and write segmented record files if the OPEN statement
used to access the file includes the Segmented keyword. The following PV-WAVE
statements can be used to read this file and print its contents to the screen:

 187

OPENR, 1, ’data.dat’, /Segmented

; Open the file. The Segmented keyword lets PV-WAVE know that
; the file contains OpenVMS FORTRAN segmented records.

A = FLTARR(5, 5, /Nozero)

; Create an array to hold the data. The command executes faster
; because the Nozero keyword disables the automatic zeroing of
; each value that normally occurs.

READU, 1, A

; Read the data in a single input operation.

PRINT, A

; Print the result.
CLOSE, 1

; Close the file.

Executing these PV-WAVE statements results in the following output:

0.0000 1.0000 2.0000 3.0000 4.0000

5.0000 6.0000 7.0000 8.0000 9.0000

10.0000 11.0000 12.0000 13.0000 14.0000

15.0000 16.0000 17.0000 18.0000 19.0000

20.0000 21.0000 22.0000 23.0000 24.0000

PV-WAVE Read (Method 2)

As with all record-oriented I/O, it is important that the PV-WAVE program read the
data in the same way that the OpenVMS FORTRAN program wrote it. For exam-
ple, consider the following attempt to read the above data file one row at a time:

OPENR, 1, ’mydata’, /Segmented

; Open the file. The Segmented keyword lets PV-WAVE know that
; the file contains OpenVMS FORTRAN segmented records.

A = FLTARR(5, /Nozero)

; Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN

; One row at a time.
READU, 1, A

; Read a row of data.
PRINT, A

; Print the row.

ENDFOR

CLOSE, 1

; Close the file.

188 PV-WAVE Programmer’s Guide

Executing these PV-WAVE statements produces the output:
0.00000 1.00000 2.00000 3.00000 4.00000

%End of file encountered. Unit: 1.

File: mydata

%Execution halted at $MAIN$ (READU).

This program read the single logical record written by the FORTRAN program as
if it were written in five separate records. Consequently, it reached the end of the
file after reading the first five values of the first record.

Reading and Writing Long Integers Under Digital UNIX

Internal C long integers are 8 bytes on Digital UNIX, versus 4 bytes on the other
supported UNIX platforms. To accommodate this difference, the long variable type
in PV-WAVE on Digital UNIX has increased precision, allowing you to calculate
expressions up to 9223372036854775807 without overflow.

Please note that binary dumps of long values or structures with long values will not
be retrievable directly from other supported UNIX machines and vice versa.

For example, if you use WRITEU to write out a structure, a long, or a series of
longs, to a file from Digital UNIX, and then try to use READU to read those values
with PV-WAVE on a Sun platform, you will not retrieve those values, since the Sun
will read in 4 bytes instead of the full 8 bytes.

If you need to be able to read that type of file on Digital UNIX and other platforms,
you can find an example of how to manipulate the bytes in a structure in the fol-
lowing file, near line 80.

(UNIX) $WAVE_DIR/lib/std/polycontour.pro

You may experience this problem especially for files containing headers, like Sun
raster files, where the header describes the content of the file.

External Data Representation (XDR) Files
Normally, binary data is not portable between different machine architectures
because of differences in the way different machines represent binary data. It is,
however, possible to produce binary files that are portable, by specifying the Xdr
keyword with the OPEN procedures. XDR represents a compromise between the
extremes of ASCII and binary I/O.

XDR (eXternal Data Representation, developed by Sun Microsystems, Inc.) is a
scheme under which all binary data is written using a standard “canonical” repre-

 189

sentation. PV-WAVE understands this standard representation and has the ability to
convert between it and the internal representation of the machine upon which it
runs.

XDR converts between the internal and standard external binary representations
for data, instead of simply using the machine’s internal representation. Thus, it is
much more portable than pure binary data, although it is still limited to those
machines that support XDR.

NOTE XDR is not as efficient as pure binary I/O because it does involve the over-
head of converting between the external and internal binary representations.
Nevertheless, it is still much more efficient than ASCII I/O because conversion to
and from ASCII characters is much more involved than converting between binary
representations.

Opening XDR Files

Since XDR adds extra “bookkeeping” information to data stored in the file, and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using the Xdr
keyword.

To use the XDR format, you must specify the Xdr keyword when opening the file.
For example:

OPENW, /Xdr, 1, ’data.dat’

NOTE OPENW and OPENU normally open files for both input and output. How-
ever, XDR files can only be open in one direction at a time. Thus, using these
procedures with the Xdr keyword results in a file open for output only, and the only
I/O data transfer routines that can be used is WRITEU. OPENR works in the usual
way.

Transferring Data To and From XDR Files

The primary differences in the way PV-WAVE I/O procedures work with XDR
files, as opposed to other data files, are listed below:

• The only I/O data transfer routines that can be used with a file opened for XDR
are READU and WRITEU.

• The length of strings is saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a

190 PV-WAVE Programmer’s Guide

string from the XDR file. (This is necessary with normal binary I/O, and is
described in Binary Transfer of String Variables on page 181.)

• For the sake of efficiency, byte data is transferred as a single unit. Therefore,
byte variables must be initialized to a length that matches the data to be input.
Otherwise, an error message is displayed. See the following example for more
details.

Example — Reading Byte Data from an XDR File

For example, given the statements:

OPENW, /Xdr, 1, ’data.dat’

; Open a file for XDR output.

WRITEU, 1, BINDGEN(10)

; Write a 10-element byte array.

CLOSE, 1

; Close the file ...

OPENR, /Xdr, 1, ’data.dat’

; . . . and re-open it for input.

the following statements:

b = 0B

; Define b as a byte scalar.

READU, 1, b

; Try to read the first byte only.
CLOSE, 1

; Close the file.

will result in the error:

%End of file encountered. Unit: 1.

File: data.dat

%Execution halted at $MAIN$ (READU).

Instead, it is necessary to read the entire byte array back in one operation using
statements such as:

b = BYTARR(10)

; Define b as a byte array.

READU, 1, b

; Read the whole array back at once.
CLOSE, 1

; Close the file.

 191

NOTE This restriction (in other words, the necessity of transferring byte data as a
single unit) does not apply to the other data types.

Example — Reading C-generated XDR Data with PV-WAVE

C Program Write

The following C program produces a file containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>

#include <rpc/rpc.h>

[xdr_wave_complex() and xdr_wave_string() included here]

/* For more information about xdr_wave_complex() and
xdr_wave_string(), refer to a later section that follows this
example.*/

main()

{

static struct { /* output data */

unsigned char c;
short s;
long l;
float f;
double d;
struct complex { float r, i } cmp;
char *str;

} data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };

u_int c_len = sizeof (unsigned char);

/* Length of a character */

char *c_data = (char *) &data.c;

/* Address of byte field */

FILE *outfile;

/* stdio stream pointer */

XDR xdrs;

/* XDR handle */

/* Open stdio stream and XDR handle */

outfile = fopen("data.dat", "w");

xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

192 PV-WAVE Programmer’s Guide

/* Output the data */

(void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);

(void) xdr_short(&xdrs, (char *) &data.s);

(void) xdr_long(&xdrs, (char *) &data.l);

(void) xdr_float(&xdrs, (char *) &data.f);

(void) xdr_double(&xdrs, (char *) &data.d);

(void) xdr_wave_complex(&xdrs, (char *) &data.cmp);

(void) xdr_wave_string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */

xdr_destroy(&xdrs);

(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data.

PV-WAVE Read

The following PV-WAVE statements can be used to read this file and print its con-
tents to the screen:

data = {s, c:0B, s:0, l:0L, f:0.0, d:0.0D, $
cmp:COMPLEX(0), str:’ ’}

; Create structure containing correct types.

OPENR, /Xdr, 1, ’data.dat’

; Open the file for input.

READU, 1, data

; Read the data.

CLOSE, 1

; Close the file.

PRINT, data

; Show the results.

Executing these PV-WAVE statements produces the output:
{ 1 2 3 4.00000 5.0000000

(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
If you are a Sun workstation user, consult the Network Programming manual.

 193

XDR Conventions for Programmers

PV-WAVE uses certain conventions for reading and writing XDR files. If you use
XDR only to exchange data in and out of PV-WAVE, you don’t need to be con-
cerned about these conventions because PV-WAVE takes care of it for you.

However, if you want to create PV-WAVE compatible XDR files from other lan-
guages, you need to know the actual XDR routines used by PV-WAVE for various
data types. These routine names are summarized in the following table:

XDR Routines for Transferring Complex and String Data

The routines used for types complex and string are not primitive XDR routines.
Their definitions are shown in the following C code:

bool_t xdr_wave_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i } *p;

{
return(xdr_float(xdrs, (char *) &p->r)&&

xdr_float(xdrs, (char *) &p->i));

}

bool_t xdr_wave_string(xdrs, p)
XDR *xdrs;
char **p;

{

int input = (xdrs->x_op == XDR_DECODE);

short length;

/* If writing, obtain the length */

XDR Routines Used by PV-WAVE

Data Type XDR Routine

BYTE xdr_bytes()

INT xdr_short()

LONG xdr_long()

FLOAT xdr_float()

DOUBLE xdr_double()

COMPLEX xdr_wave_complex() *

STRING xdr_wave_string() *

The asterisk (*) indicates compound routines.

194 PV-WAVE Programmer’s Guide

if (!input) length = strlen(*p);

/* Transfer the string length */

if (!xdr_short(xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */

if (input)

{

*p = malloc((unsigned) (length + 1));
p[length] = ’\0’;/ Null termination */

}

/* If nonzero, return string length */

return (length ? xdr_string(xdrs, p, length) : TRUE);

}

Associated Variable Input and Output
Binary data stored in files often consists of a repetitive series of arrays or structures.
A common example is a series of images or a series of arrays. PV-WAVE associated
file variables offer a convenient and efficient way to access data that comprises a
sequence of identical arrays or structures.

An associated variable is a variable that maps the definition of an array or structure
variable onto the contents of a file. The file is treated as an array of these repeating
units of data. The first array or structure in the file has an index of 0, the second has
index 1, and so on. The general form for using ASSOC is:

ASSOC(unit, array_definition [, offset])

For examples showing how to use the offset parameter, refer to a later section,
Using the Offset Parameter on page 198.

Associated variables do not use memory like a normal variable. Instead, when an
associated variable is subscripted with the index of the desired array or structure
within the file, PV-WAVE performs the I/O operation required to access that entire
block of data.

OpenVMS USERS OpenVMS fixed-length record files must be accessed by
ASSOC either on record boundaries or an integer multiple of the number of data
elements on a record boundary.

 195

Advantages of Associated File Variables

Associated file variables offer the following advantages over READU and
WRITEU for binary I/O. For these reasons, associated variables are the most effi-
cient form of I/O.

• I/O occurs whenever an associated file variable is subscripted. Thus, it is pos-
sible to perform I/O within an expression, without a separate I/O statement.

• The size of the data set is limited primarily by the maximum size of the file
containing the data, instead of the maximum memory available. Data sets too
large for memory can be easily accommodated.

• You do not have to declare the maximum number of arrays or structures con-
tained in the file.

• Associated variables simplify access to the data. Direct access to any element
in the file is rapid and simple — there is no need to calculate offsets into the
file and/or position the file pointer prior to performing the I/O operation.

Working with Associated File Variables

Assume that a file named today.dat exists, and that this file contains a series of
10-by-20 arrays of floating-point data. The following two statements open the file
and create an associated file variable mapped to the file:

OPENU, 1, ’today.dat’

; Open the file.

A = ASSOC(1, FLTARR(10, 20, /Nozero))

; Define an associated file variable. Using the Nozero keyword with
; FLTARR increases efficiency since ASSOC ignores the value of the
; resultant array, anyway.

NOTE The order of these two statements is not important — it would be equally
valid to call ASSOC first and then open the file. This is because the association is
between the variable and the logical file unit, not the file itself.

You may opt to close the file, open a new file using the same LUN, and then use
the associated variable without first executing a new ASSOC. Naturally, an error
occurs if the file is not open when the file variable is subscripted in an expression,
or if the file is open for the wrong type of access (for example, trying to assign to
an associated file variable with a file opened with OPENR for read-only access).

As a result of executing the two statements above, the variable A is now an associ-
ated file variable. Executing the statement:

196 PV-WAVE Programmer’s Guide

INFO, A

produces the following response:

A FLOAT = File<today.dat> Array(10, 20)

The associated variable A maps the definition of a 10-by-20 floating-point array
onto the contents of the file today.dat. Thus, the response from the INFO pro-
cedure shows it to be a two-dimensional floating-point array.

NOTE Only the form of the array is used by ASSOC. The value of the expression
is ignored.

The ASSOC command doesn’t require that you use a particular combination of
dimensions to index into a file, although you may have reasons to prefer one com-
bination of dimensions over another. For example, assume a number of 128-by-128
byte images are contained in a file. The command:

row = ASSOC(1, BYTARR(128))

maps the file into rows of 128 bytes each. Thus, row(3) is the fourth row of the
first image, and row(128) is the first row of the second image. On the other
hand, the command:

image = ASSOC(1, BYTARR(128,128))

maps the file into entire images. Now, image(4) is all 16384 values of the fifth
image.

How Data is Transferred into Associated Variables

Once a variable has been associated with a file, data is read from the file whenever
the associated variable appears in an expression with a subscript. The position of
the array or structure read from the file is given by the value of the subscript. The
following statements give some examples of using file variables:

Z = A(0)

; Copy the contents of the first array into the normal variable Z. Z is
; now a 10-by-20 floating-point array.

FOR I = 1,9 DO Z = Z + A(I)

; Compute the sum of the first 10 arrays (Z was initialized in the previous statement
; to the value of the first array. This statement adds the following nine to it.).

PLOT, A(3)

; Read the fourth array and plot it.

PLOT, A(5) - A(4)

; Subtract array 4 from array 5, and plot the result. The result of the

 197

; subtraction is not saved after the plot is displayed.

An associated file variable only performs I/O to the file when it is subscripted.
Thus, the following two statements do not cause I/O to happen:

B = A

; This assignment does not transfer data from the file to variable B
; because A is not subscripted. Instead, B becomes an associated file
; variable with the same dimensions, and to the same LUN, as A.

B = 23

; This assignment does not result in the value 23 being transferred to
; the file because variable B (which became an associated file var
; able in the previous statement) is not subscripted. Instead, B
; becomes a scalar integer variable containing the value 23. It is no
; longer an associated file variable.

Subscripting Associated File Variables During Input

When the associated file variable is defined to be an array, it is possible to subscript
into the array being accessed during input operations. For example, for the variable
A defined above:

Z = A(0,0,1)

; Assigns the value of the first floating-point element of the second
; array within the file to the variable Z. The rightmost subscript is
; taken as the index into the file causing PV-WAVE to read the entire
; second array into memory. This resulting array expression is then
; further subscripted by the remaining subscripts.

NOTE Although this ability can be convenient, it can also be very slow because
every access to an individual array element causes the entire array to be read from
disk. Unless only one element of the array is desired, it is much faster to assign the
contents of the array to another variable by subscripting the file variable with a sin-
gle subscript, and then access the individual array elements from the variable.

Efficiency in Accessing Arrays

To increase the efficiency of reading arrays, make their length an integer multiple
of the physical block size of the disk holding the file. Common values are 512,
1024, and 2048 bytes. For example, on a disk with 512-byte blocks, one benchmark
program required approximately one-eighth of the time required to read a 512-by-
512 byte image that started and ended on a block boundary, as compared to a sim-
ilar program that read an image that was not stored on even block boundaries.

198 PV-WAVE Programmer’s Guide

Using the Offset Parameter

The offset parameter to ASSOC specifies the position in the file at which the first
array starts. It is useful when a file contains a header followed by data records.

Specifying Offsets Under UNIX and Windows

The offset is given in bytes. For example, if a file uses the first 1024 bytes of the
file to contain header information, followed by 512-by-512 byte images, the
statement:

image = ASSOC(1, BYTARR(512, 512), 1024)

skips the header by providing a 1024 byte offset before any image data is read.

Specifying Offsets Under OpenVMS

Under OpenVMS, stream files and RMS block mode files have their offset given in
bytes, and record-oriented files have it specified in records. Thus, the example
above would have worked for OpenVMS if the file was a stream or block mode file.
Assume however, that the file has 512-byte fixed-length records. In this case, skip-
ping the first 1024 bytes is equivalent to skipping the first 2 records:

image = ASSOC(1, BYTARR(512, 512), 2)

For more information about OpenVMS files, refer to OpenVMS-Specific
Information on page 204; that section contains an overview of how OpenVMS
handles files.

Writing Associated Variable Data

When a subscripted associated variable appears on the left side of an assignment
statement, the expression on the right side is written into the file at the given array
position. For example:

A(5) = FLTARR(10,20)

; Zeroes sixth record. By default, every value in a newly created
; floating-point array is set equal to zero, unless the Nozero keyword is supplied.

A(5) = ARR

; Writes ARR into the sixth record after any necessary type
; conversions.

A(J) = (A(J) + A(J+1))/2

; Averages records J and J+1 and writes the result into record J.

NOTE When writing data, only a single subscript (specifying the index of the
affected array or structure in the file) is allowed. Thus, it is not possible to index

 199

individual elements of associated arrays during output, although it is allowed dur-
ing input. To update individual elements of an array within a file, assign the
contents of that array to a normal array variable, modify the copy, and write the
array back by assigning it to the subscripted associated variable.

Binary Data from UNIX FORTRAN Programs

Binary data files generated by FORTRAN programs under UNIX contain an extra
longword before and after each logical record in the file. ASSOC does not interpret
these extra bytes, but considers them to be part of the data. Therefore, do not use
ASSOC to read such files; use READU and WRITEU instead. You can find an
example of using PV-WAVE to read data generated by FORTRAN programs under
UNIX in Reading UNIX FORTRAN-Generated Binary Data on page 183.

Miscellaneous File Management Tasks
This section describes a variety of utility commands that have been provided to
simplify your interaction with data files. It also describes the FSTAT command,
which is a valuable source of information about open files.

Locating Files

The FINDFILE function returns an array of strings containing the names of all files
that match its parameter list. The parameter list may contain any wildcard charac-
ters understood by your system. For example, to determine the number of
procedure files that exist in the current directory:

PRINT, ’# PV-WAVE.pro files:’, $
N_ELEMENTS(FINDFILE(’*.pro’))

Flushing File Units

To increase efficiency, PV-WAVE buffers its I/O in memory. This means that when
data is output, there is a brief interval of time during which data is in memory, but
has not actually been placed into the file. Normally, this behavior is transparent to
the PV-WAVE user (except for the improved performance).

The FLUSH routine exists for those rare occasions where a program needs to be
certain that the data has actually been written to the file immediately. For example,
to flush file unit 1:

FLUSH, 1

200 PV-WAVE Programmer’s Guide

Positioning File Pointers

Each open file unit has a file pointer associated with it. This file pointer indicates
the position in the file at which the next I/O operation will take place.

The POINT_LUN procedure allows the file pointer to be positioned arbitrarily. The
file position is specified as the number of bytes from the start of the file. The first
position in the file is position 0 (zero).

The following statement rewinds file unit 1 to its beginning:

POINT_LUN, 1, 0

while the following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)

POINT_LUN, 1, tmp.size

UNIX USERS Moving the file pointer to a position beyond the current end-of-file
causes a UNIX file to grow by that amount. (This is the standard UNIX practice.)

Testing for End-of-File

The EOF function is used to test a file unit to see if it is currently positioned at the
end of the file. EOF returns true (1) if the end-of-file condition is true, and false (0)
otherwise. For example, to read the contents of a file and print it on the screen:

OPENR, 1, ’demo.doc’

; Open file demo.doc for reading.

line = ’’

; Create a variable of type string.

WHILE (not EOF(1)) DO BEGIN READF, 1, line & $
PRINT, line & END

; Read and print each line, until the end of the file is encountered.

CLOSE, 1

; Done with the file.

Getting Information About Files

Using the INFO Procedure

Information about currently open file units is available by using the Files keyword
with the INFO procedure. If no parameters are provided, information about all cur-

 201

rently open user file units (units 1-128) is given. For example, to get information
about the three special units (–2, –1, and 0), the command:

INFO, /Files, -2, -1, 0

causes the following to be displayed on the screen if you are running PV-WAVE in
a UNIX environment:

Unit Attributes Name

-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
 0 Read, Tty, Reserved <stdin>

or causes the following to be displayed on the screen if you are running under
Windows:

Unit Attributes Name

-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
 0 Read, Tty, Reserved <stdin>

For more information about the INFO command, refer to Chapter 12, Getting Ses-
sion Information.

Use the Information from FSTAT

FSTAT is a structure that contains details about all currently allocated LUNs. You
can use the FSTAT function to get more detailed information, including informa-
tion that can be used from within a PV-WAVE program. It returns an expression of
type structure with a name of FSTAT containing information about the file. For
example, to get detailed information about the standard input, the command:

INFO, /Structures, FSTAT(0)

causes the following to be displayed on the screen:

** Structure FSTAT, 10 tags, 32 length:

UNIT LONG 0

NAME STRING ’<stdin>’

OPEN BYTE 1

ISATTY BYTE 1

READ BYTE 1

WRITE BYTE 0

TRANSFER_COUNT LONG 0

CUR_PTR LONG 35862

SIZE LONG 0

202 PV-WAVE Programmer’s Guide

Since PV-WAVE allows keywords to be abbreviated to the shortest non-ambiguous
number of characters,

INFO, /St, FSTAT(0)

will also work (and save some typing). The fields of the FSTAT structure are
defined as part of its description in the PV-WAVE Reference.

Sample Usage — FSTAT Function

The following function can be used to read single-precision floating point data
from a file into a vector when the number of elements in the file is not known. This
function uses FSTAT to get the size of the file in bytes and then divides by 4 (the
size of a single-precision floating-point value) to determine the number of values:

FUNCTION read_data, file

; Read_data reads all the floating-point values from file and returns
; the result as a floating-point vector.

OPENR, /Get_Lun, unit, file

; Get a unique file unit and open the data file.

status = FSTAT(unit)

; Retrieve the file status.

data = FLTARR(status.size / 4.0)

; Make an array to hold the input data. The size tag of status gives
; the number of bytes in the file and single-precision floating-point
; values are four bytes each.

READU, unit, data

; Read the data.

FREE_LUN, unit

; Deallocate the file unit and close the file.

RETURN, data

; Return the data.

END

Assuming that a file named herc.dat exists and contains 10 floating-point val-
ues, the following statements:

a = read_data(’herc.dat’)

; Read floating-point values from herc.dat.

INFO, a

; Show the result.

REC_LEN LONG 0

 203

will produce the following output:

A FLOAT = Array(10)

Getting Input from the Keyboard

The GET_KBRD function returns the next character available from the standard
input (file unit 0) as a single character string. It takes a single parameter named
Wait. If Wait is zero, GET_KBRD returns the null string if there are no characters
in the terminal typeahead buffer. If Wait is nonzero, the function waits for a char-
acter to be typed before returning.

Sample Usage — GET_KBRD Function

A procedure that updates the screen and exits when <Return> is typed might appear
as:

PRO UPDATE, ...

; Procedure definition.

WHILE 1 DO BEGIN

; Loop forever, updating the screen as needed.
CASE GET_KBRD(0) OF

; Read character, no wait.
’’ : ; Process letter A.

’’ : ; Process letter B.
... ; Process other alternatives.
STRING("15B): RETURN

; Exit if <Return> is detected (ASCII code = 15 octal).
ELSE:

; Ignore all other characters.
ENDCASE

ENDWHILE

END

UNIX-Specific Information
UNIX offers only a single type of file. All files are considered to be an uninter-
rupted stream of bytes, and there is no such thing as record structure at the
operating system level. (By convention, records of text are simply terminated by
the linefeed character, which is referred to as “newline”.) It is possible to move the
current file pointer to any arbitrary position in the file and to begin reading or writ-

204 PV-WAVE Programmer’s Guide

ing data at that point. This simplicity and generality forms a system in which any
type of file can be manipulated easily, using a small set of file operations.

Reading FORTRAN-Generated Binary Data

Although the UNIX operating system views all files as an uninterrupted stream of
bytes, FORTRAN considers all I/O to be done in terms of logical records. In order
to reconcile FORTRAN’s need for logical records with UNIX files, UNIX FOR-
TRAN programs add a longword count before and after each logical record of data.
These longwords contain an integer count giving the number of bytes in that
record.

The use of the F77_ Unformatted keyword with the OPENR statement informs PV-
WAVE that the file contains binary data produced by a UNIX FORTRAN program.
When a file is opened with this keyword, PV-WAVE interprets the longword counts
properly, and is able to read and write files that are compatible with FORTRAN. To
see an example showing the use of the F77_ Unformatted keyword with the
OPENR statement, refer to Reading UNIX FORTRAN-Generated Binary Data on
page 183.

OpenVMS-Specific Information
OpenVMS I/O is a relatively complex topic, involving a large number of formats
and options. OpenVMS files are record oriented, and it is necessary to take this into
account when writing applications, especially those that will run under other oper-
ating systems. This section discusses the various characteristics that an OpenVMS
user must consider when transferring data in and out of PV-WAVE.

Organization of the File

An OpenVMS file can be organized in the following ways:

✔ sequential

✔ relative

✔ indexed

The organization controls the way in which data is placed in the file, and deter-
mines the options for random access. PV-WAVE is able to read data from all three
types, and is able to create sequential or indexed files.

 205

In addition, it is possible to bypass the organization and access a file in block mode;
this is equivalent to interpreting the file as if it were simply a stream of uninter-
rupted bytes. This is very similar to stream files, although considerably more
efficient (because most OpenVMS file processing is bypassed).

CAUTION With some file organizations, OpenVMS intermingles housekeeping
information with data. When accessing such a file in block mode, it is easy to cor-
rupt this information and render the file unusable in its usual mode. However, block
mode will always work, and thus, avoiding such file corruption becomes your
responsibility.

Access Mode

The access mode controls how the data in a file is accessed. OpenVMS supports
the following types of access:

✔ sequential access

✔ random access by key value (indexed files)

✔ relative record number (relative files)

✔ relative file address (all file organizations)

Random access for sequential files is allowed by file address using the
POINT_LUN procedure. PV-WAVE does not support access by relative record
number — files are accessed sequentially or via key value.

Record Format

All OpenVMS files are record oriented; for an overview of how PV-WAVE handles
record-oriented data files, refer to an earlier section, Record-Oriented I/O in Open-
VMS Binary Files on page 143.

OpenVMS supports the following types of record formats:

✔ fixed-length records

✔ variable-length records

✔ variable-length with fixed-length control field (VFC)

✔ stream format

Of these, the fixed-length and variable-length record formats are the most useful
and are fully supported by PV-WAVE.

206 PV-WAVE Programmer’s Guide

It is possible to read the data portion of a VFC file, but not the control field. All
access to stream mode files under PV-WAVE is done via the Standard C Library.

TIP OpenVMS stream files are record oriented (and therefore, fail to provide
much of the flexibility of UNIX stream files) although the OpenVMS standard C
library (upon which PV-WAVE is implemented) does a good job of concealing this
limitation. Our experience indicates that I/O using OpenVMS stream mode files is
dramatically slower than the other options, and should be avoided when possible.
For binary data, using block mode can provide the flexibility you need while main-
taining an efficient rate of data transfer.

Record Attributes

When a record is output to the screen or printer, OpenVMS uses its carriage control
attributes to determine how to output each line:

• Explicit carriage control — Specifies that OpenVMS should do nothing, and
you (the user) will provide the appropriate carriage control (if any) in the data.

• Carriage Return carriage control — Specifies that each line should be pre-
ceded by a line feed and followed by a <Return>.

• FORTRAN carriage control — Indicates that the first byte of each record
contains a FORTRAN carriage control character. The possible values of this
byte are listed in the following table.

OpenVMS FORTRAN Carriage Control

Byte Value ASCII Character Meaning

0 (null) No carriage control — output data directly.

32 (space) Single-space. A linefeed precedes the out-
put data, and a <Return> follows.

48 0 Double-space. Two linefeeds precede the
output data, and a <Return> follows.

49 1 Page eject. A formfeed precedes the data,
and a <Return> follows.

40 + Overprint. A <Return> follows the data,
causing the next output line to overwrite the
current one.

 207

NOTE The default for PV-WAVE is Carriage Return carriage control.

File Attributes

There are many file attributes that can be adjusted to suit various requirements.
These attributes allow specifying such things as the default name, the initial size of
new files, the amount by which files are extended, whether the file is printed or sent
to a batch queue when closed, and file sharing between processes.

For more information about OpenVMS file attributes, refer to Record Management
Services (RMS), File System, Volume 6B.

Creating Indexed Files

Although PV-WAVE can read and write indexed files, it cannot create them. So you
must use the OpenVMS CREATE/FDL command to create the file. FDL stands for
File Definition Language, and is the standard method for specifying OpenVMS file
attributes. The options for creating indexed files are too numerous to cover in this
document, but the OpenVMS File Definition Language Facility Manual describes
FDL in detail.

TIP It is often useful to start with the FDL description for an existing file and then
modify it to suit your new application. The command:

$ ANALYZE/RMS_FILE/FDL file.dat

will produce a file named file.fdl containing the FDL description for
file.dat.

The following is a FDL description for an indexed file named wages.dat with
two keys. The first key is a 32 character string containing an employee name. The
second key is a 4 byte integer containing the current salary for that employee:

FILE

36 $ Prompt. A linefeed precedes the data, but
no <Return> follows.

Other Same as ASCII space character. Single-
space carriage control.

OpenVMS FORTRAN Carriage Control (Continued)

Byte Value ASCII Character Meaning

208 PV-WAVE Programmer’s Guide

NAME wages.dat
ORGANIZATION indexed

RECORD
SIZE 36

KEY 0
NAME "Name"
SEG0_LENGTH 32
SEG0_POSITION 0
TYPE string

KEY 1
CHANGES yes
NAME "Salary"
SEG0_LENGTH 4
SEG0_POSITION 32
TYPE bin4

Assume that this description resides in a file named wages.fdl. The following
statement can be used to create wages.dat:

SPAWN, ’CREATE/FDL=wages.fdl’

Once the file exists, it can be opened within PV-WAVE using the KEYED keyword
with the OPENR or OPENU procedures.

Accessing Magnetic Tape

Under OpenVMS, PV-WAVE offers procedures to directly access magnetic tapes.
Data is transferred between the tape and PV-WAVE arrays without using RMS.
Optionally, tapes from IBM mainframe compatible systems may be read or written
with odd/even byte reversal.

The routines used for directly accessing magnetic tape are shown in the following
table:

Routines for Directly Accessing Magnetic Tape

Procedure Description

REWIND Rewind a tape unit.

SKIPF Skip records or files.

TAPRD Read from tape.

TAPWRT Write to tape.

WEOF Write an end-of-file mark on tape.

 209

To use the magnetic tape procedures you must define a logical name “MTn” to be
equivalent to the actual name of the tape drive you wish to use. This definition must
be done before you start PV-WAVE. You must also have the tape mounted as a for-
eign volume.

Example 1 — Mounting a Tape Drive

For example, if you wish to access the tape drive MUA0: as tape unit number 5,
issue the following OpenVMS commands before running PV-WAVE:

$ MOUNT/FOREIGN MUA0:

$ DEFINE MT5 MUA0:

Or, you can combine the two commands:

$ MOUNT MUA0:/FOR MT5

This command serves to both mount the tape and to associate the logical name MT5
with it, thus making it unit 5 from within PV-WAVE. The MOUNT command must
be issued to OpenVMS before entering PV-WAVE. Then, within PV-WAVE, refer
to the tape as unit number 5. The unit number n, should be in the range {0…9}.

NOTE These unit numbers are not the same as the LUNs (logical unit numbers)
used by the other I/O routines. The unit numbers used by the magnetic tape routines
are completely unrelated, and come from the last letter of the MTn logical name
used to refer to it.

Example 2 — Skipping Forward on the Tape

The following statements skip forward 30 records on the tape mounted on the drive
with the logical name MT2, and print a message if an end-of-file is encountered.

SKIPF, 2, 30, 1

; Skip forward over 30 records on unit 2.

IF !ERR NE 30 THEN PRINT, ’End of file found.’

; Print a message if the requested number of records were not
; skipped.

Example 3 — Skipping Backward on the Tape

The following statements skip two records backwards on the tape mounted on the
drive with the logical name MT0, and then position the tape immediately after the
second record mark encountered in reverse:

SKIPF, 0, -2

; Go backwards two records.

210 PV-WAVE Programmer’s Guide

IF !ERR EQ -2 THEN SKIPF, 0, 1

; Reposition tape if two records were actually skipped.

Example 4 — Reading Blocks of Image Data

The following code segment reads a 512-by-512 byte image from the tape which
is assigned the logical name MT5. It is assumed that the data is stored in 2048 byte
tape blocks:

A = BYTARR(512, 512)

; Define image array.

B = BYTARR(512, 4)

; Define an array to hold one tape block worth of data.

FOR I=0, 511, 4 DO BEGIN

; Loop to read data.
TAPRD, B, 5

; Read next record.
A(0,I) = B

; Insert four rows starting at ith row.

ENDFOR

Windows-Specific Information

Exchanging Image Data Using the Clipboard

Under Windows, the Clipboard provides a convenient mechanism for transferring
image data to and from PV-WAVE. You can copy data to and from the Clipboard
using either 1) command line functions, or 2) functions on the graphics window
Control menu.

Any graphics application that accepts Device Independent Bitmap (DIB) or
enhanced-format metafile (EMF) graphics can be exchanged with PV-WAVE
through the Clipboard. For example, you can copy graphics from a graphics win-
dow into a Microsoft Paintbrush window using the copy and paste functions
provided by these two applications.

Depending on the options you have selected, the graphics that are copied to and
from the Clipboard are either in bitmap (DIB) or metafile (EMF) format. By
default, bitmap graphics are displayed in graphics windows; however, providing
the /Meta keyword with either the DEVICE or WINDOW procedure creates a

 211

metafile. The following table highlights some of the differences between DIB and
EMF graphics:

Command Line Clipboard Functions

Either of these commands can be entered at the WAVE> prompt in the Console
window:

• WCOPY — Copies the contents of a graphics window to the Clipboard. The
following example copies the contents of window number 1 to the Clipboard:

status=WCOPY(1)

• WPASTE — Pastes the contents of the Clipboard into a specified graphics win-
dow. The following example pastes the contents of the Clipboard into the
graphics window with index number 1.

status=WPASTE(1)

For detailed information on these functions, see their descriptions in the PV-WAVE
Reference.

Clipboard Functions on the Graphics Window Control Menu

Either of these options can be selected from the Control menu of any graphics
window:

• Copy to Clipboard — Copies the contents of a graphics window to the
Clipboard.

• Paste from Clipboard — Pastes the contents of the Clipboard into a specified
graphics window.

Input and Output of DIB and Metafile Images

Several commands are provided for the transfer of Device Independent Bitmap
(DIB) and enhanced-format metafile (EMF) images. These commands fall into two

Format Advantages Disadvantages

Bitmap (DIB) Fast display of com-
plex graphics
images.

Graphics cannot be resized interactively.
Greater storage requirements.

Metafile
(EMF)

Allows graphics to
be resized interac-
tively.
Smaller storage
requirements

Slower display time for complex graph-
ics.

212 PV-WAVE Programmer’s Guide

general categories: 1) commands that transfer data between variables and files, and
2) commands that transfer data between graphics windows and files.

Commands that Transfer Data Between Variables and Files

The following functions allow you to import and export DIB data between vari-
ables and files. For more information on these functions, see their descriptions in
the PV-WAVE Reference.

• DC_READ_DIB — Reads data from a DIB format file into a variable.

• DC_WRITE_DIB — Writes image data from a variable to a DIB format file.

Commands that Transfer Data Between Files and Windows

The following functions allow you to import and export DIB and EMF data
between data files and graphics windows. For more information on these functions,
see their descriptions in the PV-WAVE Reference.

• WREAD_DIB — Loads a DIB from a file into a graphics window.

• WWRITE_DIB — Saves the contents of a graphics window to a file using the
DIB format.

• WREAD_META — Loads an EMF image from a file into a graphics window.
(EMF graphics cannot be pasted into 16-bit applications.)

• WWRITE_META — Saves the contents of a graphics window to a file using
the EMF format. (EMF graphics cannot be pasted into 16-bit applications.)

The graphics window Control menu contains two functions that let you interac-
tively import and export DIB and EMF data:

• Export Graphics — Writes the contents of the graphics window to a file. Your
choice of output format depends on how the window was created. If the win-
dow was created with a metafile option (either by specifying the Meta or
Redraw keyword), then the exported file can either be a DIB or an EMF format
file. The filename extension, .bmp for DIB format and .emf for EMF format,
determines the type of output file. If the window was created without a metafile
option, then the only choice is to export DIB format data.

• Import Graphics — Reads the contents of a file into a PV-WAVE graphics
window. The file’s contents must be in either DIB or EMF format.

By default, the Import Graphics dialog box looks for files with a .bmp or
.emf extension. If the graphics window was created with the /Meta or
/Redraw option enabled, then .emf files are expected. Otherwise, .bmp files
are expected. For information on the /Meta and /Redraw options, see the dis-

 213

cussions of the DEVICE and WINDOW procedures in the PV-WAVE
Reference.

Transferring Data from PV-WAVE to Microsoft® Excel

This section describes a method for exporting data from PV-WAVE into a
Microsoft Excel spreadsheet. You can apply this method with any application that
allows you to import comma-separated value (CSV) data.

First, have PV-WAVE write the data to a file; the output must be in CSV format.
You can do this with the DC_WRITE_FREE function.

data = INDGEN(10, 10)

; Create some example data, such as a 10-by-10 array of integers.

status = DC_WRITE_FREE(’data.csv’, data, /Column)

This DC_WRITE_FREE command writes a file calleddata.csv, which contains
CSV data that can be read directly into a Microsoft Excel spreadsheet.

Now you can import the file into Excel as a CSV format file.

TIP It is also possible to run Excel directly from PV-WAVE using the SPAWN pro-
cedure. SPAWN lets you execute external programs from within PV-WAVE. For
detailed information on SPAWN, see the PV-WAVE Reference. The following
SPAWN command tells Excel to start and load the CSV data file that was created
using PV-WAVE:

WAVE> SPAWN, ’C:\excel.exe C:\data.csv’, /Nowait

The input file to Excel must be in CSV format and must have an .csv extension.

For more information on DC_WRITE_FREE, see its description in the PV-WAVE
Reference. For information on how to transfer data from Microsoft Excel to PV-
WAVE, see Transferring Data from Microsoft® Excel to PV-WAVE on page 213.

Transferring Data from Microsoft® Excel to PV-WAVE

This section describes a method for reading comma-separated value (CSV) data
from a Microsoft Excel spreadsheet into PV-WAVE. Once the data is imported into
PV-WAVE, you can use graphics functions such as PLOT and OPLOT to visualize
it. This method of transferring data from another application to PV-WAVE will
work with any application as long as the application can export CSV data.

First, save the data from your Excel spreadsheet using the Save File as Type: CSV
option on the Save As dialog box. This option saves the data in a text file containing

214 PV-WAVE Programmer’s Guide

values separated by commas. Blank cells are written as “,,” (a pair of commas)
which PV-WAVE interprets as zeros.

For example, if your spreadsheet contains the following array of cells:

when it is saved as CSV data, the resulting file looks like this:

Q1, Q2, Q3, Q4

50,, 25, 200

40, 100, 50,,

200, 50, 50, 100

NOTE The blank cells in the spreadsheet are saved as “,,” (a pair of commas).
These blank values are interpreted as zeros when they are imported into PV-WAVE.

Now, you can read this CSV data file into PV-WAVE. First, create arrays to hold
the text of the column headings, then create an array to hold the data:

headings = STRARR(4)

sales = INTARR(4, 3)

Next, use the DC_READ_FREE function to read the data into the arrays head-
ings and sales. For detailed information on the DC_READ_FREE function,
see its description in the PV-WAVE Reference.

status = DC_READ_FREE(’region1.csv’, headings, sales)

; The first parameter is the name of the data file to read. The next two
; parameters are the names of the variables into which the data is read.

Enter the following commands to check that the data was read correctly:

PRINT, headings
Q1 Q2 Q3 Q4

PRINT, sales
50, 0, 25, 200
40, 100, 50, 0
200, 50, 50, 100

Notice that the empty cells have been replaced by zeros.

Q1 Q2 Q3 Q4

50 25 200

40 100 50

200 50 50 100

 215

For information on how to transfer data from PV-WAVE to Microsoft Excel, see
Transferring Data from PV-WAVE to Microsoft® Excel on page 213.

216 PV-WAVE Programmer’s Guide

217

CHAPTER

9

Writing Procedures and Functions
A procedure or function is a self-contained module that performs a well-defined
task. Procedures and functions break large tasks into manageable smaller tasks.
Writing modular programs simplifies debugging and maintenance and minimizes
the amount of new code required for each application.

New procedures and functions may be written in PV-WAVE and called in the same
manner as the system-defined procedures or functions (i.e., from the keyboard or
from other programs). When a procedure or function is finished, it executes a
RETURN statement which returns control to its caller.

The following directory contains procedures and functions that can be accessed by
all PV-WAVE users:

(UNIX) <wavedir>/lib/user

(OpenVMS) <wavedir>:[WAVE.LIB.USER]

(Windows) <wavedir>\lib\user

Where <wavedir> is the main PV-WAVE directory.

UNIX and OpenVMS USERS This subdirectory is automatically placed in the
environment variable or logical WAVE_PATH by the PV-WAVE initialization
routine, and is also automatically placed in the system variable !Path. The user
subdirectory is placed at the end of the search path and is thus searched last.
For more information on the search path, see Modifying Your Environment on page
B-1.

PV-WAVE automatically compiles and executes a user-written function or proce-
dure when it is first referenced if:

218 PV-WAVE Programmer’s Guide

• The source code of the routine is in the current working directory or in a direc-
tory in the search path defined by the system variable !Path.

and

• The name of the file containing the routine is the same as the routine name suf-
fixed by .pro.

NOTE User-written functions must be compiled (e.g., with .RUN) before they are
referenced, unless they meet the above conditions for automatic compilation. This
restriction is necessary in order to distinguish between function calls and sub-
scripted variable references.

A procedure is called by a procedure call statement, while a function is called via
a function reference. A function always returns an explicit result. For example, if
ABC is a procedure and XYZ is a function:

ABC, A, 12

; Calls procedure ABC with two parameters.

A = XYZ(C/D)

; Calls function XYZ with one parameter. The result of XYZ is stored
; in variable A.

Procedure and Function Parameters
The variables and expressions passed to the function or procedure from its caller
are parameters. Actual parameters are those appearing in the procedure call state-
ment or the function reference. In the above examples, the actual parameters in the
procedure call are the variable A and the constant 12, while the actual parameter in
the function call is the value of the expression (C/D).

The procedure and function definition statements notify the compiler that a user-
written program module follows. The syntax of these definition statements is:

PRO Procedure_name, p1, p2, ..., pn

FUNCTION Function_name, p1, p2, ..., pn

Formal parameters are the variables declared in the procedure or function defini-
tion. The same procedure or function may be called using different actual
parameters from a number of places in other program units.

 219

Correspondence Between Formal and Actual Parameters

Correspondence between the caller’s actual parameters and the called procedure’s
formal parameters is established by position or by keyword.

A keyword parameter, which may be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign that identifies which
parameter is being passed. When calling a procedure with a keyword parameter,
you can abbreviate the keyword to its shortest unambiguous abbreviation. Keyword
parameters may also be specified by the caller with the syntax /Keyword, which is
equivalent to setting the keyword parameter to 1 (e.g., Keyword = 1).

A positional parameter is a parameter without a keyword. Just as its name implies,
the position of positional parameters establishes the correspondence. The nth for-
mal positional parameter is matched with the nth actual positional parameter.

NOTE Do not use reserved words for keywords. If you use a reserved word as a
keyword, a syntax error will result. For a list of the reserved words in PV-WAVE,
see Names of Variables on page 26.

Example of Using Positional and Keyword Parameters

A procedure is defined with a keyword parameter named Test:

PRO XYZ, A, B, Test = T

The caller can supply a value for the format parameter T with the calls:

XYZ, Test = A

; Supplies only the value of T. A and B are undefined inside the
; procedure.

XYZ, Te = A, Q, R

; The value of A is copied to formal parameter T (note the
; abbreviation for Test), Q to A, and R to B.

XYZ, Q

; Variable Q is copied to formal parameter A. B and T are undefined
; inside the procedure.

Copying Actual Parameters into Formal Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed. On
exit, via a RETURN statement, the formal parameters are copied back to the actual
parameters if they were not expressions or constants. Parameters may be inputs to

220 PV-WAVE Programmer’s Guide

the program unit; or they may be outputs in which the values are set or changed by
the program unit; or they may be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call.
In functions, the parameter of the RETURN statement is the result of the function.

OpenVMS USERS Under OpenVMS, PV-WAVE procedures and functions
must be defined with at least one formal parameter. Function calls must also have
at least one actual parameter while procedure call statements may have zero or
more actual parameters.

Number of Parameters Required in Call

A procedure or a function may be called with less arguments than were defined in
the procedure or function. For example, if a procedure is defined with ten parame-
ters, the user (or another procedure) may call the procedure with zero to ten
parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
procedure or function entry. If values are stored by the called procedure into param-
eters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parameters in the calling list may be
found by using the system function N_PARAMS. Use the N_ELEMENTS func-
tion to determine if a variable is defined or not. The functions KEYWORD_SET
and PARAM_PRESENT can be used to determine if parameters are used or not in
a function or procedure call.

Example of a Function

An example of a function to compute the digital gradient of an image is shown
below. The digital gradient approximates the two-dimensional gradient of an image
and emphasizes the edges. This simple function consists of three lines, correspond-
ing to the three required components of procedures and functions: 1) the procedure
or function declaration, 2) the body of the procedure or function, and 3) the termi-
nating END statement.

FUNCTION GRAD, IMAGE

; Defines a function called GRAD.

RETURN, ABS(IMAGE - SHIFT(IMAGE, 1, 0))+ $
ABS(IMAGE - SHIFT(IMAGE, 0, 1))

; Evaluates and returns the result. Result = abs (dz/dx) + abs (dz/dy) which is
; the sum of the absolute values of the derivative in the x and y directions.

 221

END

; End of function.

The function has one parameter called IMAGE. There are no local variables.
(Local variables are variables within a module that are not parameters and are not
contained in Common Blocks.)

The result of the function is the value of the expression appearing after the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Some examples might be:

A = GRAD(B)

; Store gradient of B in A.

TVSCL, GRAD(ABC + DEF)

; Display gradient of image sum.

Example Using Keyword Parameters

A short example of a function that exchanges two columns of a 4-by-4 homoge-
neous coordinate transformation matrix is shown. The function has one positional
parameter, the coordinate transformation matrix, T. The caller can specify one of
the keywords XYexch, XZexch, or YZexch, to interchange the XY, XZ, or YZ axes
of the matrix. The result of the function is the new coordinate transformation
matrix:

FUNCTION SWAP, T, XYEXCH = XY, $
XZEXCH = XZ, YZEXCH = YZ

; Function to swap columns of T. If XYEXCH is specified swap
; columns 0 and 1, XZEXCH swaps 0 and 2, and YZEXCH
; swaps 1 and 2.

IF KEYWORD_SET(XY) THEN S = [0, 1]

; Swap columns 0 and 1?
ELSE IF KEYWORD_SET(XZ) THEN S = [0, 2]

; XZ set?
ELSE IF KEYWORD_SET(YZ) THEN S = [1, 2]

; YZ set?
ELSE RETURN, T

; Nothing is set, just return.
R = T

; Copy matrix for result.
R(S(1), 0) = T(S(0), *)

R(S(0), 0) = T(S(1), *)

; Exchange two columns using matrix insertion operators and
; subscript ranges.

222 PV-WAVE Programmer’s Guide

RETURN, R

; Return result.

END

Typical calls to SWAP are:

Q = SWAP(!P.T, /XYexch)

Q = SWAP(Q, /XYexch)

Q = SWAP(INVERT(Z), YZexch = 1)

Q = SWAP(Z, XYexch = I EQ 0, YZexch = I EQ 2)

The last example sets one of the three keywords, according to the value of the vari-
able I.

This function example uses the system function KEYWORD_SET to determine if
a keyword parameter has been passed and it is non-zero. This is similar to using the
condition

IF N_ELEMENTS(P) NE 0 THEN IF P THEN

to test if keywords that have a true/false value are both present and true.

TIP Use the PARAM_PRESENT function in conjunction with KEYWORD_SET
to test if a keyword was actually used in a function or procedure call. For informa-
tion on PARAM_PRESENT, see the PV-WAVE Reference.

Compiling Procedures and Functions
There are three ways procedures and functions can be compiled:

• Using .RUN with a filename

• Compiling automatically

• Compiling with interactive mode

Using .RUN with a Filename

Procedures and functions can be compiled using the executive command .RUN.
The format of this command is:

.RUN file1, file2, ...

From one to ten files, each containing one or more program units, may be compiled
with the .RUN command. Consult Executive Commands in the PV-WAVE Refer-
ence for more information on the .RUN command.

 223

Compiling Automatically

Generally, however, you create a procedure or function file with a filename that
matches the actual procedure or function name. Then you do not need to use .RUN
to compile the procedure or function file if this file is contained in the current work-
ing directory, PV-WAVE library directory, or in the !Path directory. The procedure
or function automatically compiles when first called. For example, a function
named CUBE which calculates the cube of a number has the file namecube.pro.
The file looks like this:

FUNCTION CUBE, NUMBER

RETURN, NUMBER ^ 3

END

When the function is initially used within a PV-WAVE session the file is automat-
ically compiled. A compiled module message displays on the screen. For example,
using the function for the first time at the WAVE> prompt results in:

WAVE> z = cube(4) & print, z

% Compiled module: CUBE

64

If you change the source file of a routine that is currently compiled in memory, then
you have to explicitly recompile it with .RUN or .RNEW.

Compiling with Interactive Mode

You can enter the procedure or function text directly at the keyboard (interactively)
by simply entering .RUN in response to the WAVE> prompt. Rather than executing
statements immediately after they are entered, PV-WAVE compiles the program
unit as a whole. See Creating and Running a Function or Procedure on page 5.

Procedure and function definition statements may not be entered in the single state-
ment mode but must be prefaced by either .RUN or .RNEW when being created
interactively.

The first non-empty line the compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty line is not a pro-
cedure or function definition, the program unit is assumed to be a main program.

The name of the procedure or function is given by the identifier following the key-
word Pro or Function. If a program unit with the same name is already compiled,
it is replaced by the newer program unit.

224 PV-WAVE Programmer’s Guide

Note Regarding Functions

User-defined functions must be compiled using the .RUN command before the first
reference to the function is made. There are two exceptions:

• As discussed previously in Compiling Automatically on page 223, if the file-
name is the same as the function name and is located in the current working
directory or in the !Path directory, the file automatically compiles.

• The file is located in the PV-WAVE library directory.

Otherwise the function must be compiled using .RUN because the compiler is
unable to distinguish between a reference to a subscripted variable and a call to a
presently undefined user function with the same name. For example, in the
statement:

A = XYZ(5)

it is impossible to tell if XYZ is an array or a function by context alone.

Always compile the lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures. PV-WAVE searches the current
directory and then those in the directory path (!Path) for function definitions when
encountering references that may either be a function call or a sub- scripted vari-
able, thereby avoiding this restriction in the case of library functions.

System Limits and the Compiler
When a program is compiled (using .RUN, for example) output is directed to two
areas: the code area and the data area. The code area holds internal instruction
codes and the data area holds symbols for variables, common blocks, and key-
words. If these areas become full, the compile is halted, and you will see one of the
following messages:

Program code area full.

Program data area full.

Methods of handling these errors are discussed in the following sections.

Program Code Area Full

This message indicates that the code area (a block of memory that is allocated for
use by the compiler to store instruction codes) has been exceeded. As a result, the
compile cannot be completed. The method used to correct this condition depends
on the type of program you are compiling:

 225

If You are Compiling a Procedure or Function

There are two solutions:

• Break the procedure or function into smaller procedures or functions, or

• Use the .SIZE executive command to increase the original size of the code area.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

Compiling Main Programs

If you use .RUN or .RNEW to compile a file that contains statements that are not
inside a function or procedure, and you receive theProgram code area full
message, you have these options:

• Use the .SIZE executive command to increase the original size of the code area.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

• Place the statements that will be executed at the $MAIN$ level — those that
are not contained in a procedure or function — into a file that does not contain
any procedure or function definitions, then execute the program as a command
file using the @ command. For example:

@filename

The @ command compiles and executes the commands in the file one at a time,
which does not require much code area space.

Program Data Area Full

This message indicates that the data area (a block of memory that is allocated for
use by the compiler to store symbolic names of variables and common blocks) has
been exceeded. As a result, the compile cannot be completed. The method used to
correct this condition depends on the type of program you are compiling:

If You are Compiling a Procedure or Function

There are three solutions:

• Break the procedure or function onto smaller procedures or functions.

• Use the .SIZE executive command to increase the original size of the data area.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

226 PV-WAVE Programmer’s Guide

• Use the .LOCALS executive command to increase the original size of the data
area. The .LOCALS command is described in Executive Commands in the PV-
WAVE Reference.

If You are Using the EXECUTE Function in a Program

The EXECUTE function uses a string containing a PV-WAVE command as its
argument. The command passed to EXECUTE is not compiled until EXECUTE
itself is executed. At that time, you may see the Program data area full
message if the data area is already full and EXECUTE tries to create a new variable
or common block.

If this occurs, you have the following options:

• If the program is a main program, then use .SIZE or .LOCALS to increase the
size of the data area.

• If the program is a function or procedure, then it is necessary to use the
..LOCALS compiler directive in the function or procedure. The ..LOCALS
compiler directive creates additional data area space at runtime.

NOTE In general, if you use EXECUTE to create variables or common blocks in
a function or procedure, then it is likely that you will need to use ..LOCALS. This
is because the data area is compressed immediately after compilation to accommo-
date only the symbols that are known at compile time. Thus, if EXECUTE is used
to create variables or common blocks, there may not be space for any new symbols
to be created. The ..LOCALS command is discussed in the next section.

Using the ..LOCALS Compiler Directive
The syntax of the ..LOCALS compiler directive is:

..LOCALS local_vars common_symbols

This command is useful when you want to place the EXECUTE function inside a
procedure or function. EXECUTE takes a string parameter containing a PV-WAVE
command. This command argument is compiled and executed at runtime, allowing
the possibility for command options to be specified by the user. Because the data
area is compressed after compilation, there may not be enough room for additional
local variables and common block symbols created by EXECUTE. The ..LOCALS
command provides a method of allocating extra space for these additional items.

 227

The ..LOCALS compiler directive is similar to the .LOCALS executive command,
except:

• ..LOCALS is only used inside procedures and functions.

• Its arguments specify the number of additional local variables and common
block symbols that will be needed at “interpreter” time (when the already-com-
piled instructions are interpreted).

• It is used in conjunction with the EXECUTE function, which can create new
local variables and common block symbols at runtime.

Example 1

In this example, ..LOCALS is not needed. This simple procedure does not use the
EXECUTE function to create new variables or common blocks.

PRO mypro1, a

COMMON c, c1, c2

a=10

END

Example 2

In this example, a new common block (d) and a new variable (x) are created with
two calls to the EXECUTE function. The ..LOCALS directive creates additional
space for one variable (x) and two common block symbols (d1 and d2).

PRO mypro2, a

..LOCALS 1 2

COMMON c, c1, c2

j=EXECUTE(’COMMON d, d1, d2’)

a=10

b=20

j=EXECUTE(’x=30’)

END

Example 3

The following procedure can create up to 20 new local variables, as specified by
the user at runtime. This example is more realistic than the previous one, because
here you do not know how many new variables will be needed until runtime. In this
case, however, if i is greater than 20, the data area may fill up.

PRO mypro3, i

228 PV-WAVE Programmer’s Guide

..LOCALS 20

for j=1, i DO BEGIN

k=EXECUTE(’var’+STRTRIM(STRING(j),2)+’=0’)

ENDFOR

END

This procedure creates i local variables:

VAR1=0

VAR2=0

VAR3=0

VARi=0

Parameter Passing Mechanism
Parameters are passed to system and user-written procedures and functions by
value or by reference. It is important that you recognize the distinction between
these two methods.

• Expressions, constants, system variables, and subscripted variable references
are passed by value.

• Variables are passed by reference.

Parameters passed by value may only be inputs to program units; results may not
be passed back to the caller via these parameters. Parameters passed by reference
may convey information in either or both directions. For example consider this triv-
ial procedure:

PRO ADD, A, B

A = A + B

RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
The call:

ADD, A, 4

adds 4 to A and store the result in variable A. The first parameter is passed by ref-
erence and the second parameter, a constant is passed by value. The call:

ADD, 4, A

does nothing because a value may not be stored in the constant “4” which was
passed by value. No error message is issued.

Similarly, if ARR is an array, the call:

 229

ADD, ARR(5), 4

does not achieve the desired effect (adding 4 to element ARR (5)) because sub-
scripted variables are passed by value. A possible alternative is:

TEMP = ARR(5)

ADD, TEMP, 4

ARR(5) = TEMP

Procedure or Function Calling Mechanism
When a user-written procedure or function is called, the following actions take
place:

• All of the actual arguments in the user procedure call list are evaluated and
saved in a temporary location.

• The actual parameters that were saved are substituted for the formal parameters
given in the definition of the called procedure. All other variables local to the
called procedure are set to undefined.

• The procedure is executed until a RETURN or RETALL statement is encoun-
tered. The result of a user-written function is passed back to the caller by
specifying it as the parameter of a RETURN statement. RETURN statements
in procedures may not have parameters.

• All local variables in the procedure (i.e., those variables that are neither param-
eters nor common variables) are deleted.

• The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

• Control resumes in the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion is supported with both procedures and functions.

Example Using Variables in Common Blocks

Here is an example of a procedure that reads and plots the next vector from a file.
This example illustrates how to use common variables to store values between
calls, as local parameters are destroyed on exit. It assumes that the file containing

230 PV-WAVE Programmer’s Guide

the data is open on logical unit 1 and that the file contains a number of 512-element
floating-point vectors.

PRO NXT, Recno

; Read and plot the next record from file 1. If Recno is specified, set
; the current record to its value and plot it.

COMMON Nxt_Com, Lastrec

; Save previous record number.
IF N_PARAMS(0) GE 1 THEN Lastrec = Recno

; Set record number if parameter is present.
IF N_ELEMENTS(Lastrec) LE 0 THEN $

Lastrec = 0

; Define Lastrec if this is first call.
AA = ASSOC(1, FLTARR(512))

; Define file structure.
PLOT, AA(Lastrec)

; Read record and plot it.
Lastrec = Lastrec + 1

; Increment record for next time.
RETURN

; All finished.
END

Once you have opened the file, typing NXT will read and plot the next record. Typ-
ing NXT, n will read and plot record number n.

Error Handling in Procedures
Whenever an error occurs during the execution of a user-written procedure, a
description of the error is printed and execution of the procedure halts. You can
change the environment that is restored after an error occurs with the ON_ERROR
procedure. The four possible actions are:

• 0 — Stop at the statement in the procedure that caused the error, the default
action.

• 1 — Return all the way back to the main program level.

• 2 — Return to the caller of the program unit which established the
ON_ERROR condition.

• 3 — Return to the program unit which established the ON_ERROR condition.

 231

If ON_ERROR is not called by a parent of the procedure in which an error occurs,
the procedure is not exited, and the current variables are those of the halted proce-
dure, not of the caller. To return to the calling unit, or to the single statement mode
if the procedure was called from the single statement mode, you should enter a
RETURN or RETALL statement from the terminal.

Calling ON_ERROR from the main level or from a procedure sets the default error
action for all modules called from that level. For example, if you always wish to
return to the main level after an error, simply issue the statement:

ON_ERROR, 1

from the main level, or from your startup procedure.

Many library procedures issue an ON_ERROR, 2 call to return to their caller if an
error occurs.

Error Signaling

Use the MESSAGE procedure in user-written procedures and functions to issue
errors. For detailed information on this procedure, see Error Signaling on page
241.

“Disappearing Variables”

PV-WAVE novices are frequently dismayed to find that all their variables have
seemingly disappeared after an error occurs inside a procedure or function. The
misunderstood subtlety is that after the error occurs PV-WAVE’s context is inside
the called procedure, not in the main level. Typing RETURN or RETALL will
make the lost variables reappear.

RETALL is best suited for use when an error is detected in a procedure and you
want to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURNs until the main program level is reached.

The Users’ Library
In order to support and encourage development and sharing of PV-WAVE programs
in scientific and technical disciplines, Visual Numerics has established the Users’
Library. The purpose of the library is to help users solve common problems and
avoid duplicating the efforts of others. Users are encouraged to submit PV-WAVE
procedures and functions they believe are particularly valuable or are of general
interest to Visual Numerics for incorporation into the library. Coordinate submis-

232 PV-WAVE Programmer’s Guide

sions through the Visual Numerics’ Customer Support Group or through your local
Technical Support Engineer. The library is updated periodically and distributed
free of charge to all PV-WAVE sites.

The Users’ Library is located in:

(UNIX) <wavedir>/lib/user

(OpenVMS) <wavedir>:[WAVE.LIB.USER]

(Windows) <wavedir>\lib\user

Where <wavedir> is the main PV-WAVE directory.

Procedures and functions in this subdirectory are automatically compiled when
they are referenced from within PV-WAVE.

OpenVMS USERS If you are running PV-WAVE under OpenVMS, you must
load any new or modified Users’ Library routines into the PV-WAVE text library.
Text libraries are explained previously in this chapter.

NOTE PV-WAVE searches for Users’ Library procedures and functions along the
path specified by the !Path system variable. In most cases this means the first direc-
tory searched is the current directory. If a procedure or function with the same
name as a Users’ Library routine is found in the current directory (or in any direc-
tory searched before the Users’ Library directory), it is compiled and used in place
of the Users’ Library routine. This is different from the way system routines are
called and used.

Submitting Programs to the Users’ Library

The major requirement for a procedure or function to be submitted is that a stan-
dardized template be included in the program source. The purpose of the template
is to describe the program in enough detail that others may use the program with
little difficulty. An empty template is stored in the file template, located in the
lib subdirectory of the main PV-WAVE directory.

Try to write routines in as general a manner as possible. For example, dedicated
logical units should never be used. Instead, the GET_LUN and FREE_LUN proce-
dures should be used to allocate and deallocate logical units. Routines should be
able to handle as many different types and structures of data as possible — this
includes performing parameter checking to ensure the parameters are the correct
type. It is a good idea to use the ON_ERROR procedure to return to the caller in
the event of an error. The code itself should also be liberally commented.

 233

Procedures and functions conforming to the above requirements will be included
in periodic PV-WAVE releases.

Support for Users’ Library Routines

Visual Numerics provides minimal testing and no documentation of the procedures
and functions submitted to the Users’ Library. The library is provided as a service,
and users are advised to use caution when incorporating these routines into their
own programs. The Users’ Library routines do not enjoy the same level of support
or confidence Visual Numerics reserves for system procedures and functions in the
Standard Library (std).

OpenVMS Procedure Libraries
The information in this section applies to PV-WAVE running under OpenVMS
only.

When a procedure or function call to an unknown module is encountered, PV-
WAVE searches known text libraries for the module. If a module with the same
name as the procedure or function is found in a library, the module is extracted
from the library and compiled. Program execution resumes with execution of the
newly compiled procedure. If the module is not found, an error results and execu-
tion stops.

Libraries are searched for functions if the first reference to the function is made
with a parameter list and the name has not been defined as a variable. If a variable
has the same name as a function defined in one of the libraries, and the first refer-
ence is made with a subscript list (indistinguishable from a parameter list), then the
name will be set to function type and the variable will be inaccessible in all pro-
gram units.

The logical names WAVE$LIBRARY and WAVE$LIBRARY_n are used by PV-
WAVE to find the actual text libraries. Up to ten libraries may be active at one time.
The library search method is similar to that used by the VAX Linker program when
searching for user libraries.

Libraries are searched in the following order:

❑ Process logical name table:
WAVE$LIBRARY

WAVE$LIBRARY_1

WAVE$LIBRARY_2

...

234 PV-WAVE Programmer’s Guide

WAVE$LIBRARY_9

❑ Group logical name table:
WAVE$LIBRARY

WAVE$LIBRARY_1

...

WAVE$LIBRARY_9

❑ System logical name table:
WAVE$LIBRARY

WAVE$LIBRARY_1

...

WAVE$LIBRARY_9

An attempt is made to translate each logical name into an actual device and file-
name. If the attempt fails, indicating that the logical name has not been assigned,
searching is terminated in the current logical name table and is started at the next
level. Libraries are searched in the above order when locating procedures and func-
tions. For example, if a procedure is defined in both system and process-level
libraries, it will be taken from the library defined in the process logical name table
because it is searched first.

Assign the logical name WAVE$LIBRARY to the actual filename of your PV-
WAVE library. For example, if the primary library is
$DISK0:[SMITH]WAVE.TLB and the secondary library is
$DISK1:[JONES]WAVE.TLB, the following logical assignments should be
made before running PV-WAVE:

DEFINE WAVE$LIBRARY $DISK0:[SMITH]WAVE.TLB

DEFINE WAVE$LIBRARY_1 $DISK1:[JONES]WAVE.TLB

The library in [SMITH] will be searched first, then the library in [JONES], fol-
lowed by any libraries in the group or system logical name tables.

The above assignments may be made in the login command file, system start-up
command file, or manually by directly entering DCL commands.

Creating OpenVMS Procedure Libraries
The information in this section applies to PV-WAVE running under OpenVMS
only.

PV-WAVE procedure libraries are simply standard OpenVMS text libraries. A text
library is a file containing a number of text modules and an index. Text libraries are
built and maintained with the VAX Librarian Utility.

 235

Modules, each containing a single procedure or function, may be inserted,
replaced, deleted, and extracted using the Librarian Utility. Each module must be
named with the name of the program unit it contains and may contain only one pro-
gram unit. If necessary, use the /Module switch to explicitly specify the name.

To create a procedure library, use a text editor to create one or more files each con-
taining a PV-WAVE procedure or function. Once the PV-WAVE code has been
debugged, use the Librarian to create a text library from your procedure files. For
example, the OpenVMS command:

LIBRARY /CREATE /INSERT /TEXT WAVE abc.pro, def.pro

invokes the library utility to create a new text library which will be named
WAVE.TLB, and to insert the files abc.pro and def.pro. The two modules in
the library are named ABC and DEF, as the module name defaults to the file name.

To extract the module ABC from the library file abc.pro use:

LIBRARY /EXTRACT = ABC /TEXT /OUT = abc.pro WAVE

The file may be edited and then replaced in the library with the command:

LIBRARY /REPLACE /TEXT WAVE abc.pro

Use the /Module qualifier to specify the module name if the procedure or func-
tion does not have the same name as its filename.

For example, to insert a function called POLY_FIT, contained in a file called
polyfit into the library, use the following library command:

LIBRARY /TEXT WAVE polyfit.pro /Module = POLY_FIT

Consult the VAX-11 Utilities Reference Manual for more information concerning
the Librarian.

236 PV-WAVE Programmer’s Guide

237

CHAPTER

10

WAVE User’s Guide

Programming with PV-WAVE
The routines discussed in this chapter are characterized by the fact that they are
useful primarily (though not exclusively) in PV-WAVE procedures and functions.
They are rarely used during interactive use. They provide information about vari-
ables and expressions, give the programmer control over how errors are handled,
and perform other useful operations.

Routines may be loosely categorized into the following groups:

• Error handling routines such as ON_ERROR, ON_IOERROR, FINITE, and
CHECK_MATH.

• Informational routines which return information about variables, expressions,
parameters, etc. These routines are N_ELEMENTS, SIZE, N_PARAMS,
PARAM_PRESENT, and KEYWORD_SET. In addition, TAG_NAMES and
N_TAGS supply information about structure variables.

• Program control routines such as EXIT, EXECUTE, STOP, and WAIT.

Description of Error Handling Routines
PV-WAVE divides execution errors into three categories: input/output, math, and
all others. ON_ERROR gives control over how regular errors are handled. The
ON_IOERROR procedure allows you to change the default way in which I/O
errors are handled. FINITE, and CHECK_MATH give control over math errors.

238 PV-WAVE Programmer’s Guide

Default Error Handling Mechanism

In the default case, whenever an error is detected by PV-WAVE during the execu-
tion of a program, program execution stops and an error message is printed. The
variable context is that of the program unit, (procedure, function, or main pro-
gram), in which the error occurred.

As explained in Error Handling in Procedures on page 230, novices are frequently
dismayed to find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error occurs, the context is that of the called procedure or function, not the main
level. All variables in procedures and functions, with the exception of parameters
and common variables, are local in scope.

Sometimes it is possible to recover from an error by manually entering statements
to correct the problem. Possibilities include setting the values of variables, closing
files, etc., and then entering the .CON executive command, which will resume exe-
cution at the beginning of the statement that caused the error.

As an example, if an error stop occurs because an undefined variable is referenced,
simply define the variable from the keyboard and then continue execution with
.CON.

Controlling Errors

The two procedures ON_ERROR and ON_ERROR_GOTO determine the action
to be taken when an error is detected inside a procedure or function. This section
provides a brief introduction to these procedures. For more details on these proce-
dures, see their descriptions in the PV-WAVE Reference.

The ON_ERROR procedure specifies an action to take after an error occurs inside
a procedure or function. The following table lists the basic options for error recov-
ery. These options specify an action and cause program execution to stop.

Options for Error Recovery

Value Action

0 Stop immediately in the context of the procedure or function that
caused the error. This is the default action.

1 Return to the main program level and stop.

2 Return to the caller of the program unit that called
ON_ERROR and stop.

3 Return to the program unit that called ON_ERROR and stop.

 239

Additional options, specified in conjunction with the Continue keyword, specify an
action to take and allow the program to continue executing after the action. These
options are listed in the following table:

One useful option is to use ON_ERROR to cause control to be returned to the caller
of a procedure in the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. It is a good idea to
include this statement in library procedures, and any routines that will be used by
others, but only after debugging is completed. Debugging a routine after using the
ON_ERROR procedure is made more difficult because the routine is exited as soon
as an error occurs. Therefore, it should be added once the code is completely tested.

The ON_ERROR_GOTO procedure transfers program control to a specified state-
ment label after an error occurs. A label, as explained in Statement Labels on page
48, is an identifier followed by a colon. A label may exist on a line by itself.

For example:

PRO Proc1

. . .

. . .

ON_ERROR_GOTO, Proc1_Failed

; If error occurs here, go to the statement label Proc1_Failed.
Proc1_Failed:

PRINT, !Err, !Err_String

END

Options for Error Recovery and Program Continuation

Value Action

0 Continue in the procedure that caused the error.

1 Return to $MAIN$ and continue.

2 Return to the caller that established the ON_ERROR condition and
continue.

3 Return to the program unit that established the ON_ERROR condi-
tion and continue.

240 PV-WAVE Programmer’s Guide

Error Handling in WAVE Widgets Applications

WAVE Widgets procedures normally try to continue executing after an error has
occurred. WAVE Widgets procedures report the error and traceback information,
and return a value indicating a failure has occurred. Usually, the value 0L is
returned as the widget ID. It is the programmer’s responsibility to check returned
values and take appropriate action.

WAVE Widgets callbacks, event and input handlers, timers, and work procedures
by default return from the given procedure first and then continue execution after
an error. When an error is detected, execution is continued at the statement speci-
fied by the input parameter of the last ON_ERROR call or by the
ON_ERROR_GOTO statement in the given callback, handler, timer, or work pro-
cedure routine.

It is the programmer’s responsibility to set ON_ERROR or ON_ERROR_GOTO
appropriately. To override the default error handling behavior of callbacks, han-
dlers, timers, or work procedures, set:

ON_ERROR, Continue=0

NOTE If a WAVE Widgets application stops during execution, you can use the
RETALL procedure to stop all the currently running WAVE Widgets applications
and return to the main program level.

Controlling Input and Output Errors

The default action for handling input/output errors is to treat them exactly like reg-
ular errors and follow the error handling strategy set by ON_ERROR. You can alter
the default handling of I/O errors using the ON_IOERROR procedure to specify
the label of a statement to which execution should jump if an I/O error occurs.
When PV-WAVE detects an I/O error and an error handling statement has been
established, control passes directly to the given statement without stopping pro-
gram execution. In this case, no error messages are printed.

When writing procedures and functions that are to be used by others, it is good
practice to anticipate and gracefully handle errors caused by the user. For example,
the following procedure segment, which opens a file specified by the user, handles
the case of a non-existent file or read error:

FUNCTION READ_DATA, file_name

; Define a function to read and return a 100-element floating-point array.
ON_IOERROR bad

; Declare error label.

 241

OPENR, UNIT, file_name, /Get_Lun

; Use the Get_Lun keyword to allocate a logical file unit.
A = FLTARR(100)

; Define data array.
READU, UNIT, A

; Read it.
GOTO, DONE

; Clean up and return.
bad: PRINT, !Err_string

; Exception label. Print the error message.
DONE:

Free_Lun, UNIT

; Close and free the I/O unit.
RETURN, A

; Return the result. This will be undefined if an error occurred.
END

The important things to note are that the Free_Lun procedure is always called, even
in the event of an error, and that this procedure always returns to its caller. It returns
an undefined value if an error occurred, causing its caller to encounter the error.

Error Signaling
Use the MESSAGE procedure in user-written procedures and functions to issue
errors. It has the form:

MESSAGE, text

where text is a scalar string describing the error.

MESSAGE issues error and informational messages using the same mechanism
employed by built-in routines. By default, the message is issued as an error, the
message is output, and PV-WAVE takes the action specified by the ON_ERROR
procedure. As a side effect of issuing the error, the system variables !Err and !Error
are set and the text of the error message is placed in the system variable
!Err_String.

As an example, assume the statement:

MESSAGE, ’Unexpected value encountered.’

is executed in a procedure named CALC. The result would be the following:

% CALC: Unexpected value encountered.

242 PV-WAVE Programmer’s Guide

MESSAGE accepts several keywords which modify its behavior. See the descrip-
tion of MESSAGE in the PV-WAVE Reference for additional details.

Another use for MESSAGE involves resignaling trapped errors. For example the
following code uses ON_IOERROR to read from a file until an error (presumably
end of file) occurs. It then closes the file and reissues the error:

OPENR, UNIT, ’data.dat’, /Get_Lun

; Open the data file.

ON_IOERROR, eod

; Arrange for jump to label eod when an I/O error occurs.

TOP: READF, UNIT, LINE

; Read every line of the file.

GOTO, TOP

; Go read the next line.

eod: ON_IOERROR, NULL

; An error has occurred. Cancel the I/O error trap.

Free_Lun, UNIT

; Close the file.

MESSAGE, !Err_string, /Noname, /Ioerror

; Reissue the error. !Err_string contains the appropriate text. The
; keyword causes it to be issued as an I/O error. Use of Noname
; prevents MESSAGE from tacking the name of the current routine
; to the beginning of the message string, since !Err_String already
; contains it.

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The INFO procedure returns, in a string array, the contents of the proce-
dure stack, when the Calls keyword parameter is specified. The first element of the
resulting array contains the module name, source file name and line number of the
current level. The second element contains the same information for the caller of
the current level, and so on back to the level of the main program.

For example, the following code fragment prints the name of its caller, followed by
the source file name and line number of the call:

INFO, CALLS = a

PRINT, ’Called from: ’, a(1)

; Print 2nd element.

Resulting in a message of the following form:

 243

Called from: DIST <wave/lib/dist.pro (27)>

For this example, the commands were entered on a UNIX system; on a Windows
or OpenVMS system the pathname will appear differently.

Programs can readily parse the traceback information to extract the source file
name and line number.

Detection of Math Errors

On Windows Systems

PV-WAVE detects the following six mathematical errors conditions:

• Integer divide by zero.

• Integer overflow.

• Floating-point divide by zero.

• Floating-point underflow.

• Floating-point overflow.

• Floating-point operand error. (An illegal operand was encountered, such as a
negative operand to the SQRT or ALOG functions; or an attempt to convert to
integer a number whose absolute value is greater than 231–1.)

When an error is detected, PV-WAVE prints an error message indicating the source
of the statement that caused the error and continues program execution. Up to eight
messages are printed before program execution stops.

On UNIX and OpenVMS Systems

The detection of math errors, such as division by 0, overflow, and attempting to take
the logarithm of a negative number, is hardware dependent. Some machines, such
as the VAX/OpenVMS, trap on all math errors, while others never trap.

On machines that handle floating-point exceptions and integer math errors prop-
erly, PV-WAVE prints an error message indicating the source statement that caused
the error and continues program execution. Up to eight error messages are printed.

244 PV-WAVE Programmer’s Guide

Checking the Accumulated Math Error Status

PV-WAVE maintains an accumulated math error status. This status, which is imple-
mented as a longword, contains a bit for each type of math error that is detected by
the hardware. PV-WAVE checks and clears this indicator each time the interactive
prompt is issued, and if it is non-zero, prints an error message. A typical message
is:

% Program caused arithmetic error: Floating divide by 0

This means that a floating division by 0 occurred since the last interactive prompt.

The CHECK_MATH function, described below, allows you to check and clear this
accumulated math error status when desired. It is used to control how PV-WAVE
treats floating-point exceptions on machines that don’t properly support them. It
can also disable printing of math error messages.

Special Values for Undefined Results

Under Windows, and on any machine which implements the IEEE standard for
binary floating-point arithmetic, such as the Sun, there are two special values for
undefined results, NaN (Not A Number), and Infinity. Infinity results when a result
is larger than the largest representation. NaN is the result of an undefined compu-
tation such as zero divided by zero, taking the square-root of a negative number, or
the logarithm of a non-positive number. These special operands propagate through-
out the evaluation process. The result of any term involving these operands is one
of these two special values.

Check the Validity of Operands

Use the FINITE function to explicitly check the validity of floating-point or dou-
ble-precision operands. this works under Windows and on machines which use the
IEEE floating-point standard. For example, to check the result of the EXP function
for validity:

a = EXP(expression)
; Perform exponentiation.

IF NOT FINITE(a) THEN PRINT, $
’overflow occurred’

; Print error message, or if a is an array do the following:

IF FINITE(a) NE N_ELEMENTS(a) THEN error

 245

Check for Overflow in Integer Conversions

When converting from floating to byte, short integer or longword types, if overflow
is important, you must explicitly check to be sure the operands are in range. Con-
versions to the above types from floating-point, double-precision, complex, and
string types do not check for overflow; they simply convert the operand to long-
word integer and extract the low 8, 16, or 32 bits.

UNIX USERS When run on a Sun workstation, the program:

a = 2.0 ^ 31 + 2

PRINT, LONG(a), LONG(-a), FIX(a), FIX(-a), $
BYTE(a), BYTE(-a)

which creates a floating-point number two larger than the largest positive longword
integer, will print the following incorrect results:

2147483647 -2147483648 -1 0 255 0

% Program caused arithmetic error: Floating illegal operand

CAUTION No error message will appear if you attempt to convert a floating num-
ber whose absolute value is between 215 and 231–1 to short integer even though the
result is incorrect. Similarly, converting a number in the range of 256 to 231–1 from
floating, complex or double to byte type produces an incorrect result but no error
message. Furthermore, integer overflow is usually not detected. If integer overflow
is a problem, your programs must guard explicitly against it.

Trap Math Errors with the CHECK_MATH Function

As mentioned previously, the CHECK_MATH function lets you test the accumu-
lated math error status. It is also used to enable or disable traps. Each call to this
function returns and clears the value of this status.

NOTE CHECK_MATH does not properly maintain an accumulated error status
on machines that do not implement the IEEE standard for floating-point math.

It is good programming practice to bracket segments of code which might produce
an arithmetic error with calls to CHECK_MATH to properly handle ill-conditioned
results.

Its call is:

246 PV-WAVE Programmer’s Guide

result = CHECK_MATH([print_flag, message_inhibit])

If an error condition has been detected, and the first optional parameter is present
and non-zero, an error message is printed and program execution continues. Oth-
erwise, the routine runs silently.

If the second optional parameter, message_inhibit, is present and non-zero, error
messages are disabled for subsequent math errors. The accumulated math error sta-
tus is maintained, even when error messages are disabled. When the program
completes and exits back to the PV-WAVE prompt, accumulated math error mes-
sages which have been suppressed are printed. To suppress this final message, call
CHECK_MATH to clear the accumulated error status before returning to the inter-
active mode.

The error status is encoded as an integer, where each binary bit represents an error,
as shown in the following table:

NOTE Not all machines detect all errors.

Enable and Disable Math Traps

To enable trapping:

junk = CHECK_MATH(TRAP = 1)

To disable trapping:

junk = CHECK_MATH(TRAP = 0)

Error Status Code Values

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH.

1 Integer divide by zero.

2 Integer overflow.

16 Floating-point divide by zero.

32 Floating-point underflow.

64 Floating-point overflow.

128 Floating-point operand error. An illegal operand was encountered,
such as a negative operand to the SQRT or ALOG functions; or an
attempt to convert to integer a number whose absolute value is greater
than 231–1.

 247

Examples Using the CHECK_MATH Function

For example, assume that there is a critical section of code that is likely to produce
an error. The following code shows how to check for errors, and if one is detected
to repeat the code with different parameters:

junk = CHECK_MATH(1,1)

; Clear error status from previous operations and print error
; messages if an error exists. Also, disable automatic printing of
; subsequent math errors.

again ...

; Critical section goes here.

IF CHECK_MATH(0,0) NE 0 THEN BEGIN

; Did an arithmetic error occur? Also, re-enable the printing of subsequent math errors.

PRINT, ’Math error occurred in critical ’ + ’section’

READ, ’Enter new values: ’, ...

; Input new parameters from user.

GOTO, again

; And retry.

ENDIF

Hardware-dependent Math Error Handling

Error Handling on a Sun-4 (SPARC) Running SunOS Ver-
sion 4

Improper floating-point operations are trapped if traps are enabled. By default,
traps are enabled. The result of an improper operation contains garbage, not an
IEEE special value as would be expected if traps are enabled. When traps are dis-
abled, via CHECK_MATH, the correct special values result, but no error message
results until the next interactive prompt is issued.

Only integer divide by 0 is detected. Integer overflow is not detected.

Digital Workstation Error Handling

Integer divide by 0 is always trapped. Integer overflows produce no indication of
error, and 0 results.

248 PV-WAVE Programmer’s Guide

Floating-point traps may be enabled (the default) or disabled. The result of an
improper floating-point operation that occurs when traps are enabled is garbage. If
traps are not enabled, the correct IEEE special value results.

VAX/OpenVMS Error Handling

The VAX does not implement the IEEE floating point standard. The special values
NaN and Infinity cannot occur. The FINITE function always returns a value of 1.

Most floating point functions check for and report overflow or illegal operands.
Traps may be disabled, in which case math error messages are not immediately
printed. Integer overflow is not detected, while integer division by 0 is.

Error Handling for Silicon Graphics Workstations Running
IRIX 5.3

Some PV-WAVE routines may cause “Floating Illegal Operand” arithmetic errors.
These errors are caused by a sensitivity to NaN comparisons. These messages do
not halt PV-WAVE execution; the return values are correct. To disable this error
trapping and reduce the number of “Floating Illegal Operand” messages to a final
summary message, use the following PV-WAVE command:

WAVE> junk = CHECK_MATH (Trap=0)

Checking for Parameters
The informational routines, N_ELEMENTS, SIZE, N_PARAMS,
PARAM_PRESENT, and KEYWORD_SET, are useful in procedures and func-
tions to check if arguments are supplied. Procedures should be written to check that
all required arguments are supplied, and to supply reasonable default values for
missing optional parameters.

Checking for Parameters

PARAM_PRESENT tests if a parameter was actually present in the call to a pro-
cedure or function. It returns a nonzero value (TRUE) if the specified parameter
was present in the call to the current procedure or function. If the specified param-
eter is not present, this function returns zero, or FALSE.

PARAM_PRESENT is a useful compliment to the functions KEYWORD_SET
and N_ELEMENTS, described later in this section. PARAM_PRESENT can be

 249

used to distinguish between the different cases in which those two routines return
FALSE. Examples of this use are shown in the following sections.

Checking for Keywords

The KEYWORD_SET function returns a 1 (TRUE), if its parameter is defined and
non-zero. The function returns 0 (FALSE) in the following cases:

1) When the keyword was set to zero.

2) When the keyword was not used in the call.

For example, assume that a procedure is written which performs a computation and
returns the result. If the keyword Plot is present and non-zero the procedure also
plots its result:

PRO XYZ, result, Plot=Plot

; Procedure definition. Compute result.

IF KEYWORD_SET(Plot) THEN PLOT, result

; Plot result if keyword parameter is set.
END

A call to this procedure that produces a plot is:

xyz, r, /Plot

The PARAM_PRESENT function lets you distinguish between the two FALSE
cases of KEYWORD_SET. It returns TRUE when the keyword is set to 0 and
FALSE when the keyword was not used.

Checking for Number of Positional Parameters

The N_PARAMS function returns the number of positional parameters (not key-
word parameters) present in a procedure or function call. A frequent use is to call
N_PARAMS to determine if all arguments are present, and if not to supply default
values for missing parameters. For example:

PRO XPRINT, xx, yy

; Print values of xx and yy. If xx is omitted, print values of yy versus
; element number.

CASE N_PARAMS() OF

; Check number of arguments.
1: BEGIN

; Single argument case.

y = xx

; First argument is y values.

250 PV-WAVE Programmer’s Guide

x = INDGEN(N_ELEMENTS(y))

; Create vector of subscript indices.
END

2: BEGIN & y = yy & x = xx & END

; Two argument case. Copy parameters to local arguments.
ELSE: BEGIN

; Wrong number of arguments.

PRINT, ’XPRINT - Wrong number of ’ + $
’arguments’

; Print message.

RETURN

; Give up and return.
END

ENDCASE

...

; Remainder of procedure.
END

Checking for Number of Elements

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element, even if they are scalar
structures. The number of elements in arrays or vectors is equal to the product of
the dimensions. The N_ELEMENTS function returns zero if its parameter is an
undefined variable. The result is always a longword scalar.

For example, the following expression is equal to the mean of a numeric vector or
array:

result = TOTAL(arr) / N_ELEMENTS(arr)

The N_ELEMENTS function provides a convenient method of determining if a
variable is defined, as illustrated in the following statement. The following state-
ment sets the variable abc to zero if it is undefined, otherwise the variable is not
changed.

IF N_ELEMENTS(abc) EQ 0 THEN abc = 0

N_ELEMENTS is frequently used to check for omitted positional and keyword
arguments. N_PARAMS can’t be used to check for the number of keyword param-
eters because it returns only the number of positional parameters. An example of
using N_ELEMENTS to check for a keyword parameter is:

PRO zoom, image, Factor=Factor

; Display an image with a given zoom factor. If Factor is omitted use 4.

 251

IF N_ELEMENTS(Factor) EQ 0 THEN Factor = 4

; Supply default for missing keyword.

If N_ELEMENTS is used to check for the number of keyword parameters, it
returns 0 in the following cases:

1) When the keyword or parameter was present but is an undefined
variable.

2) When the keyword or parameter was not present in the call.

The PARAM_PRESENT function lets you distinguish between the two cases when
N_ELEMENTS returns zero (0). PARAM_PRESENT returns TRUE when the
keyword was present by is an undefined variable. It returns FALSE when the key-
word was not present in the call.

Checking for Size and Type of Parameters

The SIZE function returns a vector that contains information indicating the size
and type of the parameter. The returned vector is always of longword type. The first
element is equal to the number of dimensions of the parameter, and is 0 if the
parameter is a scalar. The following elements contain the size of each dimension.
After the dimension sizes, the last two elements indicate the type of the parameter
and the total number of elements respectively. The type is encoded as shown in the
following table:

Type Code Data Type

1 Byte

2 Integer

3 Longword integer

4 Floating-point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

252 PV-WAVE Programmer’s Guide

Example of Checking for Size and Type of Parameters

Assume A is an integer array with dimensions of (3, 4, 5). After executing, the
statement:

B = SIZE(A)

assigns to the variable B a six-element vector containing:

A code segment that checks that a variable, A, is two-dimensional, and extracts the
dimensions is:

s = SIZE(A)

; Get size vector.

IF s(0) NE 2 THEN BEGIN

; Two-dimensional?
PRINT, ’Variable A is not two-dimensional’

; Print error message.
RETURN

; And exit.
ENDIF

nx = s(1) & ny = s(2)

; Get number of columns and rows.

Using Program Control Routines
The program control procedures are largely self-explanatory, with the exception of
the EXECUTE function. The EXIT procedure exits the PV-WAVE session. STOP
terminates execution of a program or batch file, and prints the values of its optional
parameters. WAIT, as its name implies, pauses execution for a given amount of
time, specified in seconds.

b0 3 Three dimensions

b1 3 First dimension

b2 4 Second dimension

b3 5 Third dimension

b4 2 Integer type

b5 60 Number of elements = 3*4*5

 253

Executing One or More Statements

The EXECUTE function compiles and executes one or more PV-WAVE statements
contained in its string parameter during run-time.

The result of the EXECUTE function is true (1), if the string was successfully com-
piled and executed. If an error occurred during either phase the result is false (0).
If an error occurs, an error message is printed.

Use the & character to separate multiple statements in the string. GOTO statements
and labels are not allowed.

Example of Executing Multiple Statements in a Single
Command

This example, taken from the Standard Library routine SVDFIT, calls a function
whose name is passed to SVDFIT as a string in a keyword parameter. If the key-
word parameter is omitted, the function POLY is called:

FUNCTION SVDFIT, ..., Funct = Funct

; Function declaration.

...

IF N_ELEMENTS(Funct) EQ 0 THEN Funct = ’POLY’

; Use default name, POLY, for function if not specified.

z = EXECUTE(’a = ’ + Funct + ’(x, m)’)

; Make a string of the form "a = funct(x,m)", and execute it.

...

254 PV-WAVE Programmer’s Guide

255

CHAPTER

11

Tips for Efficient Programming
Techniques for writing efficient programs in PV-WAVE are identical to those in
other computer languages, with the addition of the following simple guidelines:

• Use array operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

• Use PV-WAVE system functions and procedures wherever possible.

• Access array data in machine-address order.

Attention must be also be given to algorithm complexity and efficiency, as this is
usually the greatest determinant of resources used.

NOTE In this chapter, we give the result of timing various examples. Such timings
are influenced by many factors and may not be the same for your machine. How-
ever, all timings were made on the same machine under the same conditions.
Therefore, the exact times may differ, but the timings given for the various exam-
ples can be used to evaluate the relative efficiency of the examples given.

Increasing Program Speed
The order in which an expression is evaluated can have a large effect on program
speed. Consider the following statement, where A is an array:

B = A * 16. / MAX(A)

; Scale A from 0 to 16.

256 PV-WAVE Programmer’s Guide

This statement first multiplies every element in A by 16, and then divides each ele-
ment by the value of the maximum element. The number of operations required is
twice the number of elements in A. This statement took 24 seconds to execute on a
512-by-512 single-precision floating-point array. A much faster way of computing
the same result is:

B = A * (16. / MAX(A))

; Scale A from 0 to 16 using only one array operation.

or:

B = 16. / MAX(A) * A

; Operators of equal priority are evaluated from left to right. Only one
; array operation is required.

The faster method only performs one operation for each element in A, plus one sca-
lar division. It took 14 seconds to execute on the same floating-point array as above.

Avoid IF Statements for Faster Operation
It pays to attempt to code as much as possible of each program in array expressions,
avoiding scalars, loops, and IF statements. Some examples of slow and fast ways
to achieve the same results are:

Example

Add all positive elements of B to A:

FOR I = 0, (N - 1) DO IF B(I) GT 0 THEN
A(I) = A(I) + B(I)

; Slow way uses a loop.

A = A + (B GT 0) * B

; Fast way: Mask out negative elements using array operations.

A = A + (B > 0)

; Faster way: Add B > 0.

Often an IF statement appears in the middle of a loop, with each element of an array
in the conditional. By using logical array expressions, the loop may sometimes be
eliminated.

Example

Set each element of C to the square-root of A if A(I) is positive, otherwise, set
C(I) to minus the square-root of A(I):

 257

FOR I = 0, (N - 1) DO IF A(I) LE 0 THEN
C(I) = -SQRT(-A(I)) ELSE
C(I) = SQRT(A(I))

; Slow way uses an IF statement.

C = ((A GT 0) * 2 - 1) * SQRT(ABS(A))

; Fast way.

For a 10,000-element floating-point vector, the statement using the IF took 8.5 sec-
onds to execute, while the version using the array operation took only 0.7 seconds.

The expression (A GT 0) has the value of 1 if A(I) is positive and is 0 if A(I)
is not. (A GT 0) * 2 – 1 is equal to +1 if A(I) is positive or minus 1 if
A(I) is negative, accomplishing the desired result without resorting to loops or IF
statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result:

NEGS = WHERE (A LT 0)

; Get subscripts of negative elements.

C = SQRT(ABS(A))

; Take root of absolute value.

C(NEGS) = -C(NEGS)

; Fix up negative elements.

This version took 0.8 seconds to process the same 10,000-element floating-point
array.

Use Array Operations Whenever Possible
Whenever possible, vector and array data should always be processed with array
operations instead of scalar operations in a loop. For example, consider the prob-
lem of inverting a 512-by-512 image. This problem arises because about half of the
available image display devices consider the origin to be the lower-left corner of
the screen, while the other half use the upper-left corner.

NOTE This example is for demonstration only. The system variable !Order should
be used to control the origin of image devices. The Order keyword to the TV pro-
cedure serves the same purpose.

A programmer without experience in using PV-WAVE might be tempted to write
the following nested loop structure to solve this problem:

258 PV-WAVE Programmer’s Guide

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

TEMP = IMAGE (I, J)

; Temporarily save pixel image.
IMAGE(I, J) = IMAGE(I, 511 - J)

; Exchange pixel in same column from corresponding row at
; bottom.

IMAGE(I, 511 - J) = TEMP

ENDFOR

Executing this code required 143 seconds.

A more efficient approach to this problem capitalizes on PV-WAVE’s ability to pro-
cess arrays as a single entity.

FOR J = 0, 255 DO BEGIN

SW = 511 - J

; Index of corresponding row at bottom.
TEMP = IMAGE(*, J)

; Temporarily save current row.
IMAGE(0, J) = IMAGE(*, SW)

; Exchange row with corresponding row at bottom.
IMAGE(0, SW) = TEMP

ENDFOR

Executing this revised code required 11 seconds, which is 13 times faster.

At the cost of using twice as much memory, things can be simplified even further:

IMAGE2 = BYTARR(512, 512)

; Get a second array to hold inverted copy.

FOR J = 0, 511 DO IMAGE2(0, J) = $
IMAGE(*, 511 - J)

; Copy the rows from the bottom up.

This version also ran in 11 seconds.

Finally, using the built-in ROTATE function:

IMAGE = ROTATE(IMAGE, 7)

; Inverting the image is equivalent to transposing it and rotating it
; 270o clockwise.

This simple statement took 0.6 seconds to execute.

 259

Use System Routines for Common Operations
PV-WAVE supplies a number of built-in functions and procedures to perform com-
mon operations. These system-supplied routines have been carefully optimized
and are almost always much faster than writing an equivalent operation with loops
and subscripting.

Example

A common operation is to find the sum of the elements in an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least ten times faster
than directly coding the sum:

SUM = 0. & FOR I = J, K DO SUM = SUM + ARRAY(I)

; Slow way: Initialize SUM and sum each element.

SUM = TOTAL(ARRAY(J : K))

; Efficient, simple way.

Using a 10,000-element floating-point vector and summing all of its elements took
4 seconds with the first statement and .09 seconds with the second.

Similar savings result when finding the minimum and maximum elements in an
array (MIN and MAX functions), sorting (SORT function), finding zero or non-
zero elements (WHERE function), etc.

Use Constants of the Correct Type
As explained in Chapter 2, Constants and Variables, the syntax of a constant deter-
mines its type. Efficiency is adversely affected when the type of a constant must be
converted during expression evaluation. Consider the following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from
short integer type to floating-point type each time the expression is evaluated.

The type of a constant also has an important effect in array expressions. Care must
be taken to write constants of the correct type. In particular, when you are perform-
ing arithmetic on byte arrays and want to obtain byte results, be sure to use byte
constants (e.g., nB). For example, if A is a byte array, the result of the expression A
+ 5B is a byte array, while A + 5 yields a 16-bit integer array.

260 PV-WAVE Programmer’s Guide

Remove Invariant Expressions from Loops
Expressions whose values do not change in a loop should be moved outside the
loop. In the following loop:

FOR I = 0, N - 1 DO ARR(I, 2 * J - 1) = ...

the expression (2 * J - 1) is invariant and should be evaluated only once before
the loop is entered:

TEMP = 2 * J - 1
FOR I = 0, N - 1 DO ARR(I, TEMP) = ...

Access Large Arrays by Memory Order
When an array’s size is larger than or near the working set size, it should always,
if possible, be accessed in memory-address order.

To illustrate some side-effects of the virtual memory environment, consider the
process of transposing a large array. Assume the array is a 512-by-512 byte image
and there is a 100-kilobyte working set. The array requires 512 x 512 or approxi-
mately 250 kilobytes. Clearly, less than half of the image may be in memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. The first row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column.

Because arrays are stored in row order (the first subscript varies the fastest), one
column of the image spans a range of addresses almost equal to the size of the
entire image. In order to write the first column, 250,000 bytes of data must be read
into physical memory, updated, and written back to the disk. This process must be
repeated for each column, requiring the entire array be read and written almost 512
times!

The time required to transpose the array using the above naive method will be on
the order of minutes. The TRANSPOSE function transposes large arrays by divid-
ing them into subarrays smaller than the working set size and will transpose a 512-
by-512 image in less than 10 seconds.

Example

Consider the operation of the statement:

FOR X = 0, 511 DO FOR Y = 0, 511
DO ARR(X, Y) = ...

 261

This statement will require an extremely large amount of time to execute because
the entire array must be transferred between memory and the disk 512 times. The
proper form of the statement is to process the points in address order:

FOR Y = 0, 511 DO FOR X = 0, 511
DO ARR(X, Y) = ...

The time savings are at least a factor of 50 for this example.

Be Aware of Virtual Memory
The PV-WAVE programmer and user must be aware of the characteristics of virtual
memory computer systems to avoid penalty. Virtual memory allows the computer
to execute programs that require more memory than is actually present in the
machine by keeping those portions of programs and data that are not being used on
the disk. Although this process is transparent to the user, it can greatly affect the
efficiency of the program.

Arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually resides in
physical memory at any given moment—the remainder is stored on disk. The por-
tion of data and program code in real physical memory is commonly called the
working set.

When an attempt is made to access a datum in virtual memory that does not cur-
rently reside in physical memory, the operating system suspends PV-WAVE,
arranges for the page of memory containing the datum to be moved into physical
memory, and then allows PV-WAVE to continue. This process involves deciding
where in memory the datum should go, writing the current contents of the selected
memory page out to the disk, and reading the page containing the datum into the
selected memory page. A page fault is said to occur each time this process takes
place. Because the time required to read from or write to the disk is very large in
relation to the physical memory access time, page faults become an important
consideration.

When using PV-WAVE with large arrays it is important to have a generous amount
of physical memory and a large swapping area. If you suspect that these parameters
are causing problems, consult your system manager.

262 PV-WAVE Programmer’s Guide

Running Out of Virtual Memory?
Whenever you define a variable or perform an operation, PV-WAVE asks the oper-
ating system for some virtual memory in which to store the data or operation.
(Internally, PV-WAVE calls the C function malloc to allocate the additional
memory.) With each additional definition or operation, the amount of memory allo-
cated to the PV-WAVE process grows. If you typically process large arrays of data
and use the vendor-supplied default system parameters, sooner or later the follow-
ing error will occur:

% Unable to allocate memory

This error message means that PV-WAVE was unable to obtain from the operating
system enough virtual memory to hold all of your data. In general, this situation
arises because of the way in which all C applications interact with the operating
system. That is, allocated memory that is freed (via a call to the C routine free)
results in a fragmented or discontinuous pool of memory within the application.

You have two basic options to resolve this error:

• First, you can try deleting all unneeded variables, functions, procedures, and
structures. This option may be effective in many cases; however, it will not be
effective in all cases. Because of the memory fragmentation described previ-
ously, it is not always possible to free sufficient space for a large variable or
routine by deleting other smaller variables or routines. PV-WAVE requires a
chunk of contiguous memory large enough to hold any given array or routine.

• If the first option does not work, you will have to exit PV-WAVE. Before exit-
ing, use the SAVE procedure to save only the variables and routines that you
need. When you restore the session with the RESTORE procedure, the saved
variables and routines will be stored in memory in a less fragmented manner,
which may create sufficient space for you to continue your work. If PV-WAVE
still cannot allocate enough memory for your data, you can try exiting without
first saving the session.

To delete structures, procedures, and functions, use the DELSTRUCT, DELPROC,
and DELFUNC procedures. Use the DELVAR procedure to delete variables. For
information on these procedures, see the PV-WAVE Reference. Another method of
freeing memory is to assign the value of a large array variable to a scalar value.

TIP The INFO, /Memory procedure will tell you how much virtual memory
you have allocated. For example, a 512-by-512 complex floating array requires
8*5122 or about 2 megabytes of virtual memory because each complex element
requires 8 bytes.

 263

NOTE Again, with the deletion and reassignment of large variables (as well as
structure definitions, compiled procedures, and functions), the memory available to
PV-WAVE processes will become fragmented. Eventually, you will not be able to
obtain sufficient memory for a given large variable. At this point, you can try delet-
ing unneeded variables, procedures, functions, and structures. If that does not solve
the problem, you must exit from PV-WAVE to clear out the memory.

Controlling Virtual Memory System Parameters under UNIX

The size of the swapping area(s) determines how much virtual memory your pro-
cess is allowed. To increase the amount of available virtual memory, you must
either increase the size of the swap device (sometimes called the swap partition),
or use the swapon(8) command to add additional swap areas. Increasing the size
of a swap partition is a time consuming task which should be planned carefully. It
requires saving the contents of the disk, reformatting the disk with the new file par-
tition sizes, and restoring the original contents. Consult the documentation that
came with your system for details. Some systems (SunOS) allow you to swap to a
normal file by using the mkfile(8) command in conjunction with swapon.
This is a considerably easier solution.

Controlling Virtual Memory System Parameters under
OpenVMS

VMS, as it comes from Digital, is not tuned for image processing. To get the best
performance from PV-WAVE, you should increase the OpenVMS SYSGEN param-
eters, file sizes, and AUTHORIZE quotas which restrict the virtual memory system.
This discussion is on the most elementary level and the appropriate OpenVMS
manuals should be consulted for more detail.

The first step is to determine how much virtual memory you require.

For example, if you do complex FFTs on 512-by-512 images, each complex image
requires 2 megabytes. Suppose that during a typical session you need to have four
images stored in variables, and require enough memory for two images to hold
temporary results, resulting in a total of six images or 12 megabytes. Rounding up
to 16 megabytes gives a reasonable goal. The following parameters and quotas
should be changed to increase the amount of virtual memory available:

264 PV-WAVE Programmer’s Guide

SYSGEN Parameters

• WSMAX— Sets the maximum number of pages of any working set on a system-
wide basis. The working set is that portion of virtual memory used by a process
that is actually in physical memory. Although this is an over-simplification,
small working set sizes cause page faulting. Page faults waste time and poten-
tially require disk accesses. Increasing the working set to a size of three times
the size of the largest array to be processed, or at least 2000 blocks, can cause
dramatic speed improvements. Many MicroVAX systems have from 8 to 16
megabytes of physical memory. Subtracting approximately 2 megabytes for
OpenVMS leaves the rest available to be divided up among the user processes.
On many MicroVAX systems, there are only one or two users, so large working
sets of from 3 to 7 megabytes (6000 to 14000 pages) may be used.

• VIRTUALPAGECNT — This parameter sets the maximum number of virtual
pages (512 bytes/page) that can be used by any one process.

To change the values of SYSGEN parameters, Digital recommends that you run the
AUTOGEN command procedure after adding lines to set the new values of changed
parameters to the end of the file SYS$SYSTEM:MODPARAMS.DAT.

System Files

The sizes of the system page and swap files (SYS$SYSTEM: PAGEFILE.SYS
and SWAPFILE.SYS) must be large enough to contain the virtual memory used
by all active processes. In any event, you cannot have more virtual memory than
will fit in the page file.

You can increase the size of these files or create secondary system files on a disk
other than the system disk.

If you get the error message:

Page file fragmented - continuing

on the system console your page file is too small.

To increase the size of these files, use the command procedure
SYS$UPDATE:SWAPFILES. Use the SYSGEN INSTALL command to activate
system files created on disks other than the system disk. AUTOGEN may also be
used to change the file sizes.

Quotas

The following quotas, all of which may be changed on a per user or system basis
using the AUTHORIZE utility, affect virtual page limits and working set sizes:

 265

• PGFLQUO — The page file quota for each user expressed in blocks. If you
increase the size of the page file, be sure to increase the page file quotas for the
users requiring more virtual memory. Be sure that the page file size is at least
as large as the sum of the quotas of each active user.

• WSQUO — The working set quota for each user. This quota may be used to
allow some users a larger working set than others. WSQUO must not be larger
than WSMAX.

Minimize the Virtual Memory Used
If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in variables.

Keep in mind that PV-WAVE creates temporary arrays to evaluate expressions
involving arrays. For example, when evaluating the statement:

A = (B + C) * (E + F)

PV-WAVE first evaluates the expression B + C, and creates a temporary array if
either B or C are arrays. In the same manner, another temporary array is created if
either E or F are arrays. Finally, the result is computed, the previous contents of A
are deleted and the temporary area holding the result is saved as variable A. Note
that during the evaluation of this statement enough virtual memory to hold two
array’s worth of data is required in addition to normal variable storage.

It is a good idea to delete the allocation of a variable that contains an image and
that appears on the left side of an assignment statement. For example, in the
program:

FOR I = ... DO BEGIN

; Loop to process an image.
...

; Processing steps.
A = 0

; Delete old allocation for A.
A = Image Expression

; Compute image expression and store.
...

ENDFOR

the purpose of the statement A = 0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Because
the old value of A is going to be wiped out in the next statement, it makes sense to
free A’s memory allocation before executing the next statement. For more informa-
tion on the effects of freeing memory by deleting or reassigning large array
variables, see Running Out of Virtual Memory? on page 262.

266 PV-WAVE Programmer’s Guide

Array Operations are Rewarded
PV-WAVE programs are compiled into a low-level abstract machine code, which is
interpretively executed. The dynamic nature of variables in PV-WAVE and the rel-
ative complexity of the operators precludes the use of directly executable code.
Statements are only compiled once, regardless of the frequency of their execution.

The PV-WAVE interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand, and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required
for the operation itself.

Array-array and array-scalar operations are implemented by generating and exe-
cuting optimized machine code in a temporary buffer. The characteristics of the
time required for array operations is similar to that of vector computers and array
processors. There is an initial set-up time, followed by rapid evaluation of the oper-
ation for each element. The time required per element is shorter in longer arrays
because the cost of this initial set-up period is spread over more elements.

The speed of PV-WAVE is comparable to that of optimized FORTRAN insofar as
array operations are considered. When data are treated as scalars, efficiency
degrades by a factor of 30 or more.

As an example, the processes of evaluating the square-root of a 10,000-element
floating-point vector and adding 2 to each element of a 512-by-512 byte image was
timed using scalar operations, array operations, and FORTRAN. The times for
these operations are shown in the following table:

As can be seen above, there is a large penalty for using scalar operations when array
operations are appropriate. There is little difference in the times required by PV-
WAVE array operations and FORTRAN.

Processing Times

Method Used Square-Root Time Addition Time

PV-WAVE with scalars and FOR statement 3.10 138

PV-WAVE with array operation 0.16 0.49

Sun FORTRAN (optimized) 0.11 0.80

267

CHAPTER

12

Getting Session Information

Using the INFO Procedure
The INFO procedure provides you with information about many different aspects
of the current PV-WAVE session. Entering

INFO

with no parameters prints an overview of the current state, including the definitions
of all current variables. Calling INFO with one or more parameters displays the
definitions of the parameters. INFO also displays other information about the cur-
rent session if you call it with a keyword parameter indicating the topic. Only one
topic keyword can be specified at a time. The available topics are described in the
following sections.

Calling INFO with No Parameters

When INFO is called without any positional or keyword parameters, it provides an
overview of the current state. The information provided is:

• A traceback showing the current procedure and function nesting.

• Amount of code area, number of local variables, and number of parameters.
(When PV-WAVE reads a procedure or function for the first time, it compiles
it into executable code. Every routine has a code area where the executable
code is placed and a data area where information about all locally available
variables (including common block variables) resides. The amount of room

268 PV-WAVE Programmer’s Guide

used in each of these areas is reported to the current routine, along with the
number of local variables and parameters.)

• A one-line description of every current variable.

• A description of all currently accessible common blocks.

• The names of all saved procedures and functions.

As an example of a typical PV-WAVE session, the command

INFO

might result in output similar to:
% At $MAIN$(0).

Code area used: 0.00% (0 / 30000), Data area used: 4.88% (100 / 8000)

local variables (including 0 parameters: 4/250)

common symbols: 3/8

B BYTE = Array(256)

G BYTE = Array(256)

I BYTE = Array(512, 512)

R BYTE = Array(256)

X(CBLK) INT = 0

Y(CBLK) INT = 11

Z(CBLK) INT = 12

Common Blocks:
CBLK(3)

Saved Procedures:
COLOR_EDIT COLOR_EDIT_BACK INTERP_COLORS READ_SRF SHOW3

Saved Functions:
AVG BILINEAR CORRELATE CURVEFIT

This session summary provides the following information:

• The current routine is $MAIN$, meaning that you are currently at the main pro-
gram level and that no called routine is executing.

• The second and third lines indicate that the code area is empty (zero bytes used
out of 30,000 available) and approximately 95% of the data area is also free
(100 bytes used out of 8,000 available). The code area is empty because you
are currently at the $MAIN$ level and no $MAIN$ program has been entered.

• The fourth line shows how many local variables the current data area can
accommodate. It also indicates the total number of local variables including the
number of parameters. In this example, 4/250 means that there is space for a
total of 250 local variables and only four are currently being used.

 269

• The sixth line shows how many common block symbols are being used and
how many there are space for.

• The next seven lines give one-line descriptions of all locally available vari-
ables. The first four variables (B, G, I, and R) are local variables, while the
other three (X, Y, and Z) are contained in the common block CBLK. Note that
the one-line descriptions of scalar variables gives their values, while the
descriptions of arrays shows their dimensions. Use the PRINT procedure to
look at the contents of arrays.

• Following the descriptions of variables is the list of available common blocks.
In this session, the only common block is named CBLK, and it contains three
variables.

• The final information printed is the names of all saved procedures and
functions.

Calling INFO with Positional Parameters

If you call INFO with parameters (but without any keyword parameters), it simply
provides a one-line description of each parameter. Hence, for the PV-WAVE ses-
sion described earlier, the command:

INFO, 12.0 * 23, R, I, Z, !D

gives the output:

<Expression> FLOAT = 276.000

R BYTE = Array(256)

I BYTE = Array(512, 512)

Z(CBLK) INT = 12

<Expression> STRUCT = -> !Device

As noted earlier, the one-line description of scalars prints their values, while for
arrays, you see their dimensions. For structure variables, the name of the structure
definition associated with the variable is printed, as shown in the last line of this
example. Use INFO with the Structures, Sysstruct, or Userstruct keywords to see
the form of a structure variable. These keywords are described later in this chapter.

Calling INFO with Keyword Parameters

INFO, /Device

The command:

270 PV-WAVE Programmer’s Guide

INFO, /Device

gives information about the current graphics device. This information depends on
the abilities of the current device, but the name of the device is always given. Other
parameters to INFO are ignored when Device is selected. As an example of the type
of information supplied, the commands:

SET_PLOT, ’PS’

; Select PostScript output.

INFO, /Device

; Get device information.

yield:
Current graphics device: PS

File: <none>

Mode: Portrait, Non-Encapsulated

Offset (X, Y): (1.905,12.7) cm.

Size (X, Y): (17.78,12.7) cm.

Scale Factor: 1

Font Size: 12

Font: Helvetica

bits per image pixel: 4

INFO, /Files

The Files keyword provides information about file units. If no parameters are sup-
plied, information on all open file units is displayed. If parameters are provided,
they are assumed to be integer file unit numbers, and information on the specified
file units is given. For example, the command:

INFO, –2, –1, 0, /Files

gives information about the default file units. For example, under UNIX, the output
might look like this:

Unit Attributes Name

–2 Write, Truncate, Tty, Reserved <stderr>

–1 Write, Truncate, Tty, Reserved <stdout>

0 Read, Tty, Reserved <stdin>

The attributes column tells about the characteristics of the file. For instance, the file
connected to logical file unit –2 is called stderr, and is the standard error file. It
is opened for write access (Write), is a new file (Truncate), is a terminal
(Tty), and cannot be closed via the CLOSE command (Reserved).

 271

INFO, /Keys

The Keys keyword provides current function key definitions, as set with the
DEFINE_KEY procedure. For information on DEFINE_KEY, see the PV-WAVE
Reference.

If no parameters are supplied, information on all function keys is displayed. If
parameters are provided, they must be scalar strings containing the names of func-
tion keys, and information on the specified keys is given.

For example, you can define the <F12> key to execute the command
INFO, /Keys with the statement:

DEFINE_KEY, /Terminate, ’F12’, ’INFO, /Keys’

the INFO, /Keys command produces output that includes the line:

F12 <\033[P> = INFO, /Keys <Terminate>

showing the new key definition.

Parameters to INFO are ignored when Keys is selected.

INFO, /Memory

PV-WAVE uses dynamic (heap) memory to store items such as programs and vari-
ables. The Memory keyword reports the amount of dynamic memory currently in
use by the PV-WAVE session, and the number of times dynamic memory has been
allocated and deallocated. A typical response to the

INFO, /Memory

command might look like:

heap memory in use: 14572, calls to MALLOC: 64, FREE: 3

Other parameters to INFO are ignored when Memory is selected.

INFO, /Recall_Commands

PV-WAVE saves the last 20 lines of input in a buffer. These lines can be recalled
for command line editing. The Recall_Commands keyword causes the INFO pro-
cedure to display the contents of this buffer. Other parameters to INFO are ignored
when Recall_Commands is selected.

UNIX and OpenVMS USERS For more information on reviewing and re-enter-
ing previously entered commands, see Getting Started: UNIX and OpenVMS in the
PV-WAVE User’s Guide.

272 PV-WAVE Programmer’s Guide

Windows USERS For more information on reviewing and re-entering previ-
ously entered commands, see Getting Started: Windows in the PV-WAVE User’s
Guide.

INFO, /Routines

The Routines keyword causes INFO to print a list of all compiled procedures and
functions with their parameter names. Keyword parameters accepted by each mod-
ule are enclosed in quotation marks. Other parameters to INFO are ignored when
Routines is selected. For the typical session described earlier, the result of the
command

INFO, /Routines

would appear as:

Saved Procedures:
COLOR_EDIT "HLS" "HSV"
COLOR_EDIT_BACK
INTERP_COLORS pts npts colors
READ_SRF file image r g b
SHOW3 image "INTERP"

Saved Functions:
AVG array dimension
BILINEAR p ix jy
CORRELATE x y
CURVEFIT x y w a sigmaa

INFO, /Structures

The Structures keyword provides information about structure variables. If no
parameters are provided, all currently defined structures are shown. If parameters
are provided, the structure of those variables are displayed. For example, the
command

INFO, /Structures, !D

shows the contents and structure of the system variable !D:

** Structure !Device, 14 tags, 60 length:

NAME STRING 'X'
X_SIZE LONG 640
Y_SIZE LONG 512
X_VSIZE LONG 640
Y_VSIZE LONG 512
X_CH_SIZE LONG 6
Y_CH_SIZE LONG 9

 273

X_PX_CM FLOAT 40.0000
Y_PX_CM FLOAT 40.0000
N_COLORS LONG 256
TABLE_SIZE LONG 256
FILL_DIST LONG 1
WINDOW LONG -1
UNIT LONG 0
FLAGS LONG 444
ORIGIN LONG Array(2)
ZOOM LONG Array(2)

TIP It is often more convenient to use INFO, /Structures instead of PRINT
to look at the contents of a structure variable because it shows the names of the
fields as well as the data. For instance, the command:

PRINT, !D

gives the output:

{X 640 512 640 512 6 9 40.0000 40.0000 256 256 1
–1 0 444 0 0 1 1}

which is less readable.

See also the Sysstruct and Userstruct keywords described later.

INFO, /System_Variables

The System_Variables keyword causes INFO to show all system variables and their
values. Other parameters to INFO are ignored when the System_Variables keyword
is selected. The command:

INFO, /System_Variables

displays the current values of system variables.

INFO, /Sysstruct

The Sysstruct keyword displays only the system structures (structures that begin
with “!”). The output of this command is a subset of the INFO, /Structures
command described previously.

INFO, /Traceback

The Traceback keyword displays the current nesting of procedures and functions.
Other parameters to INFO are ignored when Traceback is selected.

274 PV-WAVE Programmer’s Guide

INFO, /Userstruct

The Userstruct keyword displays only the regular user-defined structures (struc-
tures that do not begin with “!”). The output of this command is a subset of the
INFO, /Structures command described previously.

275

CHAPTER

13

Using the PV-WAVE Debugger
The PV-WAVE Debugger is a development environment for creating, testing, and
maintaining VDA applications written in PV-WAVE. With easy-to-use mouse and
menu driven functions, the Debugger helps you to become a more productive PV-
WAVE application developer. With the Debugger you can:

• Edit source files using a built-in editor or an editor of your choice, such as
emacs or vi.

• Copy, cut, paste, select, and search for text.

• Run an application, step through it line by line, skip lines, or stop execution.

• Set breakpoints and examine variable contents during program execution.

• List information about system variables, structure definitions, open files, and
compiled routines.

• Print source code files.

This section is an introduction to the Debugger and provides enough information
to get you started loading and debugging your application programs. Additional
information on the functions discussed here, as well as other functions not
discussed in this section, is available through the Debugger’s context sensitive
online help system.

276 PV-WAVE Programmer’s Guide

The Main PV-WAVE Debugger Window

Figure 13-1 The main window appears when you start the Debugger.

• Menu bar — Contains menu functions that you can select during a debugging
session.

• Status label — Displays the currently loaded source file and, during program
execution, displays the execution line number and status.

• Status column — Shows which lines have breakpoints set.

• Source window — A full-featured editing window used to display and edit
source files.

• Button area — Lets you control program execution.

• Output window — The PV-WAVE command line: echoes PV-WAVE com-
mands being executed; displays error, informational, and user input messages;
lets you enter PV-WAVE commands.

Menubar

Status label

Button area

Output window

Status column

Source window

Main Help
menu

 277

Using the Debugger’s Online Help System
Online help displays information about the Debugger’s menu items, dialog boxes,
and buttons. Start with the main Help menu; it provides information on the menus
in the Menu bar, the program execution buttons, and other topics. Each dialog box
contains a Help button that you can click on to display context sensitive
information.

Starting the Debugger
To start the Debugger on UNIX, enter the following command at the operating
system prompt:

(UNIX) wavedbg

To start the Debugger on Windows, go to:
Start>Programs>PV-WAVE 7.x>PV-WAVE Debugger
where x is the current revision level of PV-WAVE.

After a few moments, the Debugger main window appears. The Source window is
empty until you load an application or source file. In the Output window, you will
see the normal PV-WAVE startup messages.

Changing the Working Directory
By default, the Debugger recognizes the working directory as the directory from
which it was started. To change the working directory, use the File=>Set Directory
function. This function brings up a File Selection dialog box in which you can
specify the new directory path.

Loading an Application at Startup
You can also open an application and one or more source files directly when you
start the Debugger by specifying the file name(s) as a parameter to the wavedbg
command. For example:
wavedbg appl source1 source2 source3

where appl is the name of the main application file and source1, source2, and
source3 are source files for functions called by the application. The difference
between application and source files is discussed further in Loading Files into the
Debugger on page 278.

When the Debugger window opens, the specified source file appears in the Source
window and is automatically compiled. (Whenever a source file is loaded into the
Debugger, it is automatically compiled.)

278 PV-WAVE Programmer’s Guide

Executing a Command File at Startup
To execute a PV-WAVE command file (batch file) when you start the Debugger,
specify the command file as a parameter to wavedbg. You must precede the
command filename with the @ symbol. For example:
wavedbg @comfile

The command file is automatically executed when the Debugger starts.

Saving Your Work and Stopping the Debugger
Before stopping the Debugger, save your work by selecting the File=>Save or
File=>Save As function. To stop the Debugger, select File=>Quit.

The File=>Save As function lets you specify a name for the source file before
saving it. Use this for new, previously unnamed source files or for a file whose
name you want to change.

The File=>Save function simply saves the currently loaded source file using its
existing filename.

Loading Files into the Debugger
Your PV-WAVE application may consist entirely of one source file, or it may
consist of multiple files. In the case of a multiple file application, one file is usually
the main application file — the one you call initially to start the application and that
calls functions in other files.

Loading a Single-File Application

If your application consists entirely of one file, then you can load it into the
Debugger using File=>Application. Enter the name of the file in the File Selection
dialog box, and it is loaded into the Source window and compiled. At this point,
you can run (by clicking the Run button) and debug the program.

TIP Most of the menu functions in the Debugger have keyboard accelerators (short
cuts) associated with them. Whenever an accelerator exists for a menu item, it is
listed on the menu to the right of the menu item name. For example, the accelerator
for the File=>Application function (the Application function on the File menu) is
C-x C-a. This means that you can select this function by holding down the
<Control> key and pressing the <x> and then the <a> key.

 279

Loading a Multi-File Application

If you have an application that is broken into several source files (see Figure 13-2),
load the main application file using the File=>Application function. The file is
loaded into the Debugger Source window and compiled. At this point, you can run
(by clicking the Run button) and debug the program.

Figure 13-2 An application that consists of a main application file and multiple separate
source files can be loaded into the Debugger.

While debugging the application, you may need to open one or more of the
application’s separate source files. To load one of these files, use the File=>Source
function. The source file that you specify is loaded into the Source window where
you can edit it.

TIP Another way to open source files is to use the File=>Find Source function.
Type the name of a function in the Find Source dialog box, and the Debugger
searches for the function’s source file in the current directory and in the directories
specified in the !Path system variable. If the function is located, it is displayed in
the Source window. Another way to use this function is to hold down the <Shift>
and <Control> keys and double-click on the name of a function in the Source
window.

If you click the Run button, the Debugger will always try to execute the main
application file — the file you loaded with File=>Application, regardless of which
file is currently loaded in the Source window. You do not have to explicitly reload
the main application file to execute it.

Main Application File

Source File
Source File

280 PV-WAVE Programmer’s Guide

Running an Application
When you load a program into the debugger, it is compiled automatically, but not
executed. To execute the program (either the main program of a multifile
application or a single-file program), click the Run button.

To specify parameters and keywords for the application, enter them with the
File=>Parameters function before clicking Run.

NOTE The Debugger does not have a function that is equivalent to the .RUN
command. A program is automatically compiled whenever it is loaded into the
debugger. To force a program to be recompiled, select the File=>Reload function.

Detecting Execution Errors
Execution error messages appear in the Output window. The line number of the
error is reported in the error message.

Use the function Edit=>Go To Line to go directly to the line number of the error
in the Source window.

If the error is easily corrected, you can do so directly in the Source window. Simply
make the change, recompile the main program by selecting File=>Reload or
File=>Save, and then click Run. (See the next section Editing the Source File for
more information.)

If the error is not obvious, while execution is stopped you can set breakpoints and
examine variables to help track down the source of the error (see Setting
Breakpoints on page 281 and Examining Variables on page 283 for more
information).

Editing the Source File
You can edit source code directly in the Source window, or you can edit files using
the text editor of your choice, such as emacs or vi.

 281

Editing in the Source Window

You can choose either basic or emacs key bindings for the Source window. Key
bindings, or “mappings”, define the functions performed by keys on your
keyboard.

The basic key bindings are limited, but easy to learn. They are useful if you intend
to make simple changes in the Source window. The emacs bindings give you the
editing power of the standard emacs editor, which is found on most UNIX systems.

To choose the type of key bindings used in the Source window, select
Options=>Key Bindings and choose either Basic or Emacs.

For a complete description of the basic and emacs key bindings, refer to online help
by selecting Help=>Key Bindings.

NOTE After any text in the Source window, the word “edited” appears in the Sta-
tus label above the Source window. This is done simply to remind you that the file
has been modified.

Using a Separate Text Editor

If you do not want to use the Source window to edit source files, you can bring up
a separate text editor, such as vi or emacs.

First, choose the text editor you want to use by selecting Options=>Editor and
type the name of the text editor in the dialog box. Then, to run the editor, select
File=>Edit. The text editor you selected appears in a separate window, and the
currently loaded application or source file is automatically loaded into the editor.

TIP You can specify the default editor by setting the EDITOR environment
variable. For example:

setenv EDITOR emacs

After you exit the separate editor, you are returned to the Debugger. To load the
edited source file into the Debugger, select File=>Reload.

Setting Breakpoints
A breakpoint stops program execution at a preselected line number, allowing you
to check on the status of variables or other program elements. With the PV-WAVE

282 PV-WAVE Programmer’s Guide

Debugger, it is easy to set breakpoints in your source code. Just click on the line
where you want to insert a breakpoint and select Breakpoint=>Set Break from the
main menu. Then click OK in the Set Breakpoint dialog box. A small icon (Figure
13-3) appears in the Status column just to the left of the breakpoint line:

Figure 13-3 The breakpoint icon indicates the lines for which breakpoints are set.

The next time you run the program (e.g., by clicking the Run button), it will halt at
the breakpoint line.

TIP Keyboard accelerators make setting and unsetting breakpoints easy. To set a
breakpoint, press the <Shift> key and double-click on a line of code. To clear a
breakpoint, press the <Control> key and double click on a line containing a
breakpoint.

Other functions on the Breakpoint menu include:

Show Break — Lists each line of source code containing a breakpoint in the
Output window.

Clear Break — Clears the breakpoint from a specified line.

Clear All — Clears all breakpoints in the Source window.

TIP While execution is halted, use the functions on the Variable and Info menus
to examine the contents of variables, structures, and other program elements. (See
Examining Variables on page 283.) To continue execution, use one of the Button
area buttons. For example, use the Step button to execute one line at a time or the
Continue button to execute the rest of the program. These functions are discussed
further in the next section.

Breakpoint

Icon

 283

Controlling Program Execution
Use the functions in the Button area to control program execution. Most of these
functions have underlying PV-WAVE commands that are straightforward to
understand. The following list gives a brief description of each button.

Run — Executes an application that has been loaded into the Debugger. First, the
Debugger tries to find a procedure or function to execute that has the same name as
the currently loaded application name. If none is found, the Debugger checks to see
if a main program is currently loaded in memory. If a main program exists in
memory, it is executed. If not, you are given a chance to enter the name of an
application to execute.

Step — Executes the currently loaded program one line at a time. When Step
encounters a line with a procedure or function call, it executes the procedure or
function, but does not enter it. That is, the source code for the called function is not
displayed in the Source window. To enter procedures and functions, use Step In.

Step In — Executes the currently loaded program one line at a time. When Step In
encounters a line with a procedure or function call, it displays the procedure or
function’s source code in the Source window. At the end of the procedure or
function, the Debugger redisplays the calling routine.

Skip — Skips the next line in the program, then single-steps after that. This
command is useful for skipping over program statements that caused an error.

Continue — Continues the execution of a program that has stopped because of an
error, a Stop command, or other interruption, such as a breakpoint.

Search — Lets you search for a text string in the Source window or the Output
window.

Stop — Stops the execution of an application and returns from nested procedures
and functions until the main program level is reached.

Exit — Stops the execution of the current application and ends the PV-WAVE
session. To restart the PV-WAVE session, select File=>Restart. This command
does not exit the Debugger, it only exits the PV-WAVE session running in the
Debugger. To exit the Debugger, select File=>Quit.

Examining Variables
When you are debugging a program, it is often necessary to examine the contents
of variables at various points while the program is running. The Debugger provides

284 PV-WAVE Programmer’s Guide

several methods you can use to examine variables. The methods include showing
a single variable, monitoring a variable, and “listing” information about variables.

Showing a Single Variable

Whenever program execution is stopped (e.g., by a breakpoint, a Step command,
or an error), you can examine the contents of variables.

To examine the contents of a variable when program execution is stopped, double
click on the variable’s name (in the Source window) and select Variable=>Show.
Alternatively, you can select Variable=>Show first, and then enter the name of a
variable in the dialog box.

All the elements of structures and up to 5000 array elements are displayed. You can
control the array elements displayed by entering an array sub-expression in the
Variable=> Show dialog box.

Monitoring a Variable

Another way to examine variables is with the Variable=>Monitor function. This
method uses a window called the Monitor window in which the values of selected
variables are displayed. Whenever program execution stops (e.g., with a
breakpoint, or after a Step or Skip), these values are updated.

To monitor a variable, double click on the variable’s name and select
Variable=>Monitor. Alternatively, you can select Variable=>Monitor first, and
then enter the name of a variable in the dialog box.

 285

Figure 13-4 The Monitor window displays user variables.

The way in which variables in the Monitor window are displayed (i.e., using
highlighting and relief), depends on the status of the variable, as follows:

• Variables that have changed since the last program interruption and are defined
within the current procedure are highlighted and shown with sunken relief (i.e.,
they appear pushed in).

• Variables that are defined within the current procedure that have not changed
are shown with sunken relief.

• Variables that are undefined in the current procedure are not highlighted.

All the elements of structures and up to 5000 array elements are displayed in the
Monitor window. You can control the array elements displayed by entering sub-
array expressions in the Variable=>Monitor dialog box.

Listing Variables and Structures

Several additional functions on the Variable menu let you list all user-defined and
system variables, and structures. These functions work exactly like the PV-WAVE

286 PV-WAVE Programmer’s Guide

INFO command when called with its particular keywords. For example, the
Variables=>List Structures function works just like the PV-WAVE command:

INFO, /Structures

The output from these commands appears in the Output window. The INFO
command is discussed in the PV-WAVE Reference.

Obtaining Session Information
The functions on the Info menu let you display information on the current
Debugger session.

The functions on this menu work exactly like the PV-WAVE INFO command when
called with its particular keywords. For example, the Info=>Files function works
just like the PV-WAVE command:

INFO, /Files

The requested information appears in the Output window. The INFO command is
discussed in the PV-WAVE Reference.

Customizing the Debugger
Use the functions on the Options menu to customize appearance of the Debugger
window, how Debugger output is displayed, the editor you prefer to use, and key
bindings. You can control the amount of text that the “undo buffer” holds, which
affects how many commands can be “undone” and “redone” with the Edit=>Undo
and Edit=>Redo commands.

For detailed information on each of the functions on the Option menu, refer to their
description in the Debugger’s online help system.

287

CHAPTER

14

Creating an OPI Option

Introduction
This chapter is for developers who want to create optional modules that can be
loaded explicitly by any PV-WAVE user. These optional modules can be written in
C or FORTRAN, and can contain new system functions or other primitives.

NOTE FORTRAN connectivity is not available for Windows.

The primary goals of the Option Programming Interface (OPI) are:

Release Independence Options can be released independently of PV-WAVE.

Extensibility New Options do not require changes to be made to the
PV-WAVE kernel.

Centralized Licensing Calls to the license manager are transparent to the
Option developer and are centralized.

Option Manageability The user can easily configure an Option, load it,
unload it, and manage it.

Performance Performance of routines developed with OPI com-
pares well with that of regular PV-WAVE system rou-
tines.

Hardware Independence Options run on all supported platforms.

288 PV-WAVE Programmer’s Guide

Managing Options
The following PV-WAVE routines are used to explicitly manage Options developed
with OPI.

• LOAD_OPTION — Explicitly loads a module created as an Option to PV-
WAVE.

• UNLOAD_OPTION — Explicitly unloads an Option module.

• SHOW_OPTIONS — Lists the loaded Options and their associated functions
and procedures.

Loading and Unloading an Option

Assume that you have created a simple Option module that contains the functions

• PLUS_TWO

• PLUS_THREE

and the procedures

• ADD_TWO

• ADD_THREE

• ADD_FOUR

The Option is called SAMPLE, and this is the version 1.0 of SAMPLE.

In PV-WAVE, the functions and procedures of SAMPLE are not yet available,
because the Option has not yet been loaded. As expected, the SHOW_OPTIONS
procedure returns nothing:

WAVE> SHOW_OPTIONS, /Function, /Procedure

WAVE>

However, once you load the SAMPLE module, the functions are available. Here,
the LOAD_OPTION procedure is used to explicitly load the Option SAMPLE, and
now the SHOW_OPTIONS procedure returns a list of the functions and procedures
of SAMPLE:

WAVE> LOAD_OPTION, ’SAMPLE’

WAVE> SHOW_OPTIONS, /Function, /Procedure

% Option: SAMPLE 1.000000

% Functions:

% PLUS_THREE

 289

% PLUS_TWO

% Procedures:

% ADD_FOUR

% ADD_THREE

% ADD_TWO

The functions and procedures of SAMPLE are ready for use at the command line:

WAVE> p = 10

WAVE> ADD_THREE, p

WAVE> PRINT, p, PLUS_THREE(p)

13 16

Now, the UNLOAD_OPTION procedure is used to unload SAMPLE. When this is
done, the functions and procedures of SAMPLE are no longer available at the
command line:

WAVE> UNLOAD_OPTION, ’SAMPLE’

WAVE> PRINT, PLUS_THREE(p)

% Variable is undefined: PLUS_THREE.

% Execution halted at $MAIN$.

As you can see, the user has control over when the Option is loaded and unloaded.
For detailed information on the routines LOAD_OPTION, UNLOAD_OPTION,
and SHOW_OPTIONS, see the PV-WAVE Reference.

The Developer Environment

The Directory Structure

The developer must be able to develop Options for UNIX, OpenVMS, Windows
NT, and other platforms that support explicit loading.

To facilitate this goal, we recommend that for each Option the developer set up a
directory structure containing some common files and some operating system spe-
cific files.

NOTE The Option directory structure must be located in the VNI_DIR directory.
This is the main directory where all Visual Numerics products are installed.

The directory structure of an Option called SAMPLE is shown in Figure 14-1.

290 PV-WAVE Programmer’s Guide

Figure 14-1 The Option directory structure for an Option called SAMPLE.

Makefiles

Makefiles can be set to be platform dependent, so that building the shared libraries
is done according to the operating system specific flags and include files. We advise
you to place them under the Option main directory, here sample-1_0.

The bin Directory

The name SAMPLE is used by the LOAD_OPTION command to choose the
appropriate shared library. The shared libraries are located in the bin directory:

sample-1_0/bin/bin.hps700

sample-1_0/bin/bin.sun4

sample-1_0\bin\bin.i386nt

The src Directory

The directory sample-1_0/src contains the source code for the Option.

The lib Directory

If an Option requires PV-WAVE code (for example, for keyword processing), it
should be located in the lib subdirectory.

sample-1_0

src bin

bin.hps700 bin.sun4 bin.i386nt

lib

bin.xxxx

 291

Main Directory Requirements

NOTE You must place the Option directory in the main Visual Numerics direc-
tory. This is the main directory where your Visual Numerics products are installed.

The main Option directory must be named according to the following naming con-
vention. The directory name is used to locate the Option.

<OptionName>-<Version>_<Release>

For the example Option described in this chapter, the main directory name is sam-
ple-1_0.

Required Files

Under the main Option directory, you must have the files:

bin/bin.<platform_name>

where the platform names are the same as the platform names used for the main
PV-WAVE executable.

For example, bin/bin.hps700 or bin/bin.i386nt.

NOTE For OpenVMS platforms, the underscore (_) must be used instead of the
dot (.) in the platform subdirectory (for example [.bin.bin_axpvms], or
[.bin.bin_vaxvms]).

Assume that you are building an Option that will run under HP-UX and SunOS.
The required directory structure for the Option is shown in Figure 14-2.

<Option_Name> The name of the Option.

<Version> The major version number of the Option.

<Release> The minor version number of the Option.

292 PV-WAVE Programmer’s Guide

Figure 14-2 The directory structure needed to run the Option, including the shared library
files.

The shared library files:
option_routines.xx

option_table.xx

are explicitly loaded when the LOAD_OPTION command is invoked.

• option_table.xx— Contains a PV-WAVE kernel table that describes the
content of the Option: the number of functions, the number of procedures, the
feature and version for the license manager, the names of the functions, and the
names of the procedures.

In this particular example (the Option called SAMPLE), the file
option_table.xx returns the fact that this Option has three functions and
two procedures, named respectively:

PLUS_TWO (function)

PLUS_THREE (function)

PLUS_FOUR (function)

ADD_TWO (procedure)

ADD_THREE (procedure)

sample-1_0

src bin

bin.hps700 bin.sun4

lib

option_routines.sl
option_table.sl

option_routines.so
option_table.so

 293

• option_routines.xx— Contains the actual code for the these functions
and procedures. This code contains OPI wrapper calls that implement the func-
tions and procedures of the module.

The filename extension for the shared library files is operating system dependent.
The following table lists the filename extensions for the operating systems that
Visual Numerics supports:

NOTE AIX requires that the file option_table.o be placed in the bin/
bin.rs6000/object directory.

Option Example

This section presents an example of an Option and describes the flow of control and
data through the different components associated with the Option.

This example does not present all of the OPI features available to an Option devel-
oper. The example is based on the IMSL C/Stat/Library normality_test
function as it might be implemented with OPI.

The user enters the following at the PV-WAVE command line:

x = SIN(DINDGEN(1000))

norm = IMSLS_NORMALITY_TEST(x, /Double)

IMSLS_NORMALITY_TEST is a PV-WAVE Option function (contained in a
.pro file). The purpose of this function is to prepare parameters for the PV-WAVE

Operating System Shared Library Filename Extension

HP-UX .sl

SunOS .so

Solaris .so

SGI .so

Digital UNIX .so

AIX .so

NT .dll

OpenVMS .exe

294 PV-WAVE Programmer’s Guide

Option system functions for this IMSL C/Stat/Library function. The Option system
functions are named:

OPT_FLOAT_IMSLS_NORMALITY_TEST, and

OPT_DOUBLE_IMSLS_NORMALITY_TEST

IMSLS_NORMALITY_TEST checks the keyword parameters, makes sure the
positional parameters are the correct type and, in this case, calls:

value = OPT_DOUBLE_IMSLS_NORMALITY_TEST(x, $
n_observations)

Up until this point the data and control flows have been identical to past versions
of PV-WAVE. At this point the PV-WAVE kernel will convert the list of PV-WAVE
variables passed to OPT_DOUBLE_IMSLS_NORMALITY_TEST to a list of PV-
WAVE variable handles (WVH).

Inside of OPT_DOUBLE_IMSLS_NORMALITY_TEST, PV-WAVE variable
handles (WVH) and PV-WAVE structure definition handles (WSDH) are used by
the OPI C or FORTRAN functions to access PV-WAVE variables and PV-WAVE
structure definitions.

In the example, the function definition for
OPT_DOUBLE_IMSLS_NORMALITY_TEST is as follows:

WVH opt_double_imsls_normality_test(int argc, WVH *argv);

When OPT_DOUBLE_IMSLS_NORMALITY_TEST is called in the example the
parameters will have the following values:
argc =2;

WVH *argv = {

<WVH for the WAVE variable ”x”>,

<WVH for the WAVE variable ”n_observations”>

};

The following assignment statements will get a C pointer to the data associated
with the first two PV-WAVE handles:

x = (double *) wvh_dataptr(argv[0]);

n_observations =
(int *) wvh_dataptr(argv[1]);

These pointers are then passed to the imsls_d_normality_test function in
the C/Stat library. The return value from this function is a scalar double. For the
purpose of the example the variable name of the return value will be result.

result = imsls_d_normality_test(n_observations, x);

 295

To return result to the PV-WAVE kernel the Option must create an unnamed PV-
WAVE variable, assign result to this variable, then return the unnamed variable’s
WVH. The following functions accomplish this task:

status = wave_get_unWVH(return_value);

status = wave_assign_num(return_value,
TYP_DOUBLE, 0, NULL, (char *)
result, FALSE);

return(return_value);

At this point control returns to the IMSLS_NORMALITY_TEST PV-WAVE
Option function. The unnamed variable, with the WVH name return_value, has
been assigned to the PV-WAVE variable value.

IMSLS_NORMALITY_TEST now returns value to the original assignment state-
ment, as entered at the PV-WAVE command line:

norm = IMSLS_NORMALITY_TEST(x, /Double)

Creating An Option
The Option developer must create two shared objects. The first is the Option Table,
which contains information regarding the number of functions, the number of pro-
cedures, the names of the functions and the names of the procedures and the feature
name and version. The second shared object contains the actual code for the rou-
tines described in the Option Table.

Option development consists of the following steps:

• Create a new Option directory structure. This can be done using a template that
Visual Numerics has provided.

• Modify the template files for the new Option

• Develop the Option code

• Define the Option table

• Build the new Option

• Test the new Option

Step 1: Create a New Option Directory Structure

To begin, copy the option-templates directory tree in the main Visual
Numerics directory (the directory to which the VNI_DIR environment variable/

296 PV-WAVE Programmer’s Guide

logical points). Give the new directory a name that follows the naming convention
outlined in the section Main Directory Requirements on page 291.

For example, to create the new Option directory tree for the SAMPLE Option, enter
the commands shown at the system prompt:

UNIX

% cd $VNI_DIR

% cp -r option-templates sample-1_0

OpenVMS

$ SET DEF VNI_DIR

$ CREATE/DIRECTORY [.SAMPLE-1_0]

$ COPY [.OPTION-TEMPLATES...]*.* [SAMPLE-1_0...]

Windows

> cd %VNI_DIR%

> xcopy option-templates sample-1_0

The new Option directory structure contains a number of files needed to build the
Option. Some of these files must be modified for the new Option. The procedure
for modifying the template files is described in the next step. The following tables
list the files that were copied from the template directory tree:

UNIX Platform Files

Files Used for:

Makefile Controls the building of an Option.

buildmachine Defines a build machine for a given UNIX
platform.

init.mkinc Common macros, variables for Makefile.

src/Makefile Controls the building of the source files.

src/option_info.h The Option definition template.

src/option_table.c The Option Table definition.

src/option_routines.c The Option user routines template.

src/option_rs6000.exp The exported symbols for the Option Table
(AIX only).

 297

OpenVMS Platform Files

src/option_rs6000.imp The imported symbols for the Option (AIX
only).

src/depend.mkinc Dependencies target for make.

src/flags.mkinc Defines cc, ld flags based on platform.

src/axposf.mkcfg Digital Alpha specific make flags.

src/hps700.mkcfg HP-UX specific make flags.

src/rs6000.mkcfg RS6000/AIX specific make flags.

src/sgi.mkcfg SGI/IRIX specific make flags.

src/solaris.mkcfg SPARC/Solaris specific make flags.

src/sun4.mkcfg SPARC/SunOS specific make flags.

bin/Makefile Controls the building of the Option shareable
libraries.

lib/Makefile Controls the compilation of the PV-WAVE
procedures.

Files Used for:

build.com Controls the building of an Option.

[.src]build.com Controls the building of the source files.

[.src]option_info.h The Option definition template.

[.src]option_table.c The Option Table definition.

[.src]option_routines.c The Option user routines template.

[.src]table_transfer.mar Transfer vectors for the Option Table
(VAX only).

[.src]option_transfer.mar Transfer vectors for the Option (VAX
only).

[.bin]link.com Controls the building of the Option share-
able libraries.

[.bin]option_table.opt Linker option file for the Option Table
(VAX only).

Files Used for:

298 PV-WAVE Programmer’s Guide

Windows Platform Files

Step 2: Modify the Template Files

Next you need to modify some of the files that were copied from the template direc-
tory. In general, you will change generic names given in the template files to the
name of your Option. The following tables list the files that you need to modify and
tell you exactly what modifications to make to each file.

UNIX Platform Files to Modify

[.bin]option_table_alpha.opt Linker option file for the Option Table
(Digital Alpha only).

[.bin]options.opt Linker option file for the Option (VAX
only).

[.bin]options_alpha.opt Linker option file for the Option (Digital
Alpha only).

Files Used for:

makefile.nt Controls the building of an Option.

src\makefile.nt Controls the building of the source files.

src\option_info.h The Option definition template.

src\option_table.c The Option Table definition.

src\option_routines.c The Option user routines template.

src\option_table.def The module definition file for the Option
Table.

src\option_routines.def The module definition file for the Option.

Files Modification

Makefile Change the ROOTNAME variable to the name
of your Option directory.

buildmachine Define a build machine for the supported
platform(s).

Files Used for:

 299

OpenVMS Platform Files to Modify

init.mkinc Change the ROOTNAME variable to the name
of your Option directory.

src/Makefile Change the ROOTNAME variable to the name
of your Option directory.

src/option_info.h See the section Step 4: Define the New Option
Table on page 301.

src/option_routines.c See the section Step 3: Develop the Option
Code on page 300.

src/option_rs6000.imp Add (or delete) the IMPORTed PV-WAVE
routines used in your Option (AIX only).

bin/Makefile Change the ROOTNAME variable to the name
of your Option directory.

lib/Makefile Change the ROOTNAME variable to the name
of your Option directory.

Files Modification

[.src]option_info.h See the section Step 4: Define the New
Option Table on page 301.

[.src]option_routines.c See the section Step 3: Develop the Option
Code on page 300.

[.src]option_transfer.mar Define the transfer vectors for the Option
routines (VAX only).

[.bin]link.com Change the Option_Name variable to define
the name of the Option shareable libraries.

[.bin]options.opt Override the default PSECT attribute setting
for global variables (if needed).

[.bin]options_alpha.opt Define the symbol vectors for the Option
routines (Digital Alpha only).

Files Modification

300 PV-WAVE Programmer’s Guide

Windows Platform Files to Modify

Step 3: Develop the Option Code

The template file option_routines.c is available for developing the Option
procedures in C. If you have a limited number of Option routines written in C, it is
recommended that you place them in the option_routines.c file.

If you want to split your Option routines into several separate files, you have to
modify the appropriate build files:

(UNIX) src/Makefile

(OpenVMS) [.SRC]BUILD.COM

(Windows) src\makefile.nt

NOTE Windows platforms require the LibMain function to be defined in one of
the files containing the Option routine code.

NOTE AIX/RS6000 platforms require a list of the Option procedures and/or func-
tions to be defined in the set_sys_table function defined in the
option_routines.c file (for details, refer directly to the file src/
option_routines.c).

If PV-WAVE procedure files are part of your Option, they should be placed in the
lib subdirectory. That is because PV-WAVE automatically appends all option
directories located in the directory pointed to by the VNI_DIR environment vari-
able/logical and that contain the subdirectorylib to the !Path system variable. The

Files Modification

makefile.nt Change the ROOTNAME variable to the
name of your Option directory.

src\makefile.nt Change the ROOTNAME variable to the
name of your Option directory.

src\option_info.h See the section Step 4: Define the New
Option Table on page 301.

src\option_routines.c See the section Step 3: Develop the
Option Code on page 300.

src\option_routines.def Define the EXPORTed Option routines,
and the IMPORTed PV-WAVE routines
used in your Option.

 301

template Makefile is available in the lib subdirectory to create PV-WAVE
compiled files (.cpr) from PV-WAVE procedure files.

Step 4: Define the New Option Table

The Option Table needs to contain information regarding the number of functions
and procedures in the Option, the names of the functions and procedures in the
Option, the feature name, and version of the Option.

This information must be entered into a template file, option_info.h, located
in src subdirectory. Just open this file and fill in the required information as indi-
cated in the comments. Here is a sample of the file with some additional notes:

/* Option Feature Identifier: Place the string between the double
quotes.

NOTE Leave this string blank for unlicensed options.

*/

static char feature[] = ””;

/* Option Version Identifier: Replace the 0.0 with the option’s
version

*/

static double version = 0.0;

/* Option Functions: Enter the number of option functions and the
option function names below. Enter one name per string in the
”function_names” array.

NOTE Function names must be in upper case and listed in alphabetical order.

*/

static int nm_functions = 0;

static char * function_names[] = {

};

/* Option Procedures: Enter the number of option procedures and the
option procedure names below. Enter one name per string in the
”procedure_names” array.

NOTE Procedure names must be in upper case and listed in alphabetical order.

*/

static int nm_procedures = 0;

static char * procedure_names[] = {

};

302 PV-WAVE Programmer’s Guide

Step 5: Build the New Option

The procedure for building an Option, as explained in this section, is platform
dependent.

To build the Option shareable libraries for UNIX platforms use:
% cd $VNI_DIR/<Option_Dir_Name>
% gmake all TARGARCH = ’<platform name>’

The log file BuildLog.<platform> contains the results of the build.

NOTE The UNIX Makefiles are written for gmake, the FSF GNU version of
make.

To build the Option shareable libraries for OpenVMS platforms use:
$ SET DEFAULT VNI_DIR:[<my option top dir>]
$ @BUILD

To build the Option shareable libraries for Windows platforms use:
Z:\VNI> cd <Option_Dir_Name>
$ nmake all -f makefile.nt

NOTE The environment variables/logicalsVNI_DIR andWAVE_DIRmust be set
before building the Option. Refer to the PV-WAVE User’s Guide if you any ques-
tions about these variables.

Step 6: Test the New Option

Place the tests written for the new Option in a test subdirectory.

Keyword Processing
A new Option may require the creation of some PV-WAVE procedure files to han-
dle keyword processing.

The C or FORTRAN compiled code for Options will not support keyword param-
eters; however, handling keywords in an Option can be managed with PV-WAVE
procedure files. The PV-WAVE language provides functions to check keyword
parameters and easily convert parameters from one data type to another.

Place any .pro files associated with an Option in the lib subdirectory.

 303

License Management

NOTE License Management support is available only for internal Visual Numer-
ics and for explicitly licensed third party development.

The information that allows for the unlocking of an Option should be protected
from the user. The user should not be able to use an Option license to unlock
another Option.

A license seat must be checked out in order for an Option function to be accessible
to the user; however, to compile, or load the functions in PV-WAVE, a license seat
is not necessary. In that sense, checking out seats is independent from the loading
for an Option.

The name of the Option as specified in the LOAD_OPTION PV-WAVE command
is used as the license feature name of the Option, and must match the feature name
of the Option in the license file.

Adding an Option to the PV-WAVE Search Path
The lib subdirectory of any properly named and located Option directory is auto-
matically appended to the !Path and !Option_Path system variables. This allows
direct access to the PV-WAVE procedures in the Option using PV-WAVE’s loading
mechanism.

The PV-WAVE system variable !Option_Path must be set to point to specific
Option(s). The !Option_Path system variable is used to locate the Option(s) share-
able executable when an Option is loaded using the PV-WAVE LOAD_OPTION
procedure.

NOTE Multiple versions of an Option are not supported. If multiple directories
with the same Option name are found in the directory pointed to by the VNI_DIR
environment variable/logical, the Option with the highest version number is
appended to the !Path and !Option_Path system variables.

304 PV-WAVE Programmer’s Guide

Variable Handling Examples
This section lists example files that show how to use variable handling functions.
These files are located in:

(UNIX) $VNI_DIR/wave/demo/interapp/opi

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.OPI]

(Windows) %VNI_DIR%\wave\demo\interapp\win32\opi

For UNIX Only

For UNIX Only

File Description

opiforunix4.f Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
UNIX platforms with 4-byte long integers only.

opiforunix8.f Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
UNIX platforms with 8-byte long integers only.

opiforunix.build C-shell script to compile and link opiforunix4.f
into a sharable object module that can be called from
PV-WAVE via the LINKNLOAD command.

opiforunix.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the
FORTRAN functions in opiforunix.f.

opiforunix.export List of symbols exported by opiforunix4.f,
required by ld on Silicon Graphics platforms only.

opicunix.build C-shell script to compile and link opicunix.c into a
sharable object module that can be called from PV-
WAVE via the LINKNLOAD command.

opicunix.c Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on UNIX plat-
forms.

opicunix.export List of symbols exported by opicunix.c, required
by ld on Silicon Graphics platforms only.

opicunix.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the C
functions in opicunix.f.

 305

For VAX OpenVMS Only

cwavec_unix.build C-shell script to compile and link an example of using
the OPI functions from an application that uses PV-
WAVE’s cwavec functionality.

cwavec_unix.c Example C module that uses PV-WAVE’s cwavec
functionality. This C module also calls the functions
in opicunix.c and shows that the same OPI func-
tions that are used via LINKNLOAD in the opi*
examples can also be used from a cwavec applica-
tion.

For VAX OpenVMS Only

File Description

opiforvaxvms.f Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
VAX OpenVMS platforms only.

opiforvaxvms.com DCL script to compile and link opiforvaxms.f into
a sharable object module that can be called from PV-
WAVE via the LINKNLOAD command.

opiforvaxvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the FOR-
TRAN functions in opiforvaxvms.f

opicvaxvms.c Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on VAX
OpenVMS platforms only.

opicvaxvms.com DCL script to compile and link opicvaxms.c into a
sharable object module that can be called from PV-
WAVE via the LINKNLOAD command.

opicvaxvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the C
functions in opicvaxvms.c.

setup.com DCL script to assign logicals used by
opiforvaxvms.pro and opicvaxvms.pro.

cwavec_vaxvms.com DCL script to compile and link an example of using
the OPI functions from an application that uses PV-
WAVE’s cwavec functionality.

For UNIX Only (Continued)

File Description

306 PV-WAVE Programmer’s Guide

For Digital Alpha OpenVMS Only

For Windows Only

For Digital Alpha OpenVMS Only

File Description

opiforaxpvms.f Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
Digital Alpha OpenVMS platforms only.

opiforaxpvms.com DCL script to compile and link opiforaxpms.f into
a sharable object module that can be called from PV-
WAVE via the LINKNLOAD command.

opiforaxpvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the
FORTRAN functions in opiforaxpvms.f.

opicaxpvms.com DCL script to compile and link opicunix.c into a
sharable object module that can be called from PV-
WAVE via the LINKNLOAD command.

opicaxpvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the C
functions in opicunix.c.

setup.com DCL script to assign logicals used by
opiforaxpvms.pro and opicaxpvms.pro.

cwavec_axpvms.com DCL script to compile and link an example of using
the OPI functions from an application that uses PV-
WAVE’s cwavec functionality.

For Windows Only

File Description

opicwin32.def Module definition file that declares symbols that are
exported by the DLL.

opicwin32.c Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on Win32 plat-
forms.

opicwin32.pro PV-WAVE procedure that illustrates how to use the
LINKNLOAD command to call the C functions in
opicwin32.dll.

 307

NOTE FORTRAN connectivity is not available for Windows.

Files That Are Not Platform-specific

Option Programming Interface Language Bindings
This section presents an overview of the architecture of an OPI style Option and
describes the C and FORTRAN application programming interfaces for OPI style
Options. For both C and FORTRAN, this section discusses the background, data
types, and OPI functions used to manipulate PV-WAVE variables and structures
from an Option.

NOTE FORTRAN connectivity is not available for Windows.

OPI Variable Handling

OPI consists of C and FORTRAN callable functions that can be used to:

• get information about existing PV-WAVE variables

• create new PV-WAVE variables

• modify existing PV-WAVE variables

cwavec_unix.c Example C module that uses PV-WAVE’s cwavec
functionality. This C module also calls the functions
in opicwin32.c and shows that the same OPI
functions that are used via LINKNLOAD in the
opi* examples can also be used from a cwavec
application.

Files That Are Not Platform-specific

File Description

opi_c_devel.h Include file for C applications using OPI for C.

opi_f_devel.h (UNIX and OpenVMS only) Equivalent of
opi_c_devel.h but for FORTRAN.

For Windows Only (Continued)

File Description

308 PV-WAVE Programmer’s Guide

• allow existing PV-WAVE variables to be used as parameters to other PV-
WAVE functionality

These functions can be called from user-written programs, and may be used in con-
junction with cwavec, cwavefor, or the PV-WAVE LINKNLOAD command.
These functions make it easier for user-written code to access PV-WAVE variables
and use other PV-WAVE functionality.

NOTE OPI variable handling functions are designed to be used with OPI options;
however, these functions can be used in any code that calls PV-WAVE (e.g., via
cwavec or cwavefor) and in code called from PV-WAVE (e.g., via
LINKNLOAD).

Use of Opaque Handles

OPI makes use of opaque handles for elements in the PV-WAVE internal code that
remain hidden from the Option developer. This makes it possible for Visual
Numerics to change the underlying implementation in the future without breaking
this interface definition. The following abbreviations are used for these handles:

• WVH — PV-WAVE variable handle. This handle gives Option developers
access to everything they need to know about a PV-WAVE variable.

• WSDH — PV-WAVE structure definition handle. This handle gives the Option
developer access to all elements of a PV-WAVE structure definition.

NOTE WSDH is not a PV-WAVE variable of structure type. Structure definitions
exist independently of PV-WAVE variables.

CAUTION The routines described later in this chapter have been implemented as
functions that return a value indicating the success or failure of the function call.
The possible return values and their meanings are described for each function. It is
extremely important that any code using these functions looks at the returned val-
ues and takes the appropriate action. Ignoring the returned value and continuing to
execute after an error condition has occurred can result in memory trashing and PV-
WAVE crashes. Ignoring return values that indicate other PV-WAVE states can
result in incorrect PV-WAVE behavior.

 309

FORTRAN Variable Handling

NOTE FORTRAN connectivity is not available for Windows.

The FORTRAN-callable OPI functions are actually written in C and are part of the
PV-WAVE code base. Basically, these functions take care of all parameter passing
differences between C and FORTRAN and then call one of the C-callable OPI
functions.

There is not an exact one-to-one correspondence between C-callable and FOR-
TRAN-callable functions due to basic language differences. However, there is no
functionality missing from the FORTRAN-callable interface.

All FORTRAN-callable functions have names beginning with LF_. Their C-call-
able equivalent has the same name but without the LF_ prefix.

Passing and returning string values is the biggest difference between FORTRAN
and C. While the C-callable functions can return string values, the FORTRAN-call-
able functions must pass a string argument which will be filled in with the string
value that would be returned by the equivalent C-callable function.

In all the following function descriptions where one or more of the arguments is a
string, the string argument is shown to be declared as a CHARACTER*31 FOR-
TRAN type. The maximum length of a PV-WAVE variable or structure definition
name is 31 characters. However, for each string argument passed, FORTRAN also
passes the size of the string argument. When filling in a string argument for return
to the calling function, these PV-WAVE functions will not “overfill” the string.

For example, if you pass a CHARACTER*10 as the string argument to be filled by
the LF_WVH_NAME function and the PV-WAVE variable name is longer than 10
characters, you will get only the first 10 characters of the PV-WAVE variable name.
Also, if you pass a CHARACTER*10 variable as the string argument to the
LF_WSDH_OFFSET function, the LF_WSDH_OFFSET function still works as
expected.

Digital Alpha Digital UNIX FORTRAN Specifics

All the FORTRAN-callable functions are names begin with LF_ because they
return long integer values. On all OpenVMS and UNIX platforms except Digital
Alpha Digital UNIX, a long integer in C is equivalent to an INTEGER*4 in FOR-
TRAN. For Digital Alpha Digital UNIX, a long integer in C is equivalent to an
INTEGER*8 in FORTRAN.

310 PV-WAVE Programmer’s Guide

NOTE All INTEGER*4 function and parameter declarations must be changed to
INTEGER*8 for use on Digital Alpha Digital UNIX platforms.

OpenVMS FORTRAN Specifics

On OpenVMS, differences with string arguments are further confused by the use
of string descriptors in OpenVMS. Therefore, each FORTRAN-callable function
that passes one or more string arguments has yet another version of the function on
OpenVMS. Functions whose names begin with LFD_ are used designed for use
under OpenVMS and are the equivalent of LF_ functions, except that string
descriptors are passed instead of string pointers.

Include Files

The file opi_devel.h is a C include file containing #define macros,
typedef’s and extern declarations needed by the OPI functions. Just
#include this in your program.

The file opi_f_devel.h lists FORTRAN type declarations and PARAMETER
statements needed by the FORTRAN OPI functions. Copy the needed statements
from this file into your program.

These files are located in:

(UNIX) $VNI_DIR/wave/src/priv

(OpenVMS) VNI_DIR[WAVE.SRC.PRIV]

(Windows) %vni_dir%\wave\src\priv

Examples

For examples showing the use of these functions, see the files in:

(UNIX) $VNI_DIR/wave/demo/interapp/opi

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.OPI]

(Windows) %vni_dir%\wave\demo\interapp\win32\opi

 311

OPI Function Definitions for PV-WAVE Variables

Summary

wave_execute (page 313)
Executes a PV-WAVE command.

wave_compile (page 314)
Compiles a PV-WAVE command.

wave_interp (page 316)
Executes a compiled PV-WAVE command.

wave_free_WCH (page 317)
Frees the compiled PV-WAVE command.

wave_assign_num, wave_assign_string, wave_assign_num (page 317)
Assigns data to an existing PV-WAVE variable.

wave_get_WVH (page 321)
Gets a PV-WAVE variable handle for an existing named PV-WAVE variable.

wave_get_unWVH (page 322)
Creates an unnamed PV-WAVE variable and returns its PV-WAVE variable handle.

wave_free_WVH (page 323)
Frees memory associated with a PV-WAVE variable handle.

wvh_name (page 324)
Returns the variable name of a PV-WAVE variable handle.

wvh_type (page 326)
Returns the variable type of a PV-WAVE variable handle.

wvh_ndims (page 327)
Returns the number of dimensions in a PV-WAVE variable.

wvh_nelems (page 328)
Returns the number of elements in a PV-WAVE variable.

wvh_dimensions (page 329)
Returns the number of dimensions and the size of each dimension.

wvh_sizeofdata (page 330)
Returns the size in bytes of the data area of a PV-WAVE variable.

wave_type_sizeof (page 330)
Returns the size in bytes associated with a PV-WAVE variable type.

312 PV-WAVE Programmer’s Guide

wvh_is_scalar (page 332)
Tests if a PV-WAVE variable is a scalar not an array.

wvh_is_constant (page 333)
Tests if a PV-WAVE variable is a constant.

wvh_dataptr (page 334)
Returns a pointer to the data area of a PV-WAVE variable.

wave_wsdh_from_wvh (page 335)
Returns a PV-WAVE structure definition handle for a PV-WAVE structure variable.

wave_wsdh_from_name (page 336)
Returns a PV-WAVE structure definition handle given the name of a PV-WAVE struc-
ture variable.

wave_free_WSDH (page 337)
Frees space associated with a PV-WAVE structure definition handle when it is no
longer needed.

wsdh_name (page 338)
Gets the structure name.

wsdh_ntags (page 339)
Gets the number of tags in a structure.

wsdh_tagname (page 339)
Gets the name of a structure tag.

wsdh_sizeofdata (page 341)
Gets the size of data area associated with a structure.

wsdh_offset (page 341)
Gets the byte offset of the data area for a named tag in a structure.

wsdh_element (page 342)
Creates a PV-WAVE variable handle for a tag in a structure.

wave_error (page 346)
Reports an error condition for the Option to PV-WAVE.

wave_onerror (page 348)
Sets the value of PV-WAVE error action.

wave_is_onerror (page 349)
Returns the current value of PV-WAVE error action.

wave_onerror_continue (page 349)
Sets the value of PV-WAVE error continue flag of the ON_ERROR condition.

 313

wave_is_onerror_continue (page 350)
Returns the current value of PV-WAVE error continue flag of the ON_ERROR
condition.

opi_malloc, opi_free, opi_realloc, opi_calloc (page 344)
Provide memory allocation for OPIs.

wave_execute
Executes a PV-WAVE command.

C Usage

long wave_execute(any_wave_cmd)

char *any_wave_cmd;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_EXECUTE(any_wave_cmd)

CHARACTER*(*) any_wave_cmd

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WAVE_EXECUTE(any_wave_cmd)

Input Parameters

any_wave_cmd — A string containing a PV-WAVE command to be executed.

Returned Status Codes

OPI_SUCCESS — Successful.

OPI_FAILURE — Errors occurred but execution can continue.

OPI_DO_NOT_PROCEED — Errors occurred: cease execution. The calling C-
code should do its cleaning up (free malloc’s space, free handles, etc.) and return
to its caller immediately.

314 PV-WAVE Programmer’s Guide

In either of the error cases, PV-WAVE has already done its normal error processing
which includes printing a message and setting the appropriate system variables.

Discussion

The wave_execute function takes the string argument it is given and treats it as
a PV-WAVE statement. The statement will be compiled and interpreted as if it were
the argument to a PV-WAVE EXECUTE function at the current interpreter
position.

The purpose of this function is to give your C function the ability to use all PV-
WAVE functionality from C code without having to write a separate interface to
every piece of PV-WAVE functionality. For example, suppose your C function
needs the transpose of a PV-WAVE variable that was passed as an argument to the
function. If you have access to the PV-WAVE TRANSPOSE function, you do not
have to write your own transpose routine inside the C code of your function.

For example, suppose your code has some related PV-WAVE system variables and
you want to change the value of a system variable without requiring that the system
variable be an argument to your function. You can use wave_execute to assign
a new value to a PV-WAVE system variable.

NOTE wave_execute happens in the context of the currently active PV-WAVE
procedure or function. It knows about only those variables that are in the scope of
the currently active PV-WAVE procedure or function. Between the time
wave_execute was called and when it returns, many PV-WAVE context
changes could have occurred. But when wave_execute returns, you are again
in the context of the PV-WAVE procedure or function that was active when
wave_execute was called.

UNIX USERS If you use wave_execute in a cwavec or cwavefor appli-
cation, you must call either cwavec or cwavefor at least one time before using
wave_execute.

wave_compile
Compiles a PV-WAVE command.

 315

C Usage

long wave_compile(any_wave_cmd, WCHptr)

char *any_wave_cmd;

WCH *WCHptr;

FORTRAN Usage

Not available.

Input Parameters

any_wave_cmd — A string containing a PV-WAVE command to be executed.

Output Parameters

WCHptr — A PV-WAVE handle to the compiled code ready to be executed.

Returned Status Codes

OPI_SUCCESS — Successful.

OPI_FAILURE — Errors occurred during compilation.

OPI_DO_NOT_PROCEED — Errors occurred and execution should not continue.
The calling C-code should do its cleaning up (free malloc’s space, free handles,
etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE has already done its normal error processing
which includes printing a message and setting the appropriate system variables.

Discussion

wave_execute compiles the PV-WAVE statement each time it is called. This is
quite ineffective if wave_execute is called several times (e.g., in the loop) with
the same PV-WAVE statement. It is more efficient to compile the PV-WAVE state-
ment once using wave_compile, which returns the handle WCHptr. Then
execute the compiled PV-WAVE code pointed to by WCHptr several times using
wave_interp.

The wave_compile function takes the string argument it is given and treats it as
a PV-WAVE statement. The statement will be compiled and WCHptr is returned. If

316 PV-WAVE Programmer’s Guide

the compilation of the PV-WAVE statement fails, OPI_FAILURE is returned, and
WCHptr is undefined.

wave_interp
Executes a compiled PV-WAVE command.

C Usage

long wave_interp(wch)

WCH wch;

FORTRAN Usage

Not available.

Input Parameters

wch — A PV-WAVE handle to the compiled code that is ready to be executed.

Returned Status Codes

OPI_SUCCESS — Successful.

OPI_FAILURE — Errors occurred but execution can continue.

OPI_DO_NOT_PROCEED — Errors occurred and execution should not continue.
The calling C-code should do its cleaning up (free malloc’s space, free handles,
etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE has already done its normal error processing,
which includes printing a message and setting the appropriate system variables.

Discussion

The wave_interp function executes the PV-WAVE code previously compiled
by wave_compile, and pointed to by the wch handle. If the wch handle is not a
valid handle, OPI_FAILURE is returned. If the execution of the compiled code
fails, OPI_DO_NOT_PROCEED is returned.

 317

wave_free_WCH
Frees the compiled PV-WAVE command.

C Usage

void wave_free_WCH(WCHptr)

WCH *WCHptr;

FORTRAN Usage

Not available.

Input Parameters

WCHptr — A PV-WAVE handle to the compiled code that is ready to be executed.

Discussion

The wave_free_WCH function frees the PV-WAVE resource allocated for the
WCH handle that was allocated in wave_compile.

wave_assign_num

wave_assign_string

wave_assign_struct
Assigns data to an existing PV-WAVE variable.

C Usage

long wave_assign_num(wave_variable, type, ndims, dims, data, make_copy)

long wave_assign_string(wave_variable, ndims, dims, data, make_copy)

long wave_assign_struct(wave_variable, ndims, dims, wsdh, data, make_copy)

WVH wave_variable;

318 PV-WAVE Programmer’s Guide

long type;

long ndims;

long dims[OPI_MAX_ARRAY_DIMS];

long make_copy;

WSDH wsdh;

char *data;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_ASSIGN_NUM(l_wvh, l_type, l_ndims, l_dims, value)

INTEGER*4 LF_WAVE_ASSIGN_STRING(l_wvh, l_ndims, l_dims, c_value)

INTEGER*4 LF_WAVE_ASSIGN_STRUCT(l_wvh, l_ndims, l_dims, l_wsdh,
s_value)

INTEGER*4 l_wvh, l_type, l_ndims, l_wsdh

INTEGER*4 l_dims(L_OPI_MAX_ARRAY_DIMS)

INTEGER*1 value

CHARACTER*(*) c_value

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WAVE_ASSIGN_STRING(l_wvh, l_ndims, l_dims, c_value)

Input Parameters

wave_variable — A PV-WAVE variable handle pointing to the PV-WAVE variable
to assign.

type — The numerical type of the assignment for wave_assign_num. Must be
one of the OPI_TYP_* macros (PARAMETERS) defined in opi_devel.h or
opi_f_devel.h.

ndims — The number of dimensions you want the PV-WAVE variable to have, and
also indicates the number of elements in dims[] (the number of elements used in

 319

dims). For example, if ndims is 2, then the first 2 elements of the dims array must
contain the dimensions you want the PV-WAVE variable to have.

dims — An array containing the dimensions of the PV-WAVE variable.

data — A pointer to the data you want to assign to the PV-WAVE variable.

It is declared as a (char *) but the argument you pass will more commonly be a
pointer to whatever type of data you are passing. For the
wave_assign_string function, it should be a pointer to a string if you are
assigning a scalar string, and it should be a pointer to an array of string pointers if
you are assigning an array of strings.

make_copy — If TRUE, then wave_assign_*will make a copy of the data area
for use in the PV-WAVE kernel. If make_copy is FALSE, the PV-WAVE kernel
will use the memory pointed to by data. This means that the memory pointed to by
data must be free-able by the PV-WAVE kernel and must no longer be used outside
the kernel.

NOTE Due to limitations of the OpenVMS/VAX operating system, PV-WAVE can
not free a pointer that was malloc’d outside the PV-WAVE address space. There-
fore, the wave_assign_* functions ignore the make_copy argument and will
always make a copy of the users data area.

The FORTRAN LF_WAVE_ASSIGN_* functions will always make a copy of the
value argument for use in the PV-WAVE kernel. Due to the dynamic nature of PV-
WAVE variables, PV-WAVE must be able to free the memory associated with a PV-
WAVE variable whenever it needs to. Since FORTRAN does not support dynamic
allocation of memory, the values of FORTRAN variables must be copied into
dynamically-allocated space in PV-WAVE if they are to used as PV-WAVE
variables.

wsdh — This is a PV-WAVE structure definition handle. The structure must already
exist in the current PV-WAVE session. Use the wave_wsdh_from_name or
wave_wsdh_from_wvh function to get the PV-WAVE structure definition han-
dle of an existing PV-WAVE structure variable.

Returned Status

OPI_SUCCESS — Successful assignment occurred.

OPI_FAILURE — wave_assign_* considers the arguments to be invalid or
inconsistent.

320 PV-WAVE Programmer’s Guide

OPI_DO_NOT_PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (free malloc’s space,
free handles, etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE will have already done its normal error pro-
cessing which includes printing a message and setting the appropriate system
variables.

Discussion

The wave_assign_* functions are wrappers to the function wave_assign.
These wrappers give the Options developer access to the PV-WAVE assignment
statement from the C language. These functions can be used to change the type,
dimensions and/or contents of an existing PV-WAVE variable. The PV-WAVE vari-
able to be modified must already exist within the scope of the current PV-WAVE
procedure or function. It can be a named variable in the currently active PV-WAVE
procedure or function or it can be an unnamed variable. Use the wave_get_WVH
function to get a PV-WAVE variable handle for a named PV-WAVE variable. Use
the wave_get_unWVH function to get a PV-WAVE variable handle for an
unnamed PV-WAVE variable.

Use wave_assign_num to assign numeric values to a PV-WAVE variable. Use
wave_assign_string to assign string values to a PV-WAVE string variable.
Use wave_assign_struct to assign a structure value to a PV-WAVE variable.

The wave_assign_struct function has an addition argument, stdef. This
is the handle of a PV-WAVE structure definition. The structure definition must
already exist in the current PV-WAVE session. Use the
wave_wsdh_from_name or wave_wsdh_from_wvh function to get the han-
dle of an existing PV-WAVE structure definition.

In all the wave_assign_* functions, the data argument must be a pointer to the
data you want to assign to the PV-WAVE variable. It is declared as a (char *) but
the argument you pass will more commonly be a pointer to whatever type of data
you are passing. For the wave_assign_string function, it should be a pointer
to a string if you are assigning a scalar string and it should be a pointer to an array
of string pointers if you are assigning an array of strings.

If the make_copy argument is TRUE, then wave_assign_* will make a copy
of the data area for use in the PV-WAVE kernel. If make_copy is FALSE, the PV-
WAVE kernel will use the memory pointed to by data. This means that the memory
pointed to by data must be free-able by the PV-WAVE kernel and must no longer
be used outside the kernel.

 321

Array Indexing in C

PV-WAVE and C language array indexing is opposite. That is
WAVE_ARRAY(i,j,k) is the same as carray[k][j][i]. So, for example,
if the PV-WAVE array is:

WAVEARRAY(2,3,4,5,6,7,8,9)

then the corresponding C array is:

carray[9][8][7][6][5][4][3][2]

The dims array argument to wave_assign_* determines the array dimensions
in PV-WAVE. If you were usingwave_assign_num to assigncarray[] to the
PV-WAVE variable named WAVEARRAY, then the dims argument to
wave_assign_num should have the values:

long dims[] = {2,3,4,5,6,7,8,9};

even though PV-WAVE and C language array indexing is indexed as above.

If the wave_assign_* functions are used to populate an undefined variable (for
example a new unnamed variable created using wave_get_unWVH), set
ndims=0, dims=NULL to create a scalar variable (ndims=1, dims[0]=1
creates a one dimensional, one element array).

wave_get_WVH
Gets a PV-WAVE variable handle for an existing named PV-WAVE variable.

C Usage

long wave_get_WVH(wave_var_name, WVHptr)

char *wave_var_name;

WVH *WVHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_GET_WVH(wave_var_name, l_wvh)

CHARACTER*31 wave_var_name

322 PV-WAVE Programmer’s Guide

INTEGER*4 l_wvh

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WAVE_GET_WVH(wave_var_name, l_wvh)

Input Parameters

wave_var_name — A string containing the name of an existing PV-WAVE
variable.

Output Parameters

WVHptr — A PV-WAVE variable handle pointing to the variable named by
wave_var_name.

Returned Status

OPI_SUCCESS — PV-WAVE variable successfully found, and WVHptr is
returned.

OPI_FAILURE — wave_var_name was not found, and WVHptr is not defined.

OPI_DO_NOT_PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (free malloc’s space,
free handles, etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE will have already done its normal error pro-
cessing, which includes printing a message and setting the appropriate system
variables.

Discussion

The wave_get_WVH function looks for wave_var_name in the symbol table of
the currently active PV-WAVE procedure or function. If found, a PV-WAVE vari-
able handle pointing to this variable is returned in WVHptr.

The variable named in wave_var_name must already exist in PV-WAVE.

wave_get_unWVH
Creates an unnamed PV-WAVE variable and returns its PV-WAVE variable handle.

 323

C Usage

long wave_get_unWVH(WVHptr)

WVH *WVHptr;

FORTRAN Usage

Not available.

Output Parameters

WVHptr — A PV-WAVE variable handle pointing to the unnamed variable created
by wave_get_unWVH.

Returned Status

OPI_SUCCESS— The PV-WAVE variable was successfully created, and WVHptr
is returned.

OPI_DO_NOT_PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (free malloc’s space,
free handles, etc.) and return to its caller immediately.

Discussion

The wave_get_unWVH function creates a new unnamed PV-WAVE variable for
limited use in the system procedure or function. This unnamed PV-WAVE variable
is like any other PV-WAVE variable in the currently active procedure or function
except that it does not require space in the current symbol table. Since it is
unnamed, it can not be accessed by the command line user.

The PV-WAVE variable handle for the unnamed variable can be used as any other
PV-WAVE variable handle in any of the routines described in this document. The
type, dimensions, etc., of the unnamed variable are undefined until they are defined
via the wave_assign_* functions.

wave_free_WVH
Frees memory associated with a PV-WAVE variable handle.

324 PV-WAVE Programmer’s Guide

C Usage

void wave_free_WVH(WVHptr)

WVH *WVHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_FREE_WVH(l_wvh)

INTEGER*4 l_wvh

Input Parameters

WVHptr — A PV-WAVE variable handle of a named or unnamed PV-WAVE vari-
able to free.

Discussion

This function frees the space associated with both named and unnamed PV-WAVE
variable handles. Before an option procedure or function returns, it must call this
routine to free all PV-WAVE variable handles obtained via the wave_get_WVH
and wave_get_unWVH functions. The option developer should not free a WVH
which will be used as a return value.

When a named variable’s WVH is passed to this function, only the space associated
with the PV-WAVE variable handle is freed; the PV-WAVE variable itself is not
altered in any way. When an unnamed variable’s PV-WAVE variable handle is
passed to this function, space associated with both the PV-WAVE variable handle
and the unnamed variable are freed; the unnamed variable no longer exists after this
function returns.

wvh_name
Returns the variable name of a PV-WAVE variable handle.

C Usage

char *wvh_name(wvh)

 325

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_NAME(l_wvh, wave_variable)

INTEGER*4 l_wvh

CHARACTER*31 wave_variable

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WVH_NAME(l_wvh, wave_variable)

Input Parameters

wvh — The PV-WAVE variable handle of the PV-WAVE variable.

Returned Value — C

Returns a pointer to the PV-WAVE variable name. NULL is returned on failure.

NOTE For maximum speed and space efficiency, this function returns a pointer to
a string stored internally in PV-WAVE. DO NOT modify the string in any way. Any
modification of the string pointed to by this returned value may cause PV-WAVE
to crash.

NOTE Unnamed variables do have a name string, but it is an internal identifier that
can not be recognized at the PV-WAVE command line.

Returned Value — FORTRAN

The variable name is returned in the wave_variable string.

The function returns –1 on failure, if l_wvh is not a valid PV-WAVE variable
handle.

326 PV-WAVE Programmer’s Guide

wvh_type
Returns the variable type of a PV-WAVE variable handle.

C Usage

long wvh_type(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_TYPE(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

Returned Values for C

Returns the PV-WAVE variable type. On failure, –1 is returned.

The valid variable type codes (in C) and their corresponding PV-WAVE types are:

OPI_TYP_UNDEFINED — Undefined.

OPI_TYP_BYTE — Byte.

OPI_TYP_SHORT — Integer (FIX).

OPI_TYP_LONG — Long integer.

OPI_TYP_FLOAT — Floating point.

OPI_TYP_DOUBLE — Double precision.

OPI_TYP_COMPLEX — Complex.

OPI_TYP_DCOMPLEX — Double-precision complex.

OPI_TYP_STRING — String.

 327

OPI_TYP_STRUCT — Structure.

Returned Values for FORTRAN

In FORTRAN, the valid type codes are:

L_OPI_TYP_UNDEFINED

L_OPI_TYP_BYTE

L_OPI_TYP_SHORT

L_OPI_TYP_LONG

L_OPI_TYP_FLOAT

L_OPI_TYP_DOUBLE

L_OPI_TYP_COMPLEX

L_OPI_TYP_DCOMPLEX

L_OPI_TYP_STRING

L_OPI_TYP_STRUCT

All possible type codes are listed as #define’s in opi_devel.h
(PARAMETERS in opi_f_devel.h).

wvh_ndims
Returns the number of dimensions in a PV-WAVE variable.

C Usage

long wvh_ndims(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_NDIMS(l_wvh)

328 PV-WAVE Programmer’s Guide

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returns the number of dimensions in the variable. Returns 1 for scalar variables.

On failure, –1 is returned.

wvh_nelems
Returns the number of elements in a PV-WAVE variable.

C Usage

long wvh_nelems(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_NELEMS(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returns the total numbers of elements in the variable. Returns 1 for scalar variables

On failure, –1 is returned.

 329

wvh_dimensions
Returns the number of dimensions and the size of each dimension.

C Usage

long *wvh_dimensions(wvh, dims)

WVH wvh;

long dims[OPI_MAX_ARRAY_DIMS];

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_DIMENSIONS(l_wvh, l_dims)

INTEGER*4 l_wvh

INTEGER*4 l_dims(L_OPI_MAX_ARRAY_DIMS);

Input Parameters

wvh— The PV-WAVE variable handle of the variable.

Output Parameters

dims — An array of the size of each dimension.

Returned Values

Returns the number of dimensions.

If wvh is not a valid PV-WAVE variable handle, the returned value is –1.

If 0 is returned, the variable is a scalar for all types except structures.

See Also

wvh_is_scalar

330 PV-WAVE Programmer’s Guide

wvh_sizeofdata
Returns the size in bytes of the data area of a PV-WAVE variable.

C Usage

long wvh_sizeofdata(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_SIZEOFDATA(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returns the size in bytes of the data area of the variable. Note that for scalar strings,
wvh_sizeofdata returns the size of a (char *) and for string arrays,
wvh_sizeofdata returns wvh_nelems*sizeof(char *). To get the
length of the actual string, you must get the data pointer and use the PV-WAVE
STRLEN function or some other method of finding the length of the string pointed
to by the data pointer.

On failure, –1 is returned.

wave_type_sizeof
Returns the size in bytes associated with a PV-WAVE variable type.

C Usage

long wave_type_sizeof(opi_type)

 331

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_TYPE_SIZEOF(l_opi_type)

INTEGER*4 l_opi_type

Input Parameters

opi_type — A valid variable type code, excluding OPI_TYP_STRUCT. This func-
tion does not recognize OPI_TYP_STRUCT since the structure definition name is
needed to know its size (see wsdh_sizeofdata on page 341).

The valid variable type codes (in C) and their corresponding PV-WAVE types are:

OPI_TYP_UNDEFINED — Undefined.

OPI_TYP_BYTE — Byte.

OPI_TYP_SHORT — Integer (FIX).

OPI_TYP_LONG — Long integer.

OPI_TYP_FLOAT — Floating point.

OPI_TYP_DOUBLE — Double precision.

OPI_TYP_COMPLEX — Complex.

OPI_TYP_DCOMPLEX — Double-precision complex.

OPI_TYP_STRING — String.

In FORTRAN, the valid type codes are:

L_OPI_TYP_UNDEFINED

L_OPI_TYP_BYTE

L_OPI_TYP_SHORT

L_OPI_TYP_LONG

L_OPI_TYP_FLOAT

L_OPI_TYP_DOUBLE

332 PV-WAVE Programmer’s Guide

L_OPI_TYP_COMPLEX

L_OPI_TYP_DCOMPLEX

L_OPI_TYP_STRING

All these type codes are listed as #define’s in opi_devel.h or
(PARAMETERS in opi_f_devel.h).

Returned Values

Returns the size in bytes needed to store a scalar PV-WAVE variable of the type
given.

Returns –1 if opi_type is not one of the basic types, i.e., OPI_TYP_BYTE
through OPI_TYP_STRING.

This function does not recognize OPI_TYP_STRUCT since the structure defini-
tion name is needed to know its size (see wsdh_sizeofdata on page 341).

wvh_is_scalar
Tests if a PV-WAVE variable is a scalar (not an array).

C Usage

long wvh_is_scalar(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_IS_SCALAR(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

 333

Returned Values

Returns 1 if the variable is a scalar. Returns 0 if the variable is not a scalar and
returns –1 if wvh is not a valid PV-WAVE variable handle.

For scalar structures, this function returns 1 (TRUE) while wvh_dimensions
does not return 0. This is because internally PV-WAVE stores structure-type vari-
ables in an array even if the variable is a scalar (1 element). So, if you want to know
if a structure- type variable is a scalar (1 element) or an array of type structure, use
this function rather than wvh_dimensions. If you use wvh_dimensions and
it returns 1, you need to look at the dims[] array to determine if it is a scalar vari-
able or an array of type structure.

wvh_is_constant
Tests if a PV-WAVE variable is a constant.

C Usage

long wvh_is_constant(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_IS_CONSTANT(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returns TRUE if the variable is a constant. A constant PV-WAVE variable can not
have its type or value changed. wave_assign_* will fail if you try to assign a
value to a PV-WAVE constant.

On failure, –1 is returned.

334 PV-WAVE Programmer’s Guide

wvh_dataptr
Returns a pointer to the data area of a PV-WAVE variable.

C Usage

char *wvh_dataptr(wvh)

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_DATAPTR(l_wvh)

INTEGER*4 l_wvh

Input Parameters

wvh — The PV-WAVE variable handle of the variable

Returned value

Returns a pointer to the data area of the variable. You need to cast this to the proper
data type, according to wvh_type.

NULL is returned on failure. Will return NULL if WVH is a PV-WAVE variable
handle for a PV-WAVE structure.

In FORTRAN, LF_WVH_DATAPTR returns –1 on failure.

Discussion

In FORTRAN, you should pass the data pointer using %VAL() to a function or
subroutine, which can then declare it to be the proper data type.

Examples

For examples of how to use the data pointer in FORTRAN, see the examples in the
directory:

(UNIX) $VNI_DIR/wave/demo/interapp⁄opi

 335

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.OPI]

NOTE FORTRAN connectivity is not available for Windows.

Specifically, look at the WLNLF_* functions (and how they are called) in one of the
opifor*.f example programs.

wave_wsdh_from_wvh
Returns a PV-WAVE structure definition handle for a PV-WAVE structure variable.

C Usage

long wave_wsdh_from_wvh(wvh, WSDHptr)

WVH wvh;

WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_WSDH_FROM_WVH(l_wvh, l_wsdh)

INTEGER*4 l_wvh, l_wsdh

Input Parameters

wvh — A PV-WAVE variable handle of a named or unnamed PV-WAVE structure
variable.

Output Parameters

WSDHptr — The PV-WAVE structure definition for wvh.

Returned Values

If the PV-WAVE variable exists and is of type structure, OPI_SUCCESS will be
returned and a PV-WAVE structure definition handle will be returned in the
WSDHptr argument. OPI_FAILURE will be returned if the PV-WAVE variable

336 PV-WAVE Programmer’s Guide

handle is invalid or the variable is not of type structure. OPI_DO_NOT_PROCEED
will be returned for catastrophic failures such as PV-WAVE being unable to allo-
cate memory or any other resource.

wave_wsdh_from_name
Returns a PV-WAVE structure definition handle given the name of a PV-WAVE
structure variable.

C Usage

long wave_wsdh_from_name(struct_def_name, WSDHptr)

char *struct_def_name;

WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_WSDH_FROM_NAME(struct_def_name, l_wsdh)

CHARACTER*31 structure_def_name

INTEGER*4 l_wsdh

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WAVE_WSDH_FROM_NAME(struct_def_name, l_wsdh)

Input Parameters

struct_def_name — A string name of a PV-WAVE structure variable.

Output Parameters

WSDHptr — The PV-WAVE structure definition handle for struct_def_name.

 337

Returned value

If there is a PV-WAVE structure definition with the given name, OPI_SUCCESS
will be returned and a PV-WAVE structure definition handle will be returned in the
WSDHptr argument. Otherwise, OPI_FAILURE will be returned.
OPI_DO_NOT_PROCEED will be returned for catastrophic failures such as PV-
WAVE being unable to allocate memory or any other resource.

Discussion

Since PV-WAVE structure definitions exist independently of PV-WAVE variables,
it is not necessary to have a PV-WAVE variable handle in order to access a structure
definition.

To create a new PV-WAVE structure definition, use the wave_execute function
such as:

wave_execute(’a = {new_struct, tag1:0, … }’)

wave_free_WSDH
Frees space associated with a PV-WAVE structure definition handle when it is no
longer needed.

C Usage

void wave_free_WSDH(WSDHptr)

WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

SUBROUTINE LF_WAVE_FREE_WSDH(l_wsdh)

INTEGER*4 l_wsdh

Input Parameters

WSDHptr — A PV-WAVE structure definition handle.

338 PV-WAVE Programmer’s Guide

Discussion

This function must be called to free the space associated with the PV-WAVE struc-
ture definition handle when it is no longer needed. This does not destroy the
structure definition in PV-WAVE, it only frees the space associated with the handle.

wsdh_name
Gets the structure name.

C Usage

char *wsdh_name(wsdh)

WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_NAME(l_wsdh, string)

INTEGER*4 l_wsdh

CHARACTER*31 string

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WSDH_NAME(l_wsdh, string)

Input Parameters

wsdh — A PV-WAVE structure definition handle.

Returned Value — C

Returns the name of the structure definition associated with the PV-WAVE struc-
ture definition handle.

Returns NULL on failure, if the handle argument is not a valid PV-WAVE structure
definition handle.

 339

Returned Value — FORTRAN

Fills the string argument with the name of the structure definition associated with
the PV-WAVE structure definition handle.

The function will return –1 on failure, if the handle argument is not a valid PV-
WAVE structure definition handle.

wsdh_ntags
Gets the number of tags in a structure.

C Usage

long wsdh_ntags(wsdh)

WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_NTAGS(l_wsdh)

INTEGER*4 l_wsdh

Input Parameters

wsdh — A PV-WAVE structure definition handle.

Returned Value

Returns the number of tags in the structure definition.

Returns –1 on failure, if the handle argument is not a valid PV-WAVE structure def-
inition handle.

wsdh_tagname
Gets the name of a structure tag.

340 PV-WAVE Programmer’s Guide

C Usage

char *wsdh_tagname(wsdh, N)

WSDH wsdh;

long N;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_TAGNAME(l_wsdh, N, string)

INTEGER*4 l_wsdh

INTEGER*4 N

CHARACTER*31 string

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WSDH_TAGNAME(l_wsdh, N, string)

Input Parameters

wsdh — A PV-WAVE structure definition handle.

N — The number of the desired tag.

Returned Value — C

Returns the name of the Nth tag in the structure definition. Tag numbers start at 0.

Returns NULL on failure, if the handle argument is not a valid PV-WAVE structure
definition handle.

Returned Value - FORTRAN

Fills the string argument with the name of the Nth tag in the structure definition.
Tag numbers start at 0.

The function will return –1 on failure, if the handle argument is not a valid PV-
WAVE structure definition handle.

 341

wsdh_sizeofdata
Gets the size of data area associated with a structure.

C Usage

long wsdh_sizeofdata(wsdh)

WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_SIZEOFDATA(l_wsdh)

INTEGER*4 l_wsdh

Input Parameters

wsdh — A PV-WAVE structure definition handle.

Returned Value

Returns the size in bytes of the data area needed to store a scalar PV-WAVE vari-
able of this structure type.

Returns –1 on failure, if the handle argument is not a valid PV-WAVE structure def-
inition handle.

wsdh_offset
Gets the byte offset of the data area for a named tag in a structure.

C Usage

long wsdh_offset(wsdh, tagname)

WSDH wsdh;

char *tagname;

342 PV-WAVE Programmer’s Guide

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_OFFSET(l_wsdh, tagname)

INTEGER*4 l_wsdh

CHARACTER*31 tagname

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WSDH_OFFSET(l_wsdh, tagname)

Input Parameters

wsdh — A PV-WAVE structure definition handle.

tagname — The name of the desired tag in the structure.

Returned Value

Returns the offset in bytes of the tag’s data area.

Returns –1 on failure, if the handle argument is not a valid PV-WAVE structure def-
inition handle, or if the tag doesn’t exist in the structure.

Discussion

If the given tagname exists in the structure definition, wsdh_offset returns an
offset which can be used to find the data associated with this tagname. The unit of
offset is number of bytes. Given that (char *)P holds a pointer to the data area
of a PV-WAVE variable of this structure type, (P+offset) points to the data cor-
responding to this tagname. Note that (P+offset) must be cast to the type of
the associated tagname. The pointer to the data area of a PV-WAVE variable can be
retrieved from the wvh_dataptr function and the type of the associated tagname
can be retrieved from the wsdh_element function.

wsdh_element
Creates a PV-WAVE variable handle for a tag in a structure.

 343

C Usage

long wsdh_element(wsdh, tagname, WVHptr)

WSDH wsdh;

char *tagname;

WVH *WVHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_ELEMENT(l_wsdh, tagname, l_wvh)

INTEGER*4 l_wsdh, l_wvh

CHARACTER*31 tagname

OpenVMS FORTRAN Usage

INTEGER*4 LFD_WSDH_ELEMENT(l_wsdh, tagname, l_wvh)

Input Parameters

wsdh — A PV-WAVE structure definition handle.

tagname — The name of the desired tag in the structure.

Output Parameters

WVHptr — A PV-WAVE variable handle that describes this one element of the
structure.

Returned Status

If the function returns OPI_SUCCESS, then the WVH will be returned in the
WVHptr argument. If the function can not allocate enough memory to create the
WVH, it will return OPI_DO_NOT_PROCEED. If the function fails because it
does not find a tag whose name matches tagname, then it returns OPI_FAILURE
and WVHptr is undefined.

344 PV-WAVE Programmer’s Guide

Discussion

If tagname is a valid tag name in the structure definition referred to by wsdh, then
wsdh_element will create a PV-WAVE variable handle that describes this one
element of the structure definition. Since one element of a structure definition has
all the characteristics of a PV-WAVE variable (except it has no data area), a WVH
is a convenient way to describe it. All the WVH_* functions that return information
about a PV-WAVE variable can also be used to return information about a structure
element. wvh_dataptr will return NULL if it is passed a WVH for a structure
element since structure elements do not have data areas. Since creating a WVH
requires allocating some memory, wsdh_element may fail if the allocation
request fails.

opi_malloc, opi_free, opi_realloc, opi_calloc
Allocates memory for an OPI.

C Usage

void *opi_malloc (unsigned int len);

void opi_free (void * buff);

void *opi_realloc (void * buff, unsigned int len);

void *opi_calloc (unsigned int l1, unsigned int l2);

Input Parameters

Refer to the corresponding system functions: malloc, free, realloc, and
calloc.

Returned value

Refer to the corresponding system functions: malloc, free, realloc, and
calloc.

Discussion

On some platforms (OpenVMS VAX, Windows 95, Windows NT) dynamic mem-
ory allocation in an OPI that is built as a shared library uses a different address
space than the memory allocation in the main executable, in this case the

 345

PV-WAVE kernel. The consequence is that memory allocated from the OPI’s own
malloc may only be freed by the same OPI’s free function. The same applies
for the functions realloc and calloc.

NOTE The heap administration of the kernel is corrupted when the rule is vio-
lated; namely, by allocating memory in an OPI, passing a pointer to the kernel, and
allowing the kernel to free this memory.

The functions opi_malloc, opi_free, opi_realloc and opi_calloc
give the OPI access to the kernel’s memory allocation routines. In order to avoid
changing existing C-code, an include file is provided (opi_malloc.h). This
include file has preprocessor directives which change functions calls to malloc,
free, realloc and calloc into the corresponding OPI versions. You must ref-
erence the include file in an include directive (#include ’opi_malloc.hi’)
after all system include files but before the first memory allocation function call.

C Language Error Handling
This section describes the methods an Option uses for handling C Language error
conditions.

Whenever an Option’s C procedures or functions fail, the Option developer needs
to be able to call the PV-WAVE error handling mechanism. The variables that
would have been returned by the Option will be undefined variables when an error
occurs on the Option side.

When an OPI Call Fails

Most OPI calls return a status. It is up to the Option developer to handle the status
codes appropriately. A status can have the following values:

• OPI_SUCCESS — The call is successful.

• OPI_FAILURE — The call failed, but execution can continue.

• OPI_DO_NOT_PROCEED— Catastrophic failure has occurred. For example,
PV-WAVE is unable to allocate memory or any other PV-WAVE resource.

Recovering from Errors Inside the Option Code

OPI provides access to the standard PV-WAVE error handling functionality (see
wave_error on page 346). Currently, when an error occurs in PV-WAVE, the inter-

346 PV-WAVE Programmer’s Guide

preter recovers itself as best it can and then takes whatever action the user requested
via the ON_ERROR and ON_IOERROR commands. To remain consistent with
that model, an Option procedure or function needs to be able to tell the calling
interpreter that the option procedure or function did not complete successfully.
Then the interpreter will not continue interpreting any command that depends on
the results of the Option procedure or function.

wave_error
Reports an error condition for the Option to PV-WAVE.

C Usage

void wave_error(error_number, string, print, trace, on_ioerror)

long error_number;

char *string;

long print, trace, on_ioerror;

FORTRAN Usage

Not available.

Input Parameters

error_number — A value to use to set !Err.

string — A string to use to set !Err_String.

print — If nonzero the error message is printed.

trace — In nonzero trace information will be printed.

on_ioerror — If nonzero, the action taken after the error will be determined from
the ON_IOERROR state of the currently active PV-WAVE procedure or function.

Discussion

The wave_error function allows the Option procedure or function to tell the PV-
WAVE kernel that it should proceed as if the Option procedure or function failed.
When the Option procedure or function returns to the calling interpreter, the inter-
pretation of the current PV-WAVE command will be immediately terminated and

 347

PV-WAVE will continue based on the ON_ERROR or ON_IOERROR state of the
currently active PV-WAVE procedure or function.

NOTE The wave_error function should not be called if the system procedure
or function is exiting because an OPI_DO_NOT_PROCEED status was returned
from another OPI function. The OPI function will have already set the proper error
conditions in the PV-WAVE kernel. Unsuccessful OPI functions return to the
Option procedure or function for one reason only; to allow the Option procedure
or function to clean up malloc’d memory before returning to the PV-WAVE
kernel.

If the wave_error function is not called before an Option procedure or function
returns, the PV-WAVE kernel will proceed as if there were no errors.

When the PV-WAVE interpreter detects an error condition, it normally prints an
error message string, sets the !Err system variable to a number associated with the
error, sets the !Err_String system variable to a text string associated with the error,
prints a traceback message and then proceeds according to whether the error was
an I/O error or regular error.

The Option procedure or function can control how PV-WAVE reacts to its errors
with the arguments to the wave_error function, as follows:

• The error_number argument is the value to which !Err will be set.

• The string argument is the text string that will appear in the printed error mes-
sage and in the !Err_String system variable.

• If the print argument is FALSE, the error message will not be printed; only the
system variables will be set.

• If the trace argument is FALSE, the traceback message will not be printed.

• If the on_ioerror argument is TRUE, the action taken after the error will be
determined from the ON_IOERROR state of the currently active PV-WAVE
procedure or function. Otherwise, the action taken after the error will be deter-
mined from the ON_ERROR state of the currently active PV-WAVE procedure
or function. The PV-WAVE !Err system variable will be set to the value of
error_number and the string argument will be copied to the PV-WAVE
!Err_String system variable. The PV-WAVE kernel actually copies the string
and does not free it.

• If the trace argument is TRUE, the PV-WAVE kernel will print out the trace-
back information that commonly accompanies PV-WAVE errors.

348 PV-WAVE Programmer’s Guide

• If the print argument is TRUE, the string will also be printed to stderr just
as kernel error messages are printed.

• If print is FALSE, only the system variables will be updated. That is, no trace-
back or error message will be printed.

If your Option needs to return any other status information to the PV-WAVE user,
it should be written as a system function and return a PV-WAVE variable that con-
tains the status information unique to your function.

wave_onerror
Sets the value of PV-WAVE error action.

C Usage

void wave_onerror(action)

long action;

FORTRAN Usage

Not available.

Input Parameters

action — A value of the PV-WAVE error action:

0 Stop at the statement in the procedure that caused the error. (This is the de-
fault action.)

1 Return all the way back to the main program level.

2 Return to the caller of the program unit which established the ON_ERROR
condition.

3 Return to the program unit which established the ON_ERROR condition.

Discussion

The wave_onerror function sets the value of the action to take in the same way
PV-WAVE command ON_ERROR does.

 349

wave_is_onerror
Returns the current value of PV-WAVE error action.

C Usage

long wave_is_onerror()

FORTRAN Usage

Not available.

Discussion

Returns the value of the ON_ERROR action.

wave_onerror_continue
Sets the value of PV-WAVE error continue flag of the ON_ERROR condition.

C Usage

void wave_onerror_continue(cont)

long cont;

FORTRAN Usage

Not available.

Input Parameters

cont — A value of the PV-WAVE error continue flag of the ON_ERROR condition.

Discussion

The wave_onerror_continue sets the continue flag of the ON_ERROR con-
dition. Valid values are TRUE or FALSE.

350 PV-WAVE Programmer’s Guide

wave_is_onerror_continue
Returns the current value of PV-WAVE error continue flag of the ON_ERROR
condition.

C Usage

long wave_is_onerror_continue()

FORTRAN Usage

Not available.

Discussion

Returns the current value of the continue flag of the ON_ERROR condition. Valid
values are TRUE or FALSE.

A-1

APPENDIX

A

FORTRAN and C Format Strings
This appendix discusses format strings that you can use to transfer data to and from
PV-WAVE. Format strings specify the format in which data is transferred as well
as the data conversion required.

Some PV-WAVE functions use format strings patterned after the ones used in the
FORTRAN programming language. Other functions recognize both FORTRAN-
or C-style format strings.

The rest of this appendix discusses the format specifications used in format strings.
This appendix also discusses format reversion and the use of group repeat
specifications.

What Are Format Strings?
A format string consists of one or more format specifications that tell PV-WAVE
what types of data are being handled and how to format the data. For example, a C
format string for importing data might look like this:

%3d %f

This string contains two format specifications. The first one (%3d) transfers signed
integer data, with a maximum field width of three spaces. The second specification
(%f) transfers floating-point data, with no specified field width. This format string
might be used to read a data file containing two columns of numbers, one column
containing integers and the other floating-point numbers.

A-2 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

When to Use Format Strings
All PV-WAVE functions that transfer or format data accept FORTRAN-style for-
mat strings. However, for a group of I/O commands that start with the letters “DC”,
you have the choice of using either FORTRAN- or C-style format strings.

Use format strings to import or export data when you already know the type of data
and its format. If you do not provide a format string, PV-WAVE uses its default
rules for formatting the output. These rules are described in Free Format Output on
page 155.

TIP Another possibility, if you do not know exactly what your data looks like, use
the DC_READ_FREE function, and let PV-WAVE help you with the interpreta-
tion of the data.

What to Do if the Data is Formatted Incorrectly
If asterisks appear in place of the data, then the values were formatted incorrectly.
Possibly, the values to be transferred were larger than the format allows for, or the
data type is not compatible with the format specification. If this happens, change
the format to better accommodate the values.

NOTE The asterisks only appear if a FORTRAN format string is used. If the for-
mat was specified incorrectly using a C string, then incorrect data may be
transferred.

Example — Using C and FORTRAN Format Strings
Below is shown part of a data file; this file contains data of many different types.
For the purpose of this example, assume you are importing the data with one of
PV-WAVE’s I/O routines. To specify a fixed format for importing this file, you
have to know what kind of data it contains, and then create a format string that will
import the data properly.

You can use C format strings only if you are using one of the DC routines (either
DC_READ_FIXED or DC_WRITE_FIXED). These routines are introduced in
Functions for Simplified Data Connection on page 146. The detailed descriptions
for these routines can be found in a separate volume, the PV-WAVE Reference.

Example — Using C and FORTRAN Format Strings A-3

The first four lines of the phone data file are text — the title and column headings.
Since these lines do not contain data, you may wish to filter them out. If you are
using either DC_READ_FREE or DC_READ_FIXED, these lines can be skipped
with the Nskip keyword.

The first two columns in the file, date and time, contain integer data. Since they
appear to be fairly large integers, import them with the C conversion specification
%ld. In FORTRAN, you need to specify the width of the field as well as the type.
The FORTRAN specifier would be I6.

The next column, minutes, contains floating point numbers, which can be
imported with %f for C or F5.2 for FORTRAN.

If you have a data column that is not necessary for the analysis, such as the type
column, import it as an ordinary character with %c in C or A1 in FORTRAN. The
data must be read when using a C format because assignment suppression is not
allowed in PV-WAVE.

The ext column contains small integers, which you can import with %i (or %d)
in C or I3 in FORTRAN.

The cost column is best imported with %f in C or F5.2 in FORTRAN.

In our example, the Number Called data is not needed for the analysis. This
data can be skipped because it falls at the end of the row.

Based on this interpretation of the data, the C format string for reading this data file
looks like this:

%ld %ld %f %c %i %f

The FORTRAN format string for reading this data file looks like this:

(I6,1X,I6,2X,F5.2,4X,A1,4X,I3,2X,F5.2)

Phone Data

Date

Time

Minutes

Type

Ext

Cost

Number Called

901002 093200 21.40 1 311 5.78 2158597430

901002 093600 51.56 1 379 13.92 2149583711

901002 093700 61.39 2 435 16.58 9137485920

A-4 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

In FORTRAN, X is the specifier for blank space. It is used to account for the space
between each column of values.

Another way to skip the type column would be to enter the following FORTRAN
specification:

(I6,1X,I6,2X,F5.2,9X,I3,2X,F5.2)

This specification treats the type column as just another blank space.

NOTE Import date and time with a character format if you want to use the
STR_TO_DT conversion utility to convert date and time into “true” (Julian)
date/time data. This would change the C format to:

%s %s %f %c %i %f

and the FORTRAN format to:

(A6,1X,A6,2X,F5.2,9X,I3,2X,F5.2)

For more information on the STR_TO_DT conversion utility, refer to the descrip-
tion for STR_TO_DT in the PV-WAVE Reference, or refer to Working with Date/
Time Data in the PV-WAVE User’s Guide. The chapter that describes date and time
data also includes an example of how to handle date/time data that does not include
the delimiters that the STR_TO_DT conversion utility expects.

Using Format Reversion
If the data is all of the same type, you can abbreviate the C and FORTRAN format
strings using the technique of format reversion. Format reversion is a shorthand
way of specifying a format string.

For more information on format reversion with FORTRAN format strings, refer to
a FORTRAN 77 handbook.

Example — Using Format Reversion to Write Integer Data

This example writes data to a file using a single C format string:
var1 = INDGEN(20)

status = DC_WRITE_FIXED("simple.dat", var1, $
Format="5%i")

Using Format Reversion A-5

Similarly, the entire file can be written with other PV-WAVE statements using the
following FORTRAN format string:

OPENW, 1, "simple.dat"

var1 = INDGEN(20) +1

PRINTF, 1, var1, Format="(5(I4))"

CLOSE, 1

The abbreviated format strings repeatedly writes the integer values in var1 until
all of the data has been transferred. The result is a data file, simple.dat, that
contains 20 integer values:

1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

Example — Using Format Reversion to Read Floating-Point Data

The following data file, tesla.dat, contains only floating point numbers:

.8945 .5768 .3958 .3098 .8948 .8495
.0938 .8749 .4798 .9204 .2479 .9485

This entire file can be read using a single C format string:

status = DC_READ_FIXED(’tesla.dat’, var1, $
Format="%f")

This abbreviated format string repeatedly reads or writes floating point numbers
until all of the data are read or written.

Similarly, the entire file can be read with other PV-WAVE statements using the fol-
lowing FORTRAN format string:

OPENR, 1, "tesla.dat"

var1 = FLTARR(12)

READF, 1, var1, Format="(F5.4,2X)"

CLOSE, 1

This FORTRAN format string example assumes that there are two spaces between
each value, as represented by the 2X.

A-6 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Group Repeat Specifications
For data that is not all the same type, but follows a regularly-repeated pattern in the
file, you can use a nested format specification enclosed in parentheses as part of the
format string. This is called a group specification, and has the following form:

 [n](q1f1s1f2s2...fnqn)

A group specification consists of an optional repeat count n followed by a format
specification enclosed in parentheses. The format specification inside the parenthe-
ses is reused n times before any more of the format string is processed.

Use of group specifications allows more compact format specifications to be writ-
ten. For example, the format specification:

Format=’("Result: ", "<", I5, ">", "<", $
I5, ">")’

 can be written more concisely using a group specification:

Format=’("Result: ", 2("<", I5, ">"))’

If the repeat count is one, or is not given, the parentheses serve only to group format
codes for use in format reversion.

Example — Using Group Repeat Specifications to Read a Data File

Suppose you had a data file that contains data that needs to be read into three vari-
ables; the file is organized like the file shown below:

Bullwinkle Boris Natasha Rocky
10 11 10 11

1000.0 9000.97 1100.0 0.0 0.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0

400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25

950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0

1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following statements read the data file shown above and place the data into
three variables:

name = STRARR(4) & years = INTARR(4)

salary = FLTARR(12, 4)

; Create variables to hold the name, number of years, and monthly

FORTRAN Formats for Data Import and Export A-7

; salaries.

status = DC_READ_FIXED(’bullwinkle.wp’, $
name, years, salary, Format= "(4A16, " + $
"/, I3, 3(10X,I3), /, 48(F7.2, 3X))", $
Ignore=["$BLANK_LINES"])

; DC_READ_FIXED transfers the values in “bullwinkle.wp” to the
; variables in the variable list, working from left to right. Two slashes
; in the format string force DC_READ_FIXED to switch to a new
; record in the input file.

When reading row-oriented data with DC_READ_FIXED, each variable is “filled
up” before any data is transferred to the next variable in the variable list. The four
strings are transferred into the variable name, the four integers are transferred into
the variable years, and the 48 floating-point values are transferred into the vari-
able salary.

Because this example uses one of the “DC” functions, the data could also be read
using C format specifiers:

status = DC_READ_FIXED(’bullwinkle.wp’, $
name, years, salary, Ignore=$
["$BLANK_LINES"], Format="4%s 4%i 48%f")

NOTE The value of the Ignore keyword in the statements shown above insures
that all blank lines are skipped instead of being interpreted as zeroes.

FORTRAN Formats for Data Import and Export
You can use FORTRAN format strings with any PV-WAVE function or procedure.
FORTRAN format strings must be enclosed in parentheses, and the individual for-
mat specifiers must be separated by commas. This section discusses each of the
format specifiers that can be used to produce a FORTRAN format string.

FORTRAN Format Specifiers

The following tables show the FORTRAN format specifiers that you can use in
PV-WAVE.

The following table shows data conversion characters, which specify the type of
data that is being transferred.

A-8 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Data Transfer Format Codes

NOTE Characters in square brackets [] are optional.

FORTRAN Format Codes that Transfer Data

Conversion
Character

How the Data is Transferred

[n]A[w] Transfers character data. n is a number specifying the number of
times to repeat the conversion. If n is not specified, the conversion
is performed once. w is a number specifying the number of char-
acters to transfer. If w is not specified, all the characters are trans-
ferred.

[n]D[w.d] Transfers double-precision floating-point data. n is a number spec-
ifying the number of times to repeat the conversion. w specifies
the number of characters in the external field, and d specifies the
number of decimal positions.

[n]E[w.d] Transfers single-precision floating-point data using scientific
(exponential) notation. The options are the same as for the D con-
version character.

[n]F[w.d] Transfers single-precision floating-point data. The options are the
same as for the D conversion character.

[n]G[w.d] Uses E or F conversion, depending on the magnitude of the value
being processed. The options are the same as for the D conversion
character.

[n]I[w] or
[n]I[w.m]

Transfers integer data. n is a number specifying the number of
times to repeat the conversion. w specifies the width of the field in
characters. m specifies the minimum number of non-blank digits
required.

[n]O[w] or
[n]O[w.m]

Transfers octal data. The options are the same as for the I conver-
sion character.

[n]Z[w] or
[n]Z[w.m]

Transfers hexadecimal data. The options are the same as for the I
conversion character.

Q Obtains the number of characters in the input record to be trans-
ferred during a read operation. This conversion character is used
for input only. In an output statement, the Q format code has no
effect except that the corresponding I/O list element is skipped.

FORTRAN Format Code Descriptions A-9

Data Appearance Format Codes

The following table shows specifiers that are used only to specify the appearance
of data, such as the number of spaces between values in a file.

NOTE For more information about the format codes shown in the previous two
tables, refer to the detailed descriptions in the next section.

FORTRAN Format Code Descriptions

A Format Code

The A format code transfers character data.

FORTRAN Format Codes that Do Not Transfer Data

Specifier Appearance of Transferred Data

: The colon format code in a format string terminates format pro-
cessing if no more items remain in the argument list. It has no
effect if variables still remain on the list.

$ During input, the $ format code is ignored. During output, if a $
format code is placed anywhere in the format string, the newline
implied by the closing parenthesis of the format string is sup-
pressed.

quoted
string

During input, quoted strings are ignored. During output, the con-
tents of the string are written out.

nH FORTRAN-style Hollerith string, where n is the number of char-
acters. Hollerith strings are treated exactly like quoted strings.

nX Skips n character positions.

Tn Tab. Sets the absolute character position n in the current record.

TLn Tab Left. Specifies that the next character to be transferred to or
from the current record is the nth character to the left of the cur-
rent position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the nth character to the right of the cur-
rent position.

A-10 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Format

[n]A[w]

where:

• n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times
the format code should be processed. If n is not specified, a repeat count of 1
is used.

• w — is an optional width (1 ≤ w ≤ 256), specifying the number of characters to
be transferred. If w is not specified, the entire string is transferred. If w is
greater than the length of the string, only the number of characters in the string
is transferred. Since PV-WAVE strings have dynamic length, w specifies the
resulting length of input string variables.

NOTE During input, if the Q FORTRAN format specifier is used, the number of
characters in the input record can be queried and used as a “parameter” in a subse-
quent A FORTRAN format specifier.

Example

For example, the statement:

PRINT, Format=’(A6)’, ’123456789’

generates the output:

123456

: Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list.

Example

For example, the following statement:

PRINT, Format=’(6(I1, :, ", "))’, INDGEN(6)

outputs a comma separated list of integer values:

0, 1, 2, 3, 4, 5

The use of the colon format code prevents a comma from being output following
the final item in the argument list.

FORTRAN Format Code Descriptions A-11

$ Format Code

When PV-WAVE completes output format processing, it normally issues a newline
to terminate the output operation. However, if a $ format code is found in the for-
mat specification, this default newline is not output.

NOTE The $ format code is only used during output; it is ignored during input
formatting.

Example

The most common use for the $ format code is in prompting for user input. For
example, the following statements:

PRINT, Format=’($, "Enter Value: ")’

; Prompt for input, suppressing any <Return>.

READ, value

; Read the response.

prompts for input without forcing the user’s response to appear on a separate line
from the prompt.

F, D, E, and G Format Codes

The F, D, E, and G, format codes are used to transfer floating-point values between
memory and the specified file.

Format

[n]F[w.d]

[n]D[w.d]

[n]E[w.d] or [n]E[w.dEe]

[n]G[w.d] or [n]G[w.dEe]

where:

• n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times
the format code should be processed. If n is not specified, a repeat count of 1
is used.

A-12 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

• w.d — is an optional width specification (0 ≤ w ≤ 256, 1 ≤ d < w). w specifies
the number of characters in the external field, and d specifies the number of
decimal positions.

• e — is an optional width (1 ≤ e ≤ 256) specifying the width of exponent part of
the field. PV-WAVE ignores this value, but it is allowed to maintain compati-
bility with FORTRAN.

During input, the F, D, E, and G format codes all transfer w characters from the
external field and assign them as a real value to the corresponding entry in the I/O
argument list.

The F and D format codes are used to output values using fixed-point notation. The
value is rounded to d decimal positions and right-justified into an external field that
is w characters wide. The value of w must be large enough to include a minus sign
when necessary, at least one digit to the left of the decimal point, the decimal point,
and d digits to the right of the decimal point. The code D is identical to F (except
for its default values for w and d) and exists in PV-WAVE primarily to maintain
compatibility with FORTRAN. The defaults for w, d, and e are shown in the fol-
lowing table:

The E format code is used for scientific (exponential) notation. The value is
rounded to d decimal positions and right justified into an external field that is w
characters wide. The value of w must be large enough to include a minus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, d dig-
its to the right of the decimal point, a plus or minus sign for the exponent, the
character “e” or “E”, and at least two characters for the exponent.

The G format code is a compromise between these choices — it uses the F output
style when reasonable and E for other values.

NOTE During output, if the field provided is not wide enough, it is filled with
asterisks (*) to indicate the overflow condition. If w is zero, the “natural” width for
the value is used — the value is output using a default format without any leading

Floating-point Format Defaults

Data Type w d e

Float, Complex 15 7 2

Double 25 16 2

All Other Types 25 16 2

FORTRAN Format Code Descriptions A-13

or trailing white space, in the style of the C standard I/O library printf(3S)
function.

If w, d, or e are omitted, the values listed in the previous table are used.

The case of the format code is ignored by PV-WAVE except during output. For out-
put, the case of the E and G format codes determines the case used to output the
exponent in scientific notation. The following table gives examples of several float-
ing-point formats and the resulting output.

I, O, And Z Format Codes

The I, O, and Z, format codes are used to transfer integer values between memory
and the specified file. The I format code is used for decimal values, O is used for
octal values, and Z is used for hexadecimal values.

Format

[n]I[w] or [n]I[w.m]

[n]O[w] or [n]O[w.m]

[n]Z[w] or [n]Z[w.m]

where:

Examples of Floating Point Output

Format Internal Value Formatted Output

F 100.0 ___100.0000000

F 100.0D ____100.0000000000000000

F10.0 100.0 ____100.

F10.1 100.0 ____100.0

F10.4 100.0 __100.0000

F2.1 100.0 **

e10.4 100.0 1.0000e+02

E10.4 100.0 1.0000E+02

g10.4 100.0 ____100.0

g10.4 10000000.0 _1.000e+07

A-14 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

• n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times
the format code should be processed. If n is not specified, a repeat count of 1
is used.

• w — is an optional integer value (0 ≤ w ≤ 256) specifying the width of the field
in characters. The default values used if w is omitted are listed in the following
table. If the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition.

NOTE If w is zero, the “natural” width for the value is used — the value is output
using a default format without any leading or trailing white space, in the style of
the C standard I/O library printf(3S) function.

• m — is the minimum number of non-blank digits required (1 ≤ m ≤ 256); this
occurs only during output. The field is zero-filled on the left if necessary. If m
is omitted or zero, the external field is blank filled.

The case of the format code is ignored by PV-WAVE, except during output. For
output, the case of the Z format codes determines the case used to output the hexa-
decimal digits A-F. The following table gives examples of several integer formats
and the resulting output.

Integer Format Defaults

Data Type w

Byte, Integer 7

Long, Float 12

Double 23

All Other Types 12

Examples of Integer Output

Format Internal Value Formatted Output

I 3000 __3000

I6.5 3000 _03000

I5.6 3000 *****

I2 3000 **

O 3000 __5670

FORTRAN Format Code Descriptions A-15

Q Format Code

The Q format code returns the number of characters in the input record remaining
to be transferred during the current read operation. It is ignored during output
formatting.

Format

Q

Q is useful for determining how many characters have been read on a line. It can
also be used to query the number of characters in the input record for later use as a
“parameter” in the following A FORTRAN format specifier.

Example

The following statements count the number of characters in a file demo.dat:

OPENR, 1, "demo.dat"

; Open the file for reading.

n = 0L

; Create a longword integer to keep the count.

WHILE(not EOF(1)) DO BEGIN READF, 1, $
cur, Format=’(Q)’ & n = n + cur &

; Count the characters.

END

PRINT, n, $
Format=’("Counted", I, "characters.")’

I6.5 3000 _05670

O5.6 3000 *****

O2 3000 **

z 3000 ____bb8

Z 3000 ____BB8

Z6.5 3000 _00bb8

Z5.6 3000 *****

Z2 3000 **

Examples of Integer Output (Continued)

Format Internal Value Formatted Output

A-16 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

; Report the result.

CLOSE, 1

; Done with the file.

H Format Codes and Quoted Strings

Format

The format for a Hollerith constant is:

nHc1c2c3...cn

where:

n — is the number of characters in the constant (1 ≤ n ≤ 255).

ci — represents the characters that make up the constant. The number of characters
must agree with the value provided for n.

During output, any quoted strings or Hollerith constants are sent directly to the out-
put. During input, they are ignored.

Example

For example, the statement

PRINT, Format=’("Value: ", I0)’, 23

results in

Value: 23

being output. Notice the use of single quotes around the entire format string and
double quotes around the quoted string inside the format. This is necessary because
we are including quotes inside a quoted string. It would have been equally correct
to use double quotes around the entire format string and single quotes internally.
Another way to specify the string is with a Hollerith constant:

PRINT, Format=’(7HVa1ue: , I0)’, 23

NOTE The zero width of the integer format string (I) results in the “natural” width
being used to output the value ‘23’.

T Format Code

The T format code specifies the absolute position in the current external record.

FORTRAN Format Code Descriptions A-17

Format

Tn

where:

n — is the absolute character position within the external record to which the cur-
rent position should be set (1 ≤ n ≤ 255).

NOTE T differs from the TL, TR, and X format codes primarily in that it requires
an absolute position rather than an offset from the current position.

Example

For example:

PRINT, Format=$
’("First", 20X, "Last", T10, "Middle")’

produces the following output:
First Middle Last

TL Format Code

The TL format code moves the current position in the external record to the left.

Format

TLn

where:

n — is the number of characters to move left from the current position (1 ≤ n ≤ 255).
If the value of n is greater than the current position, the current position is moved
to Column 1.

NOTE TL is used to move backwards in the current record. It can be used during
input to read the same data twice, or during output to position the output
nonsequentially.

Example

For example:

PRINT, Format=’("First", 20X, "Last", TL15,$
"Middle")’

A-18 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

produces the following output:
First Middle Last

TR and X Format Codes

The TR and X format codes move the current position in the external record to the
right.

Format

TRn

nX

where:

n — is the number of characters to skip (1 ≤ n ≤ 255). During input, n characters in
the current input record will be skipped. During output, the current output position
is moved n characters to the right.

The TR or X format code can be used to leave blanks in the output record, or to
skip over unwanted values while reading data.

Example

For example:

PRINT, Format=’("First", 15X, "Last")’

or

PRINT, Format=’("First", TR15, "Last")’

results in the output:

First Last

These two format codes only differ in one way: using the X format code at the end
of an output record will not cause any characters to be written unless it is followed
by another format code that causes characters to be output. The TR format code
always writes characters in this situation. Thus:

PRINT, Format=’("First", 15X)’

does not leave 15 blanks at the end of the line, but the following statement does:

PRINT, Format=’("First", 15TR)’

C Format Strings for Data Import and Export A-19

C Format Strings for Data Import and Export
You can use C format strings in PV-WAVE with any of the functions that begin
with the two letters “DC”; this group of functions has been provided to simplify the
process of getting your data in and out of PV-WAVE. This new group of I/O func-
tions does not replace the READ, WRITE, and PRINT commands, but does
provide an alternative for most I/O situations.

The FORTRAN strings, discussed in an earlier section of this appendix, are the
same for either importing or exporting data. The C format strings, however, differ
significantly for importing and exporting data. Thus, the following sections discuss
C format strings for importing data, and then those for exporting data.

Using C Format Strings for Importing Data

The C format strings for importing data can be different than those for exporting
data. The format strings for importing data are made up of conversion specifiers
and literal characters (used for pattern matching), separated by a blank space. Each
conversion specifier consists of a % followed by a conversion character. Between
the % and the conversion character, you can place one of the following:

• An optional number specifying a maximum field width.

• An h if the imported integer is expected to be a short (16 bit) integer, or an l if
the imported integer is expected to be a long (32 bit) integer.

NOTE Unlike the C programming language, PV-WAVE does not allow the use of
an assignment suppression character, which is used to skip over an unwanted input
field.

The following table shows the C conversion characters that can be used for import-
ing data in PV-WAVE:

C-style Conversion Characters for Importing Data

Conversion
Character

How the Data is Imported

c Transfers character data, one character at a time.

e, f, g Transfers double-precision floating-point data with
optional sign, decimal point, and exponent. Precede
with l for double-precision.

A-20 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Using C Format Strings for Exporting Data

The C format strings for exporting data can be different than those for importing
data. The format string for exporting data is made up of ordinary characters and
conversion specifications, which cause conversion and printing of the next value in
the file. Each conversion specification consists of a % followed by a conversion
character. Between the % and the conversion character, you may place, in order:

• A minus sign (–) to left justify the exported values.

• A number to specify the minimum field width.

• A period separating the field width number from the precision number.

• A number to specify the precision, or the maximum number of characters to be
printed from a string, or the number of digits after the decimal point of a float-
ing point value, or the minimum number of digits for an integer.

• An h if the exported integer is a short, or an l if the exported integer is a long.

The following table shows the C conversion characters that can be used for export-
ing data in PV-WAVE:

d or i Transfers a signed integer. Precede with l for long
integer.

o Transfers octal data.

x Transfers hexadecimal data.

u Transfers unsigned integer data.

s Transfers character strings.

% Used in pattern matching to produce a literal % sym-
bol. No conversion occurs.

C-style Conversion Characters for Exporting Data

Conversion
Character

How the Data is Exported

c Transfers character data, one character at a time.

C-style Conversion Characters for Importing Data (Continued)

Conversion
Character

How the Data is Imported

C Format Strings for Data Import and Export A-21

e or E Transfers double-precision floating-point data using
scientific (exponential) notation. Use the form
[–]m.dddddd e ± xx or [–]m.dddddd ± Exx, where
the number of d’s is given by the precision.

f Transfers double-precision floating point data in the
form
[–]m.dddddd, where the number of d’s is given by the
precision. Precede with l for double-precision.

g or G Uses %e or %f format, depending on the magnitude
of the value being processed.

d or i Transfer signed integer data.

o Transfers octal data.

x or X Transfers hexadecimal data.

u Transfers unsigned integer data.

s Transfers character strings.

% Transfers a literal % symbol. No conversion occurs.

C-style Conversion Characters for Exporting Data

Conversion
Character

How the Data is Exported

A-22 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

B-1

APPENDIX

B

Modifying Your Environment
This Appendix discusses methods for modifying your PV-WAVE environment for
UNIX, OpenVMS, and Windows.

Modifying Your PV-WAVE Environment
(UNIX/OpenVMS Only)

Under UNIX, PV-WAVE uses environment variables to determine its initial state.
Under OpenVMS, logical names are used for the same purpose. In either case the
names and functions are the same. This section explains how to modify or custom-
ize environment variables and logicals.

NOTE Normally, you do not need to alter your environment. If PV-WAVE is
installed properly, your environment will be already set up. The information in this
section applies only if you wish to modify or customize your environment.

WAVE_DEVICE: Defining Your Terminal or Window System

In order to function properly, PV-WAVE must know the type of terminal or win-
dow system you wish to use. By default, it assumes X, the X Window System. If
you wish, this default can be changed, as described below.

B-2 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

Changing the Default Device on a UNIX System

PV-WAVE reads the value of the environment variable WAVE_DEVICE when it
starts. If WAVE_DEVICE is defined, PV-WAVE calls the procedure SET_PLOT
with this string. For example, to use PV-WAVE with Tektronix terminals, include
the following command in your .login (or .profile) file:

setenv WAVE_DEVICE tek

The device name can be entered in either upper or lower case. If WAVE_DEVICE
is defined, it must contain the name of a valid PV-WAVE graphics device.

UNIX and OpenVMS USERS See the description of SET_PLOT in the
PV-WAVE Reference for a complete list of device names.

Changing the Default Device on an OpenVMS System

PV-WAVE reads the value of the logical name WAVE_DEVICE when it starts. If
WAVE_DEVICE is present, PV-WAVE calls the procedure SET_PLOT with this
string. For example, to use PV-WAVE with Tektronix terminals, include the fol-
lowing command in your LOGIN.COM file:

$ DEFINE WAVE_DEVICE tek

WAVE_DIR: Ensuring Access to Required Files

WAVE_DIR is the root of the PV-WAVE directory structure. This environment
variable is defined in wvsetup. All PV-WAVE files are located in subdirectories
of WAVE_DIR.

Setting WAVE_DIR on a UNIX System

The WAVE_DIR environment variable must be correctly defined in order for
PV-WAVE to run properly. If WAVE_DIR is not defined, PV-WAVE assumes a
default of /usr/local/lib/wave.

WAVE_DIR is defined in the wvsetup file. To make sure that you have
WAVE_DIR properly defined, enter the following command at the UNIX prompt:

source <maindir>/wave/bin/wvsetup

Setting WAVE_DIR on an OpenVMS System

The WAVE_DIR logical must be correctly defined in order for PV-WAVE to run
properly. For example, if the PV-WAVE distribution is located in DUA1:[WAVE]
on your system, enter the following DCL command:

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-3

$ DEFINE WAVE_DIR DUA1:[WAVE.]/trans= (conceal, term)

WAVE_DIRmust be defined using the physical device name of the disk. Most sites
use logical names to refer to disks. If you wish to define WAVE_DIR in terms of
the disk’s logical name, use the DCL F$TRNLNM lexical function to translate the
name.

For example, if the main PV-WAVE directory is DISKA:[WAVE]:

$ DEFINE WAVE_DIR 'F$TRNLNM(""DISKA"")' $
[WAVE.]/trans=(conceal, term)

WAVE_PATH: Setting Up a Search Path (UNIX, OpenVMS)

WAVE_PATH sets the function and procedure library directory search path. This
environment variable is also defined in wvsetup. The search path is a list of loca-
tions to search if the procedure or function is not found in the current directory. The
current directory is always searched first. PV-WAVE then looks for the function or
procedure in the locations specified by the system variable !Path. The details of
how !Path is initialized differ between UNIX and OpenVMS, although the overall
concept is similar. For more information on system variables, see System Variables
on page 28.

Setting Up WAVE_PATH on a UNIX System

The environment variable WAVE_PATH is a colon-separated list of directories. If
you do not explicitly define WAVE_PATH, and you use PV-WAVE’s default startup
command file, PV-WAVE starts its search in the current working directory,
searches next in $VNI_DIR/wave/lib, and then searches numerous
subdirectories of $VNI_DIR/wave/demo.

Each user may add directories to WAVE_PATH that contain PV-WAVE programs,
procedures, functions, and “include” files. You may find it convenient to add to the
value that is already defined in your wvsetup file. For example:

setenv WAVE_PATH $WAVE_PATH":"/user/mylib

This command adds the directory /user/mylib to the existing variable
WAVE_PATH.

!Path is a colon-separated list of directories, similar to the PATH environment vari-
able that UNIX uses to locate commands. When PV-WAVE starts, !Path is
initialized from the environment variable WAVE_PATH. The value of !Path may be
changed once you are running PV-WAVE. For example, the following command
adds the directory /usr2/home/wave_files to the beginning of the search
path:

B-4 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

WAVE> !Path = '/usr2/home/wave_files:' + !Path

Setting Up WAVE_PATH on an OpenVMS System

WAVE_PATH is comma-separated list of directories and library text files. Text
libraries are distinguished by prepending an “@” character to their name. If you do
not explicitly define WAVE_PATH, and you use PV-WAVE’s default startup
command file, PV-WAVE starts its search in the current working directory,
searches next in @WAVE_DIR:[LIB]USERLIB, and then searches numerous
subdirectories of @WAVE_DIR:[DEMO].

Each user may assign WAVE_PATH to a unique combination of directories and text
libraries that contain PV-WAVE programs, procedures, functions, and “include”
files. You may find it convenient to set up this variable in your LOGIN.COM file.
For example:

$ DEFINE WAVE_PATH $
"DISKA:[USER.WAVELIB], $
@WAVE_DIR:[LIB]USERLIB.TLB"

causes PV-WAVE to search for programs first in the current directory, then in the
directory DISKA:[USER.WAVELIB], and finally in the Standard library, which
is supplied by Visual Numerics, Inc., as an OpenVMS text library. For more infor-
mation on OpenVMS text libraries, see OpenVMS Procedure Libraries on page
233.

WAVE_PATH can also be defined as a multi-valued logical name (for example a
search list logical). Therefore, the above example can also be written as:

$ DEFINE WAVE_PATH DISKA:[USER.WAVELIB], $
"@WAVE_DIR:[LIB]USERLIB.TLB"

PV-WAVE simply takes the various translations and concatenates them together
into a comma separated list. Note that the quotes around the second translation in
this example are necessary to keep DCL from seeing the “@” character as an invi-
tation to execute a command file.

Under OpenVMS, !Path is a comma-separated list of directories and text libraries.
Text libraries are distinguished by prepending an “@” character to their name.
When PV-WAVE starts, !Path is initialized from the logical name WAVE_PATH.
The value may be changed once you are running PV-WAVE. For example, the fol-
lowing command adds theDISKA:[PROJECTLIB] directory to the beginning of
the search path:

WAVE> !Path = 'DISKA:[PROJECTLIB],' + !Path

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-5

WAVE_STARTUP: Using a Startup Command File

WAVE_STARTUP points to the name of a command file that is executed when
PV-WAVE starts. Common uses are to compile frequently-used procedures or
functions, to load data, and to perform other useful operations. It contains state-
ments which are individually compiled and executed, in the same manner as
command file execution. For more information on command files, see Creating and
Running a Command (Batch) File on page 7.

The default startup file for UNIX is called wavestartup and is located in
<path>/wave/bin. For OpenVMS the default file is wavestartup.dat and
is located in:

WAVE_DIR:[000000.BIN]

The wavestartup file turns off the compiler messages, sets up the WAVE>
prompt, and then calls the Standard library routine setdemo.pro. This routine
sets up the default key bindings for the function keys and displays their definitions
upon entering PV-WAVE. For more information about the SETDEMO command,
see the PV-WAVE Reference.

Using a Startup File Under UNIX

To use a startup file under UNIX, set the environment variable WAVE_STARTUP
to the name of the file to be executed. For example, assume the startup file named
startfile contains the following statements:

.RUN add.pro

.RUN square.pro

INFO

Set the environment variable with the setenv command:

setenv WAVE_STARTUP startfile

When you start PV-WAVE by entering wave at the UNIX prompt, you get the fol-
lowing display:

PV-WAVE. Version ...

.

.

% Compiled module: ADD.

% Compiled module: SQUARE.

% At $MAIN$.

Code area used: 0.00% (0/16384), Data area used: 0.05% (2/4096)

local variables: 0, # parameters: 0

Saved Procedures:

B-6 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

 ADD

Saved Functions:

 SQUARE

WAVE>

The startup file compiles the ADD procedure and the SQUARE function, and dis-
plays general information about the current status of PV-WAVE before displaying
the WAVE> prompt.

Using a Startup File Under OpenVMS

To use a startup file under OpenVMS, assign the OpenVMS logical name
WAVE_STARTUP to the name of the file to be executed.

The procedure search path, !Path, is used to search for the file if it is not in the cur-
rent directory.

To define a startup file named startfile, enter:

DEFINE WAVE_STARTUP startfile

When you enter wave at the operating system prompt, the file is executed.

WAVE_FEATURE_TYPE: Setting the Default Operating
Mode

The environment variable WAVE_FEATURE_TYPE lets you set the default operat-
ing mode to “runtime”. When this environment variable is set to RT, compiled
PV-WAVE applications can be executed directly from the operating system prompt
without using the -r option. For example:

% setenv WAVE_FEATURE_TYPE RT
Set the environment variable.

% wave somerset

Run a compiled, saved PV-WAVE application called somerset.

WAVE_RT_STARTUP: Using a Startup Procedure in Runt-
ime Mode

WAVE_RT_STARTUP points to the name of a compiled procedure file that is exe-
cuted when PV-WAVE initializes in runtime mode. The startup file may contain
PV-WAVE routines that are executed each time PV-WAVE is started in runtime
mode.

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-7

UNIX and OpenVMS USERS For more information on saving and using com-
piled routines, see Runtime Mode for UNIX and OpenVMS on page 12.

On a UNIX system, the default startup file for runtime mode is:

$WAVE_DIR/lib/std/rtwavestartup.cpr

On an OpenVMS system, the default startup file for runtime mode is:

WAVE_DIR:[000000.LIB.STD]RTWAVESTARTUP.CPR

WAVE_INIT_CODESIZE: Setting Initial Size of the Code
Area

The environment variable WAVE_INIT_CODESIZE lets you set the initial size of
the code area for PV-WAVE. For example:

% setenv WAVE_INIT_CODESIZE 2000000
Set the initial size of the code area to 2 MB.

WAVE_INIT_LVARS: Setting Initial Value for Number of
Local Variables

The environment variable WAVE_INIT_LVARS lets you set the initial number of
local variables for PV-WAVE. For example:

% setenv WAVE_INIT_LVARS 400
Set the initial number of local variables to 400.

Changing the PV-WAVE Prompt

The text string PV-WAVE uses to prompt you for input is specified by the system
variable !Prompt. You can change the prompt by setting this system variable to the
new prompt string. The prompt is currently defined in the file wavestartup for
UNIX and WAVESTARTUP.DAT for OpenVMS.

Here’s an example showing how to tailor your prompt to display text:

!Prompt = 'Hello World!> '

Here’s another example that causes PV-WAVE to ring the bell on the terminal
without echoing visible text when prompting:

!Prompt = '\007'

The ASCII code for the bell is 7. It does not have a printable representation, so it
is specified using the octal escape sequence \007.

B-8 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

UNIX and OpenVMS USERS See Representing Nonprintable Characters with
UNIX/OpenVMS on page 24.

TIP You can also place a prompt definition in your WAVE_STARTUP file, as
described on WAVE_STARTUP: Using a Startup Command File on page B-5.

For an alternate way to modify the prompt, see the description of the PROMPT pro-
cedure in the PV-WAVE Reference.

Defining Keyboard Shortcuts

Function keys may be equated to a character string using the DEFINE_KEY pro-
cedure. For example, the <R4> key on a Sun-style keyboard or the <PF4> key on
a Digital keyboard, can be equated to the string PLOT, as shown in the example
below. This allows frequently used strings and commands to be entered with a sin-
gle key stroke.

SETUP_KEYS

; Load predefined function key definitions.

DEFINE_KEY, ’F11’, ’PLOT’

; Enter the text “PLOT” when the F11 function key is pressed.

For detailed information on DEFINE_KEY, see its description in the PV-WAVE
Reference.

The command INFO, /Keys displays the current definition of all function keys.

TIP A natural place to put your key definitions is in the startup file so that the func-
tion keys are defined when PV-WAVE is initialized. The defaults for the key
definitions are set up with the setdemo.pro procedure in the wavestartup
file. See WAVE_STARTUP: Using a Startup Command File on page B-5.

Using PV-WAVE with X Windows

A brief explanation of how to set up the X Windows system to work with
PV-WAVE is provided in this section.

TIP The interface to the X Windows system is described in detail in the PV-WAVE
Reference.

Modifying Your PV-WAVE Environment (Windows) B-9

If You Are Running Under X Windows

Little or no customizing is required to use PV-WAVE with the X Windows system.
You can control the number of colors used by PV-WAVE, if and how windows are
repainted, and the type of color system (visual class).

Be sure that your system is properly set up to display X graphics. For UNIX sys-
tems under the C shell, you may need to enter:

% setenv DISPLAY hostname:0.0
% xhost hostname

For OpenVMS systems, you may need to enter:

$ SET DISPLAY /CREATE /NODE=nodename -
/SCREEN=0.0 /TRANSPORT=transport_type

where hostname or nodename is the name of the system on which you want graph-
ics to be displayed.

Modifying Your PV-WAVE Environment (Windows)
Under Windows, PV-WAVE obtains the information it needs to determine its ini-
tial state from environment variables. Windows NT and Windows 95 allow
environment variables to be specified in two ways:

• The Registry (Windows NT and Windows 95)

• The System window (launched from the Windows Control Panel — Windows
NT only)

• The AUTOEXEC.BAT file (in Windows 95 only)

This section discusses ways to customize PV-WAVE using system variables and
environment variables. In addition, several important environment variables are
discussed in detail.

NOTE As long as PV-WAVE is installed properly, your environment will be
already set up. Much of the information in this section applies only if you wish to
modify or customize your environment.

Adding a Procedure Library to the Search Path

This section explains how to add your own procedure library to the default
PV-WAVE path. This default path is used by PV-WAVE to locate procedure librar-

B-10 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

ies (directories containing .pro and .cpr files), such as the Standard Library and
the Users’ Library.

The best way to add a procedure library to the default path is to use the !Path system
variable.

The system variable !Path stores a list of directories, similar to the PATH environ-
ment variable that Windows uses to locate commands. When PV-WAVE starts,
!Path is initialized with all of the directory paths necessary to run PV-WAVE and
any PV-WAVE Companion Technologies or options that have been installed.

You can modify !Path while PV-WAVE is running, or you can modify it in your
PV-WAVE startup file. If you modify !Path during a PV-WAVE session, the
change only takes effect for that session. If you modify the startup file, the change
takes effect every time you start PV-WAVE. (For information on the startup file,
see WAVE_STARTUP: Using a Startup Command File on page B-5.)

For example, the following command adds the directory
D:\myra\results\wave to the beginning of the search path:

!Path = ’D:\myra\results\wave;’+!Path

Again, if this line is typed at the WAVE> prompt, the change takes effect only for
the current session. If you add this line to a PV-WAVE startup file, the change takes
effect every time you start PV-WAVE.

TIP When looking for a function or procedure file, PV-WAVE searches current
working directory first. PV-WAVE then looks for the function or procedure in the
locations specified by !Path.

For more information on system variables, see System Variables on page 28.

Environment Variables

PV-WAVE relies on the user’s environment for configuration and customization
information. The following environment variables tell PV-WAVE where it is
installed, where to find important files, and how it is to behave when started.

PV-WAVE Environment Variables

IMSLERRPATH WAVE_DEMO WAVE_HELPDIR

IMSLSERRPATH WAVE_GALL WAVE_HELP_PATH

VNI_DIR WAVE_GALL2 WAVE_USER

Modifying Your PV-WAVE Environment (Windows) B-11

Support for Environment Variables in Windows

Environment Variable Support in Windows NT

Windows NT was designed to support applications ported from UNIX and has
strong support for environment variables. You can set environment variables for an
individual user and for a particular computer by using the System icon in the Win-
dows Control Panel. This environment is picked up by GUI applications launched
from the Program Manager as well as Console applications. Environment variables
can take up as much space as needed and can be easily changed on a system-wide
basis without restarting Windows.

Environment Variable Support in Windows 95

Windows 95 does not offer the same strong degree of support for environment vari-
ables as does Windows NT. Windows 95 Consoles are designed to support MS-
DOS applications and offer only a limited amount of space for environment vari-
ables; the amount of space is configurable, but this is difficult to do for a particular
Console without requiring the user to manually change the settings.

Under Windows 95, the system environment as seen by new Console windows and
by applications launched from shortcuts and the Start menu, must be set in the
AUTOEXEC.BAT file at the time the system is started. If you want to change these
environment settings you must modify AUTOEXEC.BAT and reboot the system.

In general, it is impractical to store all of the environment variable information
needed by your system’s applications in the AUTOEXEC.BAT file.

For this reason, PV-WAVE makes use of a new Windows feature, the Registry, to
extend the way in which environment variables are obtained.

What is the Registry?

The Registry is a repository provided by Windows NT and Windows 95 to allow
applications and the operating system to store and manipulate configuration and

WAVE_DIR WAVE_GALL3 WAVE_PATH

WAVE_STARTUP WAVE_ARL WAVE_VERSION

WAVE_APPL WAVE_RAY WAVE_BIN

WAVE_CODEBOOK WAVE_LANG LM_LICENSE_FILE

WAVE_DATA WAVE_LIB

B-12 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

status information; the Registry is designed to replace the use of environment vari-
ables and system configuration (.INI) files. The Registry is essentially a
hierarchical database. See The Windows Interface Guidelines for Software Design
for more information.

WIN32 applications are expected to store their configuration information at a par-
ticular location in the Registry. PV-WAVE follows this convention and stores the
information previously contained in environment variables at the following keys.

This first key is the location where PV-WAVE environment variables are defined
upon product installation:

HKEY_LOCAL_MACHINE\Software\Visual Numerics\PV-WAVE\
6.0\Environment

The environment variables defined in this location are:

• VNI_DIR

• WAVE_DIR

• LM_LICENSE_FILE

You can define your own environment variables in the following Registry location.
Any variables defined in this user area take precedance over variables defined in
the PV-WAVE Registry location.

HKEY_CURRENT_USER\Software\Visual Numerics\PV-WAVE\ 6.0\Environment

For information on how to modify the Registry, see Modifying the Registry on page
13.

The information at the keys is stored in name-value pairs, where the name is the
name of the environment variable and the value is the variable’s value.

How the PV-WAVE Environment is Set

At initialization, PV-WAVE looks for each of the environment variables listed in
the Table on page B-10 in the current environment. If the variable is found,
PV-WAVE uses its value and does no further processing for that variable.

If the variable is not found, PV-WAVE looks for an entry in the
HKEY_CURRENT_USER key in the Registry, and finally looks in the
HKEY_LOCAL_MACHINE Registry key. This means that you can override the
Registry entries in a local shell and that any batch or startup files that you are cur-
rently using will continue to work — PV-WAVE only uses the Registry if it cannot
find the information it needs in the local environment.

Modifying Your PV-WAVE Environment (Windows) B-13

TIP The environment variables are processed in the order listed in listed in the
Table on page B-10. This means that you can use the values of earlier environment
variables when setting later ones: since VNI_DIR is listed before WAVE_DIR, you
can define WAVE_DIR as %VNI_DIR%/wave.

Modifying the Registry

Normally, the PV-WAVE Registry entries are only modified by the setup program
when PV-WAVE is installed and it should not be necessary to change the entries
there by hand. But, if this does become necessary, you can use the Windows Reg-
istry Editor utility to modify PV-WAVE registry entries.

On Windows NT this program is regedt32.exe, and on Windows 95 it is
regedit.exe. You must have Administrator privileges to modify entries under
the HKEY_LOCAL_MACHINE key on Windows NT.

CAUTION Be extremely careful when modifying the Registry. In general, chang-
ing entries under the PV-WAVE keys described above is safe but changing values
in other parts of the Registry can cause serious system problems. If you are unsure
about whether you are changing the proper value, consult with your System
Administrator.

Backing Up the Registry

On Windows 95, it is a good idea to make a backup copy of the Registry before
modifying Registry values. The Registry is stored in the file SYSTEM.DAT in the
%windir% folder and you can make a backup by copying this file to another
folder with the Explorer or via the xcopy command from a Console.

See the article Backing Up the Registry or Other Critical Files, Id: Q132332, in the
Microsoft Knowledge Base for more information.

WAVE_PATH: Setting Up a Search Path (Windows)

WAVE_PATH sets the function and procedure library directory search path. This
environment variable is also defined in wvsetup. The search path is a list of loca-
tions to search if the procedure or function is not found in the current directory. The
current directory is always searched first. PV-WAVE then looks for the function or
procedure in the locations specified by the system variable !Path. The details of
how !Path is initialized differ between UNIX and OpenVMS, although the overall

B-14 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

concept is similar. For more information on system variables, see System Variables
on page 28.

Setting Up WAVE_PATH on a UNIX System

The environment variable WAVE_PATH is a colon-separated list of directories. If
you do not explicitly define WAVE_PATH, and you use PV-WAVE’s default startup
command file, PV-WAVE starts its search in the current working directory,
searches next in VNI_DIR\wave\lib, and then searches numerous
subdirectories of VNI_DIR\wave\demo.

Each user may add directories to WAVE_PATH that contain PV-WAVE programs,
procedures, functions, and “include” files. To add the WAVE_PATH environment
variable:

Step 1 In the Control Panel, double-click the System icon.

Step 2 In the System Properties dialog box, click the Advanced tab, then the
Environment Variable button (or click the Environment tab).

Step 3 Create the new system variable WAVE_PATH and add the paths to the
directories you want included in PV-WAVE’s path at startup.

VNI_DIR and WAVE_DIR: Ensuring Access to Required
Files

The VNI_DIR environment variable must be correctly defined in order for
PV-WAVE to run properly; VNI_DIR is defined during the installation process.

All PV-WAVE files are placed in a subdirectory of VNI_DIR that becomes the
top-level directory for PV-WAVE; the path to this directory is stored in the envi-
ronment variable WAVE_DIR. Look in the file system where you have installed
Visual Numerics software and you will see a subdirectory named wave. This is
where PV-WAVE has been installed, the directory to which the environment vari-
able WAVE_DIR points, and where PV-WAVE expects to find its required files.

To see what the value of WAVE_DIR is on your computer, enter the following
command at the prompt of an MS-DOS command prompt window:

echo %WAVE_DIR%

NOTE Remember that VNI_DIR and WAVE_DIR are only defined automatically
on the machine where PV-WAVE was installed, and only for the user who per-
formed the installation. If you wish to run PV-WAVE on a different machine or for

Modifying Your PV-WAVE Environment (Windows) B-15

different users, you must explicitly set the value of these variables using the Con-
trol Panel’s System window (on Windows NT) or in the AUTOEXEC.BAT file
(Windows 95) before you run PV-WAVE on that machine for the first time. Or, you
can rerun the installation program (the setup program). For detailed information
on rerunning the setup program, see the Installation Guide. You may also need
to use the File Manager to connect the disk that contains the PV-WAVE files. For
instructions on connecting another disk, consult your Windows documentation.

When Are PV-WAVE’s Environment Variables Defined?

VNI_DIR and WAVE_DIR are the only environment variables that get defined dur-
ing the installation process. Other PV-WAVE environment variables get defined
dynamically as PV-WAVE is started. However, the value of any environment vari-
able that has been explicitly defined prior to PV-WAVE startup is left intact instead
of being redefined during startup. For information about other PV-WAVE environ-
ment variables, refer to subsequent sections in this discussion of the PV-WAVE
environment.

Method of Starting PV-WAVE Can Affect Your Environment

When you use System window (launched from the Control Panel on Windows NT
only) to set the value of environment variables, the value applies only to MS-DOS
command prompt windows that you open subsequent to making those changes. A
session of PV-WAVE that you start from a new MS-DOS command prompt win-
dow will be aware of your changes and will honor them.

However, the Windows program group to which PV-WAVE belongs will be
unaware of the changes you made. Consequently, if you start PV-WAVE by click-
ing on an icon in a program group, that session of PV-WAVE will also be unaware
of the changes you made. For the program group to be aware of the changes you
made, you must log off and then log back on to your computer.

WAVE_DATA: Retrieving Data Files Directly Where They
Reside

You can store your data in a different area, e.g., a disk that actually resides on a dif-
ferent computer, and still easily access those files, by defining a value for
WAVE_DATA prior to starting PV-WAVE. This way you can leave your data files
intact in the area where you first stored them, and not have to specify a long path
to them or copy them into your current working directory.

B-16 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

NOTE The default WAVE_DATA path is used by the PV-WAVE Gallery and other
demonstration programs. If you reset WAVE_DATA, these demonstration systems
will not work.

Using WAVE_DATA in PV-WAVE Function and Procedure Calls

WAVE_DATA specifies a single path, and this path is used to initialize the
PV-WAVE system variable !Data_Dir. You can then use this system variable as a
shorthand notation for pointing to data files, as shown in the following sample
PV-WAVE statements:

OPENR, 1, !Data_Dir+’latest.dat’

or

status = DC_READ_DIB(!Data_Dir+’ztee.bmp’, $
 zt, Imagewidth=xsize, Imagelength=ysize)

PV-WAVE does not use a search path when accessing, opening, and closing data
files; it uses only the path that you specify, which is the current working directory
if you have not specified any other path.

NOTE By default, !Data_Dir is initialized during PV-WAVE startup by a call to
setdemo.pro. If the startup command file you are using does not include a call
to setdemo.pro, several system variables, including !Data_Dir, may not be ini-
tialized properly. For more details, refer to WAVE_RT_STARTUP: Using a Startup
Procedure in Runtime Mode on page B-19.

WAVE_DEVICE: Defining Your Terminal or Window System

PV-WAVE must know the type of terminal or window system that you are using.
By default, it assumes win32 (Windows, 32 bit). If you wish, this default can be
changed, as described below.

Changing the Default Device

PV-WAVE sets the value of the environment variable WAVE_DEVICE to win32
when it starts. But if you prefer WAVE_DEVICE to have a different value, such as
PS (PostScript), you can enter the following command at the prompt of an
MS-DOS command prompt window:

set WAVE_DEVICE=PS

Modifying Your PV-WAVE Environment (Windows) B-17

In this situation, PV-WAVE will start as expected, but will send graphics output to
a file using the specified format (PostScript) and the default filename of wave.ps.
You will not be able to display graphics windows on the screen of your computer
until you enter the command:

SET_PLOT, ’win32’

The device name can be entered in either upper or lower case. If WAVE_DEVICE
is defined, it must contain the name of a valid PV-WAVE graphics device. For
details, see the list of valid output devices in the PV-WAVE Reference.

TIP Use the DEVICE command to reconfigure the behavior of any of PV-WAVE’s
drivers, including the PostScript driver mentioned in this section. For example, you
could use the Filename keyword to choose a different output filename, or you could
use the Epsi keyword to enable encapsulated PostScript interchange format.

WAVE_STARTUP: Using a Startup Command File

WAVE_STARTUP points to the name of a command file that is executed by
PV-WAVE on initialization. The startup file contains a series of PV-WAVE state-
ments and is executed each time PV-WAVE is started. Common uses are to
compile frequently-used procedures or functions, to load data, and to perform other
useful operations. It contains PV-WAVE statements which are individually com-
piled and executed, in the same manner as command file execution. For more
information on command files, see Creating and Running a Command (Batch) File
on page 7.

The default startup filename is wavestartup and is located in
%WAVE_DIR%\bin. The wavestartup file turns off the compiler messages,
defines the WAVE> prompt, and then calls the Standard library routine
setdemo.pro. This routine sets up the default key bindings for the function keys
and displays their definitions upon entering PV-WAVE. For more information
about the SETDEMO command, see the PV-WAVE Reference.

To use a different PV-WAVE startup file:

❑ Create a file containing the commands you want to be executed every time you
start PV-WAVE. For example, assume the startup file named
startfile.txt contains the following statements:

.RUN add.pro

.RUN square.pro

INFO

B-18 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

❑ In an MS-DOS command prompt window, enter this command to set the envi-
ronment variable WAVE_STARTUP to the name of the file to be executed:

set WAVE_STARTUP=startfile.txt

The startup file compiles ADD and SQUARE and displays general information
about the current status of PV-WAVE before displaying the normal WAVE>
prompt. The messages you see when you start PV-WAVE this way are shown
in Figure B-1 below.

To use this startup file every time you start PV-WAVE use the System icon in
the Windows Control Panel (Windows NT) or modify the AUTOEXEC.BAT
file (Windows 95).

Figure B-1 The appearance of a PV-WAVE Console window when a startup file is being
used. The messages that get printed to the screen vary depending on the exact contents of
the startup file.

TIP When you create a new startup file, start with a copy of PV-WAVE’s default
startup file, wavestartup. This way, you will still define a default WAVE>
prompt and default behavior for function keys. Also, you will not inadvertently dis-
able the setups for a PV-WAVE feature, e.g., the PV-WAVE gallery, that you might
want to use later.

WAVE_FEATURE_TYPE: Setting the Default Operating

Modifying Your PV-WAVE Environment (Windows) B-19

Mode

The environment variable WAVE_FEATURE_TYPE lets you set the default operat-
ing mode of PV-WAVE to “runtime”. When this environment variable is set to RT,
compiled PV-WAVE applications can be executed directly from the operating sys-
tem prompt without using the -r option. For example:

C:\ set WAVE_FEATURE_TYPE=RT

Set the environment variable.

C:\ wave somerset

Run a compiled, saved PV-WAVE application called somerset.

WAVE_RT_STARTUP: Using a Startup Procedure in Runt-
ime Mode

WAVE_RT_STARTUP points to the name of a compiled procedure file that is exe-
cuted when PV-WAVE initializes in runtime mode. The startup file may contain
saved, compiled PV-WAVE routines that are executed each time PV-WAVE is
started in runtime mode.

Windows USERS For more information on saving and using compiled routines,
see Runtime Mode for Windows on page 15.

The default startup filename that PV-WAVE looks for when it is running in runtime
mode is:

%WAVE_DIR%\LIB\STD\rtwavestartup.cpr

WAVE_INIT_CODESIZE: Setting Initial Size of the Code
Area

The environment variable WAVE_INIT_CODESIZE lets you set the initial size of
the code area for PV-WAVE. For example:

C:\ set WAVE_INIT_CODESIZE 2000000
Set the initial size of the code area to 2 MB.

WAVE_INIT_LVARS: Setting Initial Value for Number of
Local Variables

The environment variable WAVE_INIT_LVARS lets you set the initial number of
local variables for PV-WAVE. For example:

C:\ set WAVE_INIT_LVARS 400

B-20 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

Set the initial number of local variables to 400.

Changing the PV-WAVE Prompt

The text string PV-WAVE uses to prompt you for input is specified by the system
variable !Prompt. You can change the prompt by setting this system variable to the
new prompt string. The prompt is currently defined in the file wavestartup.

Here’s an example showing how to tailor your prompt to display text:

!Prompt = ’Hello World!> ’

Here’s another example that causes PV-WAVE to echo the text string, plus ring the
bell on the terminal when prompting:

!Prompt = ’Hello World!> ’ + STRING(7B)

The ASCII code for the bell is 7. It does not have a printable representation, so it
is specified using the value 7.

Windows USERS See Representing Nonprintable Characters with Windows on
page 24.

TIP You can also place a prompt definition in your WAVE_STARTUP file; this file
is described in WAVE_STARTUP: Using a Startup Command File on page B-17 of
this guide.

For an alternate way to modify the prompt, see the description of the PROMPT pro-
cedure in the PV-WAVE Reference.

Index - 21

Programmer’s Guide Index

A
ABS function 22
absolute value 22
access mode, for VMS 205
actual parameters 218–220
addition operator 38

See also operators
AND operator 41

See also operators
annotation

See also string processing; strings; fonts
arithmetic errors, checking for 245
arithmetic operations, overflow condition 21
arrays

accessing 260
assignment statements 50–51
associative 104
* (asterisk) in notation 75
columns in 40
combining 78–81
concatenation operators 40
degenerate dimensions 76
eliminating unnecessary dimensions 73
extracting fields from 34
functions to create from various data

types 36
indexed by rows and columns 71
lists 104
masking 45
multidimensional subscripts 72
non-existent element, referencing 72
of structures 99
reading

data into 168, 169
rows in 40
storing elements with array subscripts 81

structures with 97–99
subarrays 76
subscripts

multidimensional 72
of other arrays 76–78
storing elements 81

subsetting with relational operators 44
transposition of 40

ASCII
See also input/output
fixed format I/O 148, 149
formatted files 139
free format 148–149
row-oriented files 140

assignment operator 38
See also operators

assignment statements 48–53
ASSOC function 145, 147
associated variables

advantages 195
description of 26
efficiency of 194
example 195–196
exporting image data with 176
in assignment statements 53
in relation to UNIX FORTRAN

programs 199
writing into 198

associative arrays, defining 104
attributes

of an expression 251
of variables 26
VMS record 206–207

B
batch files. See command files

22 Index - PV-WAVE Programmer’s Guide

BEGIN statement 53
binary data

See also input/output
advantages and disadvantages of 144
comparison with ASCII, input/output 145
efficiency of 174
procedures, input/output 147, 174
reading FORTRAN files 204
record length 142
record-oriented 143
strings, transferring 182
UNIX vs. FORTRAN 183
VMS 143

block-mode file access (VMS) 205
blocks of statements 53–55, 64
breakpoints

clearing in debugger 282
setting in debugger 281

byte
See also BYTE function; data types
a basic data type 19, 25
converting characters to 33, 116
reading from XDR files 190

BYTE function 34, 117, 183

C
carriage control

VMS FORTRAN, table of 207
VMS output 206

case folding 117
CASE statement 55
changing the PV-WAVE prompt B-20
characters

See also annotation; fonts; strings; string
processing

extracting 120
in regular expressions 125
non-printable, specifying 24, 116
non-string arguments to string routines

122
CHECK_MATH function 33, 244, 245
clipboard

command line functions 211
menu controls 211
used to exchange image data 210

closing
files 135

code area, PV-WAVE 224

code size
setting at startup 17

color
images 175
pseudo 175
represented by shades of gray 175
TIFF files 178

color tables
saving in TIFF file 178

column-oriented data
ASCII files 139
FORTRAN write 168
in arrays 40
transposing with rows 40

command files
creating and running 7, 8
differ from main programs 7
executing at startup B-5, B-17

command line editing 271
command recall

with INFO command 271
comment, adding a 48
common block

COMMON statement 56, 230
creating common variables for

procedures 229
use of variables 56

compiled files. See runtime mode
compiling

See also executive commands;
programming; runtime mode

automatically 5, 61, 218, 223
interactively 223
procedures and functions 222
.RUN with filename 17, 222
run-time 253
saving compiled procedure 13, 15
system limits 224
with EXECUTE function 253

complex
constants 22
data type 19, 25, 141
double-precision type 19, 25
numbers 22
variables, importing data into 152

COMPLEX function 34
concatenating strings 114
concatenation operators 40

See also operators

Index - 23

constants
types of 20
using correct data types 259

conversion character. See format strings
conversion functions 32
converting

data to
string type 115

mixed data types in expressions 259
radians to degrees 28
strings, case of 117

cpr files. See runtime mode
customizing PV-WAVE

prompt string B-20
your environment (Windows) B-9

D
data

See also data types; extracting data; files;
input/output; reading; writing

CSV format 147
drop-outs 52
files

pointing to with WAVE_DATA B-15
where to store B-15

fixed format I/O 146, 155, 163
floating-point, with format reversion A-5
formatting

into strings 115
strings A-1–A-2
with STRING function 183

free format
ASCII I/O 151, 153, 155
output 155

logical records 142
record-oriented 144
row-oriented 140
sorting tables of formatted data 163
types of 19
unformatted 179

data area, PV-WAVE 225
data types

combining in arrays 36
constants 19
eight basic 31
mixed, in

expressions 32
relational operators 43

of variable, determining 251
!Data_Dir system variable B-16
date/time data

reading into PV-WAVE 160
transfer with DC_READ_FIXED 163
transferring with templates 158–159

DC (Data Connection) functions
advantages of 146
for simplified data connection 146
opening, closing files 135

DC_READ_FIXED function 150, 163–
171, 173, A-7

DC_READ_FREE function 132, 149
DC_READ_TIFF function 147, 177
DC_READ_24_BIT function 147
DC_READ_8_BIT function 147
DC_WRITE_FIXED function 150
DC_WRITE_FREE function 132, 149
DC_WRITE_TIFF function 147, 177
DC_WRITE_24_BIT function 147
DC_WRITE_8_BIT function 147, 177
deallocating

file units 202
LUNs 135, 138

debugger 275
DECLARE FUNC statement 60
declaring functions 60
DECStation 3100, error handling 247
degrees

convert from radians 28
DELSTRUCT procedure 92
DELVAR procedure 92
device drivers

getting information about 269
DIB data

input/output 211
digital gradient function 220
dimensions of expressions, determining

251
directory path

!Path 9
disappearing variables 231, 238
$ (dollar sign) in command files 8
double complex

data type 19, 25
double-precision

complex data type 19
constants 21
data type 19

24 Index - PV-WAVE Programmer’s Guide

dynamic
data types 32
definition of environment variables

(Windows) B-15
structures 32

E
editor, in debugger 281
8-bit image data

how stored 175
ELSE

in CASE statement 55
in IF statement 63

EMF files
input and output 211

END statement 53
ENDCASE, end statement 55
ENDIF, end statement 63
ENDREPEAT statement 55
ENDWHILE statement 55
environment

modifying (UNIX/OpenVMS) B-1
modifying (Windows) B-9

environment variables
changing B-1
changing (Windows) B-9
don’t seem to be defined properly

(Windows) B-15
VNI_DIR (Windows) B-14
WAVE_DATA (Windows) B-15–B-16
WAVE_DEVICE B-1–B-2
WAVE_DEVICE (Windows) B-16
WAVE_DIR B-2
WAVE_DIR (Windows) B-14
WAVE_FEATURE_TYPE B-6
WAVE_INIT_CODESIZE B-7, B-19
WAVE_INIT_LVARS B-7, B-19
WAVE_PATH B-3–B-4, B-13–B-14
WAVE_RT_STARTUP B-6
WAVE_STARTUP B-5–B-6
WAVE_STARTUP (Windows) B-17, B-19
Windows B-11

EOF function 160, 200
EQ operator 45

See also operators
equality operator 45

See also operators
error handling

See also debugger; math errors
accumulated math error status 244
arithmetic 243
categories of 237
DECStation 3100 247
during program execution 238
enabling/disabling math traps 246
floating-point 243
input/output 135, 240
list of procedures 237
machine dependent handling 247
mechanism in procedures and

functions 230
message

issuing 231, 241–242
OpenVMS 248
options for recovery 238
overflow 245
recovery from 230
running SunOS Version 4 247
SGI IRIX 5.3 workstations 248
Sun-3 and Sun-4 247

escape sequences, creating 24
Excel. See Microsoft Excel
exclusive OR operator 42

See also operators
executing

application in debugger 277, 283
command files 8
commands from a function 226, 253
interactive programs 3
main programs 6

executive commands
.LOCALS 226
..LOCALS compiler directive 226
.RUN

compiling functions and proce-
dures 222

syntax 222
.SIZE 225

explicitly formatted. See fixed format
exponentiation operator 39

See also operators
exporting data. See data; writing
expressions

efficiency of evaluation 258
evaluation of 32
finding attributes of 251
forcing to specific data types 33

Index - 25

general description 29
invariant 260
structure of 35–37
type and structure of 31, 35
with mixed data types 259

extracting data from variables 34–35

F
files

access mode, VMS 205
allocating units 134, 138
closing 135
column-oriented ASCII 139
CSV format 147
deallocating LUNs 135, 138
fixed format I/O 155
formatting, codes for A-8–A-21
free format ASCII I/O 148
getting information about 200, 270
indexed files for VMS 207
I/O with structures 100
locating on disk 199
locating on disk (Windows) B-15
logical records, changing size of 142
logical units 134
opening 134–135
organization of VMS 204
organization options 139
pointer, positioning 200
portable binary 188
record-oriented binary files 143
row-oriented 140
standard input, output and error 135
startup command (Windows) B-17
testing for end of file 200
UNIX 203
VMS 198, 205–207
XDR 189

FINDFILE function 199
FINITE function 33, 244
FIX function 33–34
fixed format

ASCII I/O 148, 149
choosing 148
comparison with free format 146
data, examples of reading 164
I/O 155, 163

fixed-length record format, VMS 198, 205

FLOAT function 34
floating-point

constants 21
data type 19, 25
errors 243

FLUSH procedure 150, 199
flushing

file units 199
FOR statement 57–60
force fields

examples 58
increment parameter 58
simple 58

formal parameters
copying actual parameters into 219
definition of 218

format reversion A-4
format strings

C conversion characters A-19–A-20
C format codes A-19–A-21
definition of A-1
discussion of 155–158
for data transfer 156
FORTRAN format codes 171, A-8–

A-18
group repeat specifications A-6
how to use A-2
interpreting 156
reading multiple array elements 171
reversion 157, A-4
when to use 156

formatted data
rules for 151, 156
strings 115
structures for I/O 101
using STRING function 173

FORTRAN programming language
binary data, reading with PV-WAVE

204
format strings 171, A-8–A-18
on UNIX 183

free format
ASCII I/O 148–149
input 151–152
output 155

FREE_LUN procedure 138
FSTAT function 201–202
FUNCTION definition statement 218
function keys

26 Index - PV-WAVE Programmer’s Guide

equating to character strings B-8
getting information about 271

functions
compiling with .RUN and filename 17
copying actual parameters into formal

parameters 219
creating

interactively 4
with a text editor 5

declaring 60
defining 218
discussion of 217
keyword parameters 61
libraries of VMS 233
parameters 218

actual 218
passing mechanism 228
positional 61

search path B-3–B-6, B-13–??
type conversion 32
user-defined 224

G
GE operator 45

See also operators
GET_KBRD function 148, 203
GET_LUN procedure 138
GOTO statement 48, 62
graphics

device driver, changing B-16
greater than 30

See also operators
greater than or equal 30

See also operators
group repeat specifications A-6

See also format strings
GT operator 45

See also operators

H
help, online

file information 200
information, on a session 267

I
IF statement

avoiding 256
discussion of 62–64

images
8-bit format 175
how stored 175
interleaving 176, 178
output 176
reading

associated variable method 195
block of data from tape 210

storing data 175
24-bit format 175

IMAGINARY function 22
inclusive OR operator 42

See also operators
indexed files, VMS 207
INFO procedure

detailed examples 267
input/output

See also error handling; format
strings; reading; writing

ASCII, pros and cons of 145
associated variables 194
binary data

portability 189
procedures 174
pros and cons of 145
record-oriented files 143
string variables 182

choosing a method 145
DIB data 211
EMF data 211
fixed formats 155
fixed vs. free format data 146
free format 151
image data 175
portable binary 189
PV-WAVE and C program 179
record-oriented binary files 143
strings with structures 102
structures 100
unformatted

associated variable 194
discussion 151
in structures 101
string variables 152, 181

Index - 27

VMS binary files 143
when to open a file 135
XDR files 188

integer
constants 20
conversions, errors in 245
data type 19, 25
data, shown in figure 141
output, for format codes A-14
syntax of constants 20
writing with format reversion A-4–A-5

interapplication communication
C programs

creating XDR files 191
reading files with 181
writing to PV-WAVE 179

interleaving
description of 176
image data 176, 178
pixels 178

invariant expressions, removing from loops
260

J
journaling

description of 10
examples 11
in relation to PRINTF 11

K
keyboard

accelerators B-8
bindings used in debugger 281
defining keys B-8
getting input from 203
show current bindings 271

keywords
checking for presence of 250
definition of 219
examples 221
functions, using with 61
passing of 219

KEYWORD_SET function 249

L
LE operator 30, 45

See also operators
less than 30, 45

See also operators
less than or equal 30, 45

See also operators
libraries

creating and revising for VMS 234–
235

Standard (std) 231
Users’ 231–233
VMS procedure, searching 233

linear algebra
rules 39

lists, defining 104
local variables

setting number of at start up 17
local variables, definition of 221
.LOCALS 226
..LOCALS 226
logical operators 43

See also operators
logical records 142
logical unit number. See LUNs
longword

data type 19
integer, on Digital UNIX 188

loops. See statements
LT operator 30, 45

See also operators
LUNs

getting information using FSTAT 201
operating system dependencies 137
reserved 135–136
to open and close files 134
use of 136–138

M
magnetic tape

accessing under VMS 208
main

programs, executing 6
program, definition of 6
program, differs from command file 7
program, re-using 7

28 Index - PV-WAVE Programmer’s Guide

Visual Numerics directory (Windows) B-14
masking

arrays 45
math errors

See also error handling
accumulated math error status 244
detection of 243
hardware-dependent 247
procedures for controlling 237
traps, enabling/disabling 246

matrix
expressions 88
multiplication 39, 84
printing

interactively 84
reading

from a file 86
interactively 84

subarrays 87
subscripts 72

maximum operator 44
See also operators

memory
See also virtual memory
allocation 226
order and arrays 260
physical 261

message
error 231, 241–242

Microsoft Excel
importing data from PV-WAVE 213
transferring spreadsheet data to PV-

WAVE 213
minimum operator 44

See also operators
modulo operator 40

See also operators

N
NE operator 45

See also operators
nested procedures, getting information on 273
non-printable characters 24
not equal 30

See also operators
NOT operator 42

See also operators
N_ELEMENTS function 250

N_PARAMS function 249
N_TAGS function 103

O
ON_ERROR procedure 231, 237
ON_IOERROR procedure 237, 240
opening files. See files
OPENR procedure 134
OPENU procedure 134
OPENW procedure 134
operands, checking validity of 244
operating system

See also interapplication
communication; UNIX operating
system; VMS operating system;
Windows operating system

operators
Boolean 41
general description 29
grouping of expressions 38
hierarchy of 30
list of 37
precedence 30
relational 43
using with arrays 44

OPI applications
bindings 307
creating 295
error handling 345
example 293
keyword processing 302
license management 303
loading 288
required files 291
runtime mode 16
summary of variable-handling

routines 311
unloading 288
variable handling 311

Option Programming Interface. See OPI
applications

OR operator 42
See also operators

overflow
See also error handling
checking for in integer conversion

245
in type conversions 33

Index - 29

with integer arithmetic 21

P
padding

bytes 101
page faults 261
page file quota 265
parameters

See also keywords
actual 218
checking for

number of 249
copying 219
formal to actual correspondence 219
number required 220
passing

by reference 228
by value 228
mechanism 97, 218, 228

positional 219
PARAM_PRESENT function 249, 251
!Path system variable B-10
Pgflquo 264
pixels

interleaving 176, 178
plotting

!P system variable 28
POINT_LUN procedure 200, 205
portable data, XDR 188–189
PRINT procedure 149
PRINTF procedure 11, 149
printing

formatted data 173
PRO statement 218

significance of 6
Procedure Call statement 64
procedures

actual parameters 218
automatic compiling, conditions for 61
compiling 222
compiling with .RUN and filename 17
creating with editor 5
discussion of 217
libraries of VMS 233
parameters 218
sources of 64

program
call stack 242

code area full 224
control routines 237, 252
creating 5
data area full 225
declaring functions 60
determining number of parameters

249
file search method B-4, B-10
formal parameters 218
format of 6, 7
increasing speed of 255
information on a 272
list of compiled 272
main PV-WAVE 6
maximum size of code 268
nested, information on 273
number of

parameters 249
required parameters 220

required components 220
running as batch 8
search path 9, B-3, B-13
submitting to Users’ Library 232
user-written 61

programming
See also debugger; error handling;

WAVE Widgets; Widget Toolbox
accessing large arrays 260
code size 268
commenting programs 48
efficiency 256
format strings A-1–A-2
tips 255–266
virtual memory

minimize allocation 265
running out of 262

!Prompt system variable B-20
prompt, changing B-7, B-20
pseudo-color

images 175
PV-WAVE session

customizing (Windows) B-9
how affected by environment

variables (Windows) B-15
recording 10

R
radians, converting to degrees 28

30 Index - PV-WAVE Programmer’s Guide

random file access 205
READF procedure 149, 164, 169, 172
reading

binary files 180
binary files between different systems 188
byte data from an XDR file 190
C-generated XDR data 191
CSV data 147, 213
date/time data 153, 160
DC_READ routines A-7
DIB data 211
EMF data 211
files, using C programs 181
fixed-format ASCII data 163
freely-formatted ASCII data 149
from magnetic tapes 208
into complex variables 152
into structures 153
keyboard input 203
multiple array elements 168
multiple array elements with FORTRAN

format string 171
records with multiple array elements 168–

171
row-oriented FORTRAN written data 170
tables of formatted data 163
unformatted data 179
word-processing data 164
XDR files 192
8-bit image data 175

READU procedure 147
record attributes of VMS files 206
record-oriented, binary files 144
records

definition of 142
extracting fields from 34
fixed length format (VMS) 198, 205
length of 142
multiple array elements 168–172

recovering from errors 238
registry B-13
registry, Windows B-11
regular expressions 123–129
relational operators 43

See also operators
REPEAT statement 67
REPLICATE function 99, 180
reserved LUNs. See LUNs
reserved words 27

RETALL procedure 231
RETURN procedure 61, 220, 231
reversion, format 157, A-4
REWIND procedure 208
RGB

triplets 178
RMS files, reading images 198
row-oriented

ASCII data 140
FORTRAN write 170

.RUN 222
See also executive commands

running. See executing
runtime mode

compilation of statements 12
compiling procedures for 13
definition of 12
developing applications 14
OPI applications 16
search path 14
starting PV-WAVE in 13, 15

S
saving

TIFF data 177
scalars

arrays, relation to 266
combining with subscript arrays or

ranges 80
definition of 26
subscripting 74

searching
for VMS libraries 233

semicolon after @ symbol 9
set command

for WAVE_DEVICE B-16
for WAVE_FEATURE_TYPE B-19
for WAVE_STARTUP 15, B-18

setenv UNIX command
for WAVE_DEVICE B-2
for WAVE_PATH B-3
for WAVE_STARTUP B-5

setup program, for PV-WAVE (Windows)
B-15

Silicon Graphics IRIX 5.3, error handling
248

.SIZE 225
SIZE function 251–252

Index - 31

SKIPF procedure 208
sorting

tables 167–168
source file. See debugger
spheres

See also rendering
standard error output 135
standard input 135
Standard Library

location of 3, 232
suggestions for writing routines 232

standard output 135
starting PV-WAVE

flag for code size 17
flag for number of local variables 17
from program group B-15
not working as expected B-15

startup file
for UNIX B-5
for VMS B-6
for Windows B-17

statements
assignment 48–49
blocks of 53
CASE 55
changing data types 50
COMMON block 56
compiling and executing with EXECUTE

function 253
components of 47
GOTO 62
IF 62, 63
labels 48
list of 12 types 47
procedure calls and definition 64
REPEAT 67
runtime compilation 12, 13
spaces in 48
tabs in 48
types of 47

stream mode files, VMS 206
STRING function 34, 173
string processing

extracting substrings 120
inserting substrings 114, 120
locating substrings 120–121
non-string arguments 122
obtaining length of strings 119
removing white space 114, 118

working with text 113
strings

See also annotation; fonts; string
processing

basic data type 25
binary transfer of 181
concatenating 114
constants 22
converted from byte 116
converting to byte 183
definition of 113
determining length of 114
examples of string constants 22
formatting 114
FORTRAN and C formats 156
importing with free format 152
initializing to a known length 183
input/output with structures 102
length issues with structures 102
operations supported 113–114
substrings 120
used in structures 102
writing to a file 155

STRLEN function 114
STRLOWCASE function 117
STRMID function 121
STRPOS function 120
STRPUT procedure 121
STRTRIM function 118–119
STRUCTREF function 91
structures

advanced usage 103
arrays 97, 99
associative arrays 104
data type 25
defining 90
deleting 90–91
formatted input/output 101
getting information about 96, 272
importing data into 153
input and output 100
lists 104
number of tags in 103
passing as parameters 97
references 94–95
replicating 99
scope of named and unnamed 92
string

input/output 102

32 Index - PV-WAVE Programmer’s Guide

length issues 102
subscripted references 94
tag names

reference to a field 94
unformatted input/output 101
unnamed, creating 92
writing 101

STR_TO_DT function 161
subarrays

See also arrays; subsetting
structure of 76
subscript range use 87

submatrices
See also matrix; subsetting
subscript range use 87

subscripts
arrays of 52
* (asterisk) operator 75
combining arrays with 79–81
matrices, use in 72
multidimensional arrays 72
notation for columns and rows 71
ranges 51

list of 4 types 74–75
summary table of 75
to select subarray 74

reference syntax of 71
scalars, use with 74
storing elements with 81
structure references 94
subscript arrays 49

subsetting
relational operators, use of 44
subarrays, selecting ranges of 74–78

subtraction operator. See operators
SunOS Version 4, error handling 247
swap area. See virtual memory
SYSGEN parameters

VIRTUALPAGECNT 264
WSMAX 264

system variables
definition of 28
getting information about 273
passing 228–229
values of 273

T
tables

examples 167
sorting 167–168

tabs in statements. See statements
tag

See also data types; unnamed
structures

definition of 89
field reference in structure 94
names in a structure 103
numbers of 103

TAG_NAMES function 103
tape, magnetic

accessing under VMS 208
end of file mark 208
mounting a tape drive (VMS) 209
reading from 208–210
rewinding 208
skipping records or files 208, 209
writing to 208

TAPRD procedure 208
TAPWRT procedure 208
TeX documents. See LaTeX documents
text. See annotation; characters; fonts;

string processing; strings
TIFF

compression of files 177
conformance levels 178
reading a file in 177
saving data in TIFF format 177

TOTAL function 40
traceback information 242
transferring data. See input/output; read-

ing; writing
TRANSPOSE function 40
transposing

rows and columns 40
24-bit image data

storing 175
types

See also data types 31, 35

U
unformatted data

See also input/output
advantages/disadvantages of 144
input/output 101, 151, 152, 181,

194
reading

Index - 33

associated variable method 194
FORTRAN generated in UNIX 183
FORTRAN generated in VMS 186
problems in 189

routines for transferring 149
UNIX operating system

description of files in 203–204
environment variable

WAVE_DIR B-2
FORTRAN programs with ASSOC 199
reading data in relation to FORTRAN 183
reserved LUNs 137
virtual memory 263
writing FORTRAN programs to PV-WAVE

184
unnamed structures

creating 92–94
uses for 92

updating a file, using OPENU 133
Users’ Library

documentation for 233
location of 231
submitting programs to 232
support for routines in 233

V
variable length record format files, VMS 206
variables

associated 26, 53, 198
attributes 25
checking for undefined 250
complex, importing data 152
data types 26
definition of 24
determining

data type of 251
number of elements in 250

disappearing 231, 238
examining in debugger 283
forcing to specific data type 33
in common blocks 56
local, definition of 221
naming conventions 26
size and type information 26, 251
structure of 26
system. See system variables
types of 26

vector

definition of 26
subscripts 76
using as subscripts to other arrays

78
vertex lists

See also polygons
virtual memory

description of 261
in relation to PV-WAVE 261
in relation to swap area 263
minimizing use of 265
swap area, increasing 263
UNIX 263
variable assignments 262
VMS 263

virtual page count parameter 264
VMS operating system

access mode 205
accessing magnetic tape 208
binary data 143
data files, information on 204
error handling 248
files 204–207
formal parameters for procedures

and functions 220
FORTRAN programs, writing 186
libraries 233–234
mounting a tape drive 209
offset parameter 198
record attributes 206
record-oriented data, transferring

144
reserved LUNs 137
RMS files, reading images 198
setting WAVE_DIR B-2
stream mode files 206
variable length format 206
virtual memory 263
working set size 264

VNI_DIR
description of B-15
UNIX system B-3
Windows system B-14

W
wavestartup file B-5
wavestartup file (Windows) B-17
wave_assign_num 317

34 Index - PV-WAVE Programmer’s Guide

wave_assign_string 317
wave_assign_struct 317
wave_compile 314
WAVE_DATA B-15–B-16
WAVE_DEVICE B-1–B-2, B-16
WAVE_DIR B-2, B-14, B-15

OpenVMS system B-2
UNIX system B-2
Windows system B-14

wave_execute 313
wave_free_WCH 317
wave_free_wsdh 337
wave_free_WVH 323
wave_get_unWVH 322
wave_get_WVH 321
wave_interp 316
WAVE_PATH B-3–B-4, B-13–B-14
WAVE_STARTUP B-5–B-6, B-17
wave_type_sizeof 330
wave_wsdh_from_name 336
wave_wsdh_from_wvh 335
WEOF procedure 208
WHERE function 50, 52, 257
WHILE statement 68
wildcards, vs. regular expressions 128
window systems

defining with WAVE_DEVICE B-1–B-2
Windows B-9–B-20
X Windows B-8

Windows
autoexec.bat B-11
environment variables B-9, B-11, B-15
program group B-15
registry B-9, B-11

word-processing application, reading data from
163

working set
description of 261
page maximum parameter 264
quota 265

WRITEU procedure 147, 180
writing

binary data file 180
CSV data 147, 213
DIB data 211
EMF data 211
flushing buffers 199
free format data 155
integer data, using format reversion A-4–

A-5
strings to a file 155, 182
to tape (VMS) 208
unformatted data 179
with UNIX FORTRAN programs 184
with VMS FORTRAN 186

wsdh_element 342
wsdh_name 338
wsdh_ntags 339
wsdh_offset 341
wsdh_sizeofdata 341
wsdh_tagname 339
Wsquo quota 264
wvh_dataptr 334
wvh_dimensions 329
wvh_is_constant 333
wvh_is_scalar 332
wvh_name 324
wvh_ndims 327
wvh_nelems 328
wvh_sizeofdata 330
wvh_type 326

X
X Window System

using with PV-WAVE B-8
XDR data, reading and writing 188–193
XOR operator 42

See also operators

Z

	PV-WAVE Programmer's Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - PV-WAVE Programming
	Where to Find Libraries of PV-WAVE Programs
	Creating Your Own Library

	Creating and Running Programs
	Creating and Running Programs Interactively at the Command Line
	Creating and Running a Function or Procedure
	Creating and Running Main Programs
	Creating and Running a Command (Batch) File
	Creating Journal Files

	Using PV-WAVE in Runtime Mode
	Runtime Mode for UNIX and OpenVMS
	Runtime Mode for Windows
	Runtime Mode for Dynamically Loaded Options
	Other Ways to Run the Program

	Startup Flags

	2 - Constants and Variables
	Constants
	Numeric Constants
	String Constants

	Variables
	Attributes of Variables
	Names of Variables
	System Variables

	3 - Expressions and Operators
	Operator Precedence
	Type and Structure of Expressions
	Type Conversion Functions
	Extracting Fields

	Structure of Expressions
	PV-WAVE Operators
	Assignment, Array, and Numeric Operators
	Boolean Operators
	Relational Operators

	4 - Statement Types
	Components of Statements
	Statement Labels
	Adding Comments

	Assignment Statement
	Form 1
	Form 2
	Form 3
	Form 4
	Associated Variables in Assignment Statements

	Blocks of Statements
	CASE Statement
	Common Block Definition Statement
	FOR Statement
	Form 1: Implicit Increment
	Form 2: Explicit Increment

	Function Declaration Statement
	Function Definition Statement
	Automatic Compilation of Functions and Procedures

	GOTO Statement
	IF Statement
	Definition of True in an IF Statement

	Procedure Call Statement
	Examples
	Positional Parameters and Keyword Parameters
	More On Parameters

	Procedure Definition Statement
	REPEAT Statement
	WHILE Statement

	5 - Using Subscripts with Arrays
	Syntax
	Subscript Reference Discussion
	Examples

	“Extra” Dimensions
	Subscripting Scalars

	Subscript Ranges
	Structure of Subarrays
	Examples

	Arrays as Subscripts to Other Arrays
	Combining Array Subscripts with Others
	Combining Array Subscripts with Scalar or Range Subscripts
	Combining with Other Subscript Arrays

	Storing Elements with Array Subscripts
	Memory Order
	Matrices
	Reading and Printing Matrices Interactively
	Reading a Matrix From a File
	Printing a Matrix to a File
	Subarrays
	Matrix Expressions

	6 - Working with Structures
	Introduction to Structures
	Defining and Deleting Structures
	Example of Defining a Structure
	Deleting a Structure Definition
	Creating Unnamed Structures

	Structure References
	Subscripted Structure References
	Examples of Structure References
	Using INFO with Structures
	Parameter Passing with Structures
	Storing into Structure Array Fields

	Creating Arrays of Structures
	Examples of Arrays of Structures

	Structure Input and Output
	Formatted Input and Output with Structures
	Unformatted Input and Output in Structures
	String Input and Output
	String Length Issues

	Advanced Structure Usage
	Example of Tag Indices

	Working with Lists and Associative Arrays
	Defining a List
	Defining an Associative Array
	Defining a List within a Structure within an Associative Array
	How to Reference a List
	How to Reference an Associative Array
	Supported Operations for Lists
	Supported Operations For Associative Arrays
	Lists, Associative Arrays Input and Output

	7 - Working with Text
	Example String Array
	Basic String Operations
	Concatenating Strings
	String Formatting
	Using STRING with Byte Arguments

	Converting Strings to Upper or Lower Case
	Removing White Space from Strings
	Determining the Length of Strings
	Manipulating Substrings
	Using Non-string and Non-scalar Arguments
	Using Regular Expressions
	Simple Regular Expressions: A Brief Introduction
	Basic Special Characters Used In Regular Expressions
	Escaping Special Characters
	Practical Regular Expression Examples
	Regular Expressions vs. Wildcard Characters
	For More Information

	8 - Working with Data Files
	Simple Examples of Input and Output
	Opening and Closing Files
	Opening Files
	Closing Files

	Logical Unit Numbers (LUNs)
	Reserved Logical Unit Numbers (–2, –1, 0)
	Logical Unit Numbers for General Use (1º99)
	Logical Unit Numbers Used by GET_LUN/FREE_LUN (100º128)

	How is the Data File Organized?
	Column-Oriented ASCII Data Files
	Row-Oriented ASCII Data Files
	How Long is a Record?

	Types of Input and Output
	Each Type of I/O has Pros and Cons
	Functions for Simplified Data Connection
	Binary I/O Routines
	ASCII I/O Routines
	Other I/O Related Routines

	Free Format Input and Output
	Free Format Input
	Free Format Output

	Explicitly Formatted Input and Output
	Using FORTRAN or C Formats for Data Transfer
	Transferring Date/Time Data
	Reading, Sorting, and Printing Tables of Formatted Data
	Reading Records Containing Multiple Array Elements
	Using the STRING Function to Format Data

	Input and Output of Binary Data
	Input and Output of Image Data
	READU and WRITEU
	Transferring Data with READU and WRITEU
	Binary Transfer of String Variables
	Reading UNIX �FORTRAN-�Generated Binary Data
	Reading OpenVMS �FORTRAN-�Generated Binary Data
	Reading and Writing Long Integers Under Digital UNIX

	External Data Representation (XDR) Files
	Opening XDR Files
	Transferring Data To and From XDR Files
	XDR Conventions for Programmers

	Associated Variable Input and Output
	Advantages of Associated File Variables
	Working with Associated File Variables
	How Data is Transferred into Associated Variables
	Using the Offset Parameter
	Writing Associated Variable Data
	Binary Data from UNIX FORTRAN Programs

	Miscellaneous File Management Tasks
	Locating Files
	Flushing File Units
	Positioning File Pointers
	Testing for End-of-File
	Getting Information About Files
	Getting Input from the Keyboard

	UNIX-Specific Information
	Reading FORTRAN-Generated Binary Data

	OpenVMS-Specific Information
	Organization of the File
	Access Mode
	Record Format
	Record Attributes
	File Attributes
	Creating Indexed Files
	Accessing Magnetic Tape

	Windows-Specific Information
	Exchanging Image Data Using the Clipboard
	Input and Output of DIB and Metafile Images
	Transferring Data from PV-WAVE to Microsoft® Excel
	Transferring Data from Microsoft® Excel to PV-WAVE

	9 - Writing Procedures and Functions
	Procedure and Function Parameters
	Correspondence Between Formal and Actual Parameters
	Copying Actual Parameters into Formal Parameters
	Number of Parameters Required in Call
	Example Using Keyword Parameters

	Compiling Procedures and Functions
	Using .RUN with a Filename
	Compiling Automatically
	Compiling with Interactive Mode

	System Limits and the Compiler
	Program Code Area Full
	Program Data Area Full

	Using the ..LOCALS Compiler Directive
	Example 1
	Example 2
	Example 3

	Parameter Passing Mechanism
	Procedure or Function Calling Mechanism
	Recursion
	Example Using Variables in Common Blocks

	Error Handling in Procedures
	Error Signaling
	“Disappearing Variables”

	The Users’ Library
	Submitting Programs to the Users’ Library
	Support for Users’ Library Routines

	OpenVMS Procedure Libraries
	Creating OpenVMS Procedure Libraries

	10 - Programming with PV-WAVE
	Description of Error Handling Routines
	Default Error Handling Mechanism
	Controlling Errors
	Error Handling in WAVE Widgets Applications
	Controlling Input and Output Errors

	Error Signaling
	Obtaining Traceback Information

	Detection of Math Errors
	On Windows Systems
	On UNIX and OpenVMS Systems
	Checking the Accumulated Math Error Status
	Special Values for Undefined Results
	Check the Validity of Operands
	Check for Overflow in Integer Conversions
	Trap Math Errors with the CHECK_MATH Function
	Enable and Disable Math Traps
	Examples Using the CHECK_MATH Function

	Hardware-dependent Math Error Handling
	Error Handling on a Sun-4 (SPARC) Running SunOS Version 4
	Digital Workstation Error Handling
	VAX/OpenVMS Error Handling
	Error Handling for Silicon Graphics Workstations Running IRIX 5.3

	Checking for Parameters
	Checking for Parameters
	Checking for Keywords
	Checking for Number of Positional Parameters
	Checking for Number of Elements
	Checking for Size and Type of Parameters
	Example of Checking for Size and Type of Parameters

	Using Program Control Routines
	Executing One or More Statements
	Example of Executing Multiple Statements in a Single Command

	11 - Tips for Efficient Programming
	Increasing Program Speed
	Avoid IF Statements for Faster Operation
	Use Array Operations Whenever Possible
	Use System Routines for Common Operations
	Use Constants of the Correct Type
	Remove Invariant Expressions from Loops
	Access Large Arrays by Memory Order
	Be Aware of Virtual Memory
	Running Out of Virtual Memory?
	Controlling Virtual Memory System Parameters under UNIX
	Controlling Virtual Memory System Parameters under OpenVMS
	Minimize the Virtual Memory Used

	Array Operations are Rewarded

	12 - Getting Session Information
	Using the INFO Procedure
	Calling INFO with No Parameters
	Calling INFO with Positional Parameters
	Calling INFO with Keyword Parameters

	13 - Using the PV-WAVE Debugger
	The Main PV-WAVE Debugger Window
	Using the Debugger’s Online Help System
	Starting the Debugger
	Changing the Working Directory
	Loading an Application at Startup
	Executing a Command File at Startup

	Saving Your Work and Stopping the Debugger
	Loading Files into the Debugger
	Loading a Single-File Application
	Loading a Multi-File Application

	Running an Application
	Detecting Execution Errors
	Editing the Source File
	Editing in the Source Window
	Using a Separate Text Editor

	Setting Breakpoints
	Controlling Program Execution
	Examining Variables
	Showing a Single Variable
	Monitoring a Variable
	Listing Variables and Structures

	Obtaining Session Information
	Customizing the Debugger

	14 - Creating an OPI Option
	Introduction
	Managing Options
	Loading and Unloading an Option

	The Developer Environment
	The Directory Structure
	Makefiles
	The bin Directory
	The src Directory
	The lib Directory
	Main Directory Requirements
	Required Files
	Option Example

	Creating An Option
	Step 1: Create a New Option Directory Structure
	Step 2: Modify the Template Files
	Step 3: Develop the Option Code
	Step 4: Define the New Option Table
	Step 5: Build the New Option
	Step 6: Test the New Option

	Keyword Processing
	License Management
	Adding an Option to the PV-WAVE Search Path
	Variable Handling Examples
	Option Programming Interface Language Bindings
	OPI Variable Handling
	FORTRAN Variable Handling
	Include Files
	Examples

	OPI Function Definitions for PV-WAVE Variables
	Summary

	wave_execute
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Status Codes
	Discussion

	wave_compile
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status Codes
	Discussion

	wave_interp
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Status Codes
	Discussion

	wave_free_WCH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_assign_num
	wave_assign_string
	wave_assign_struct
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Status
	Discussion

	wave_get_WVH
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status
	Discussion

	wave_get_unWVH
	C Usage
	FORTRAN Usage
	Output Parameters
	Returned Status
	Discussion

	wave_free_WVH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wvh_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value — FORTRAN

	wvh_type
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values for C
	Returned Values for FORTRAN

	wvh_ndims
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_nelems
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_dimensions
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Values
	See Also

	wvh_sizeofdata
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wave_type_sizeof
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_is_scalar
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_is_constant
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_dataptr
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned value
	Discussion
	Examples

	wave_wsdh_from_wvh
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Values

	wave_wsdh_from_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned value
	Discussion

	wave_free_WSDH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wsdh_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value — FORTRAN

	wsdh_ntags
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Value

	wsdh_tagname
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value - FORTRAN

	wsdh_sizeofdata
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Value

	wsdh_offset
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value
	Discussion

	wsdh_element
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status
	Discussion

	opi_malloc, opi_free, opi_realloc, opi_calloc
	C Usage
	Input Parameters
	Returned value
	Discussion

	C Language Error Handling
	When an OPI Call Fails
	Recovering from Errors Inside the Option Code

	wave_error
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_onerror
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_is_onerror
	C Usage
	FORTRAN Usage
	Discussion

	wave_onerror_continue
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_is_onerror_continue
	C Usage
	FORTRAN Usage
	Discussion

	A - FORTRAN and C Format Strings
	What Are Format Strings?
	When to Use Format Strings
	What to Do if the Data is Formatted Incorrectly
	Example — Using C and FORTRAN Format Strings
	Using Format Reversion
	Group Repeat Specifications
	FORTRAN Formats for Data Import and Export
	FORTRAN Format Specifiers

	FORTRAN Format Code Descriptions
	A Format Code
	: Format Code
	$ Format Code
	F, D, E, and G Format Codes
	I, O, And Z Format Codes
	Q Format Code
	H Format Codes and Quoted Strings
	T Format Code
	TL Format Code
	TR and X Format Codes

	C Format Strings for Data Import and Export
	Using C Format Strings for Importing Data
	Using C Format Strings for Exporting Data

	B - Modifying Your Environment
	Modifying Your �PV�WAVE Environment (UNIX/OpenVMS Only)
	WAVE_DEVICE: Defining Your Terminal or Window System
	WAVE_DIR: Ensuring Access to Required Files
	WAVE_PATH: Setting Up a Search Path (UNIX, OpenVMS)
	WAVE_STARTUP: Using a Startup Command File
	WAVE_FEATURE_TYPE: Setting the Default Operating Mode
	WAVE_RT_STARTUP: Using a Startup Procedure in Runtime Mode
	WAVE_INIT_CODESIZE: Setting Initial Size of the Code Area
	WAVE_INIT_LVARS: Setting Initial Value for Number of Local Variables
	Changing the PV�WAVE Prompt
	Defining Keyboard Shortcuts
	Using �PV�WAVE with X Windows

	Modifying Your �PV�WAVE Environment (Windows)
	Adding a Procedure Library to the Search Path
	Environment Variables
	Support for Environment Variables in Windows
	What is the Registry?
	How the PV-WAVE Environment is Set
	Modifying the Registry
	Backing Up the Registry
	WAVE_PATH: Setting Up a Search Path (Windows)
	VNI_DIR and WAVE_DIR: Ensuring Access to Required Files
	WAVE_DATA: Retrieving Data Files Directly Where They Reside
	WAVE_DEVICE: Defining Your Terminal or Window System
	WAVE_STARTUP: Using a Startup Command File
	WAVE_FEATURE_TYPE: Setting the Default Operating Mode
	WAVE_RT_STARTUP: Using a Startup Procedure in Runtime Mode
	WAVE_INIT_CODESIZE: Setting Initial Size of the Code Area
	WAVE_INIT_LVARS: Setting Initial Value for Number of Local Variables
	Changing the PV�WAVE Prompt

	Index

