PV-WAVE 7.5°

Programmer’s Guide

Heping CusTOMERS SOLVE CoMpLEX PROBLEMS

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.

2500 Wilcrest Drive Tour Europe Suite 1

Suite 200 33 place des Corolles Centennial Court

Houston, Texas 77042-2579 Cedex 07 East Hampstead Road

United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire

713-784-3131 FRANCE RG 121YQ

800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM

(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700

http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748

e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.

7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor

Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho

Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102

+886-2-727-2255 +49-711-13287-0 JAPAN

(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760

e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769
e-mail: vda-sprt@vnij.co.jp

Visual Numerics S.A. de C.V. Visual Numerics, Inc., Korea

Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.

Col. Juarez 136-1, Mapo-dong, Mapo-gu

Mexico, D.F. C.P. 06600 Seoul 121-050

Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.
Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compag Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents

Preface ix
What’s in this Manual ix
Conventions Used in this Manual xi

Technical Support xii

Chapter 1: PV-WAVE Programming 1
Where to Find Libraries of PV-WAVE Programs 1
Creating and Running Programs 3
Using PV-WAVE in Runtime Mode 12
Startup Flags 17

Chapter 2: Constants and Variables 19
Constants 19

Variables 24

Chapter 3: Expressions and Operators 29
Operator Precedence 30
Type and Structure of Expressions 31
Structure of Expressions 35

PV-WAVE Operators 37

Chapter 4: Statement Types 47
Components of Statements 47
Assignment Statement 48
Blocks of Statements 53
CASE Statement 55

Common Block Definition Statement 56
FOR Statement 57

Function Declaration Statement 60
Function Definition Statement 60
GOTO Statement 62

IF Statement 62

Procedure Call Statement 64
Procedure Definition Statement 66
REPEAT Statement 67

WHILE Statement 68

Chapter 5: Using Subscripts with Arrays 71
Syntax 71
“Extra” Dimensions 73
Subscript Ranges 74
Structure of Subarrays 76
Arrays as Subscripts to Other Arrays 78
Combining Array Subscripts with Others 79
Storing Elements with Array Subscripts 81
Memory Order 83
Matrices 83

Chapter 6: Working with Structures 89
Introduction to Structures 89
Defining and Deleting Structures 90
Structure References 94
Creating Arrays of Structures 99
Structure Input and Output 100
Advanced Structure Usage 103

PV-WAVE Programmer’s Guide

Working with Lists and Associative Arrays 104

Chapter 7: Working with Text 113

Example String Array 113

Basic String Operations 114

Concatenating Strings 114

String Formatting 115

Converting Strings to Upper or Lower Case 117
Removing White Space from Strings 118
Determining the Length of Strings 119
Manipulating Substrings 120

Using Non-string and Non-scalar Arguments 122

Using Regular Expressions 123

Chapter 8: Working with Data Files 131

Simple Examples of Input and Output 131
Opening and Closing Files 133

Logical Unit Numbers (LUNs) 136

How is the Data File Organized? 139
Types of Input and Output 144

Free Format Input and Output 151
Explicitly Formatted Input and Output 155
Input and Output of Binary Data 174
External Data Representation (XDR) Files 188
Associated Variable Input and Output 194
Miscellaneous File Management Tasks 199
UNIX-Specific Information 203
OpenVMS-Specific Information 204

Windows-Specific Information 210

Chapter 9: Writing Procedures and Functions 217
Procedure and Function Parameters 218
Compiling Procedures and Functions 222
System Limits and the Compiler 224
Using the ..LOCALS Compiler Directive 226
Parameter Passing Mechanism 228
Procedure or Function Calling Mechanism 229
Error Handling in Procedures 230
The Users’ Library 231
OpenVMS Procedure Libraries 233
Creating OpenVMS Procedure Libraries 234

Chapter 10: Programming with PV-WAVE 237

Description of Error Handling Routines 237
Error Signaling 241

Detection of Math Errors 243
Hardware-dependent Math Error Handling 247
Checking for Parameters 248

Using Program Control Routines 252

Chapter 11: Tips for Efficient Programming 255
Increasing Program Speed 255
Avoid IF Statements for Faster Operation 256
Use Array Operations Whenever Possible 257
Use System Routines for Common Operations 259
Use Constants of the Correct Type 259
Remove Invariant Expressions from Loops 260
Access Large Arrays by Memory Order 260
Be Aware of Virtual Memory 261

PV-WAVE Programmer’s Guide

Running Out of Virtual Memory? 262

Array Operations are Rewarded 266

Chapter 12: Getting Session Information 267
Using the INFO Procedure 267

Chapter 13: Using the PV-WAVE Debugger 275

The Main PV-WAVE Debugger Window 276
Using the Debugger’s Online Help System 277
Starting the Debugger 277

Saving Your Work and Stopping the Debugger 278
Loading Files into the Debugger 278

Running an Application 280

Detecting Execution Errors 280

Editing the Source File 280

Setting Breakpoints 281

Controlling Program Execution 283
Examining Variables 283

Obtaining Session Information 286

Customizing the Debugger 286

Chapter 14: Creating an OPI Option 287
Introduction 287
Managing Options 288
The Developer Environment 289
Creating An Option 295
Keyword Processing 302
License Management 303
Adding an Option to the PV-WAVE Search Path 303

Variable Handling Examples 304
Option Programming Interface Language Bindings 307
OPI Function Definitions for PV-WAVE Variables 311
wave_execute 313
wave_compile 314
wave_interp 316
wave_free. WCH 317
wave_assign_num 317
wave_assign_string 317
wave_assign_struct 317
wave_get WVH 321
wave_get_ unWVH 322
wave_free_ WVH 323
wvh_name 324

wvh_type 326

wvh_ndims 327

wvh_nelems 328
wvh_dimensions 329
wvh_sizeofdata 330
wave_type_sizeof 330
wvh_is_scalar 332
wvh_is_constant 333
wvh_dataptr 334
wave_wsdh_from_wvh 335
wave_wsdh_from_name 336
wave_free_ WSDH 337
wsdh_name 338

wsdh_ntags 339

PV-WAVE Programmer’s Guide

wsdh_tagname 339

wsdh_sizeofdata 341

wsdh_offset 341

wsdh_element 342

opi_malloc, opi_free, opi_realloc, opi_calloc 344
C Language Error Handling 345

wave_error 346

wave_onerror 348

wave_is_onerror 349

wave_onerror_continue 349

wave_is_onerror_continue 350

Appendix A: FORTRAN and C Format Strings A-1

What Are Format Strings? A-1

When to Use Format Strings A-2

What to Do if the Data is Formatted Incorrectly A-2
Example — Using C and FORTRAN Format Strings A-2
Using Format Reversion A-4

Group Repeat Specifications A-6

FORTRAN Formats for Data Import and Export A-7
FORTRAN Format Code Descriptions A-9

C Format Strings for Data Import and Export A-19

Appendix B: Modifying Your Environment B-1

Modifying Your PV-WAVE Environment
(UNIX/OpenVMS Only) B-1

Modifying Your PV-WAVE Environment (Windows) B-9

Programmer’s Guide Index 21

Vii

viii PV-WAVE Programmer’s Guide

Preface

Thismanual describesthe PV=WAV E programming languagein detail. PV=WAVE
uses an intuitive fourth-generation language (4GL) that analyzes and displays data
as you enter commands. With it you can perform complex analysis, visualization,
and application development quickly and interactively.

What’s in this Manual

This manual covers the following topics:

Chapter 1, PV-WAVE Programming — Provides an overview of the basic
elements of the command language and a brief discussion of its high-level
features.

Chapter 2, Constants and Variables — Introduces the different types and
structures of variables, constants, and predefined system variables.

Chapter 3, Expressions and Operators — Explains expressions, which are
one or more variables or constants combined with operators. Expressions are
the basic building blocks of PV=WAVE.

Chapter 4, Statement Types — Describes the syntax and semantics of
PV=WAV E statements, such as FOR and WHILE |oops, CA SE statements, and
assignments.

Chapter 5, Using Subscripts with Arrays — Describes how to use the wide
variety of subscript types, ranges, and arrays available with PV=WAVE.

Chapter 6, Working with Structures — Explains how to define and use
structures.

» Chapter 7, Working with Text — Discussesthe system routines used for string
processing and gives examples.

e Chapter 8, Working with Data Files— Describes how to read and write for-
matted and unformatted data files using the traditional routines such as
WRITEU, WRITEF, READU, and READF. In addition, a collection of new
routines, the DC_READ_* and DC_WRITE_* functions, provide a greatly
simplified alternative to other methods of reading and writing data. These rou-
tines are discussed in this chapter aswell.

» Chapter 9, Writing Proceduresand Functions— Explains how to write your
own PV=WAVE functions and procedures. Topics such as error handling and
parameter passing are discussed.

e Chapter 10, Programming with PV-WAVE — Discusses routinesthat are use-
ful when programming PV=WAV E applications.

* Chapter 11, Tipsfor Efficient Programming — Explains waysto optimize
programs written in the PV=WAV E language.

» Chapter 12, Getting Session | nformation— Describes how to get information
about the current PV=WAVE session.

* Chapter 13, Using the PV-WAVE Debugger — Explains how to use the
PV=WAV E Debugger, a development environment for creating, testing, and
maintaining VDA applications written in PV=WAVE.

e Chapter 14, Creating an OPI Option — Discusses how to usethe Option Pro-
gramming Interface (OPI) to create optional modules that can be loaded
explicitly by any PV=WAVE user.

* Appendix A, FORTRAN and C Format Strings — Discusses the format
strings that you can use to transfer data to and from PV=WAVE.

* Appendix B, Modifying Your Environment — Discusses methods for modi-
fying your PV=WAVE environment for UNIX, OpenVMS, and Windows
systems.

e Programmer’s Guide Index — A subject index with hypertext links to infor-
mation in this manual.

X Preface PV-WAVE Programmer’s Guide

Conventions Used in this Manual

You will find the following conventions used throughout this manual:
* Codeexamplesappear in this typeface. For example:

PLOT, temp, s02, Title = 'Air Quality’

» Code comments are preceded by a semicolon and are shown in this typeface,
immediately below the commands they describe. For example:

PLOT, temp, s02, Title = 'Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

e Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed casetype (! Ver-
sion). For better readability, all GUI devel opment routines are shown in mixed
case (WwMainMenu).

A $ attheend of aline of PV=WAVE code indicates that the current statement
is continued on thefollowing line. By convention, use of the continuation char-
acter ($) in this document reflectsiits syntactically correct usein PV=WAVE.
Thismeans, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV=WAVE.

WAVE> PLOT, x, y, Title = ’'Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error message is
; displayed if you enter a string this way.
The correct way to enter these linesis:

WAVE> PLOT, x, y, Title = ’'Average ' + $
"Alr Temperatures by Two-Hour Periods’
; This is the correct way to split a string onto
; two command lines.

* Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

Xi

Technical Support

If you have problems installing, unlocking, or running your software, contact
Visua Numerics Technical Support by calling:

Office Location Phone Number
Corporate Headqguarters

Houston, Texas 713-784-3131
Boulder, Colorado 303-939-8920
France +33-1-46-93-94-20
Germany +49-711-13287-0
Japan +81-3-5211-7760
Korea +82-2-3273-2633
Mexico +52-5-514-9730
Taiwan +886-2-727-2255
United Kingdom +44-1-344-458-700

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

* Your license number, asix-digit number that can be found on the packing slip
accompanying thisorder. (If you are eval uating the software, just mention that
you are from an evaluation site.)

* The name and version number of the product. For example, PV=WAVE 7.0.

* Thetype of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

* Theoperating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

» A detailed description of the problem.

Xii Preface PV-WAVE Programmer’s Guide

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

Office Location

Corporate Headquarters
Boulder, Colorado
France

Germany

Japan

Korea

Mexico

Taiwan

United Kingdom

FAX Number
713-781-9260
303-245-5301
+33-1-46-93-94-39
+49-711-13287-99
+81-3-5211-7769
+82-2-3273-2634
+52-5-514-4873
+886-2-727-6798
+44-1-344-458-748

or by sending E-mail to:

Office L ocation
Boulder, Colorado
France

Germany

Japan

Korea

Taiwan

United Kingdom

E-mail Address

support@boulder.vni.com
support@vni-paris.fr
support@visual-numerics.de

vda-sprt@vnij.co.jp

support@vni.co.kr

support@vni.com. tw

support@vniuk.co.uk

xiii

Electronic Services

Service Address
General e-mail info@boulder.vni.com
Support e-mail support@boulder.vni.com
World Wide Web http://www.vni.com
Anonymous FTP ftp.boulder.vni.com
FTP Using URL ftp://ftp.boulder.vni.com/VNI/
PV=WAVE
Mailing List: Majordomo@boulder.vni.com
To subscribe subscribe pv-wave YourEmailAddress
include:

To post messages pv-wave@boulder.vni.com

Xiv Preface PV-WAVE Programmer’s Guide

PV-WAVE Programming

PV-WAVE's programming environment is versatile and its syntax is easy to learn.
PV-WAVE allows you to concentrate on specialized applications rather than on
system design and routine program development, therefore saving valuable time.
Instant display of intermediate and final results, either in the form of graphs or
images, alows you to deal with the unexpected, to better interpret complex data,
and to create and debug programs in an efficient manner.

Furthermore, PV-WAV E provides several ways for you to develop applications
with a*“user-friendly” graphical user interface (GUI).

TIP If you arejust getting started with PV-WAVE, we recommend that you work
through the lessons in the PV-WAVE Tutorial. The Tutorial is designed to teach
you the basics of PV-WAVE and prepare you to use PV-WAVE productively.

This chapter discusses methods for creating and running PV-WAV E programs.

Where to Find Libraries of PV-WAVE Programs

Severd librariesof proceduresand functionswritteninthe PV-WAVE language are
availablefor your use. You can usetheroutinesin theselibraries asthey are, or you
can copy or modify the code for use in your own applications.

The following diagram shows the directory structure for PV-WAV E function and
procedure libraries:

guitools

wave

lib

std user vdatools

motif windows

Figure 1-1 The PV-WAVE function and procedure library directory structure.

The rest of this section describes the contents of each of these libraries.

PV-WAVE Function and Procedure Libraries

Library

Description

std

guitools

motif
windows

user

vdatools

Routinesin the Standard library are fully tested and documented by
Visual Numerics.

Contains an assortment of graphical user interface (GUI) routines.
These routines perform color table modifications, display surface
views, display and manipulate iso-surfaces, and provide accessto a
variety of other functions. The GUI routines all begin with Wg (e.g.,
WgSurfaceTool) and are described in the PV-WAV E Reference.

Contains the standard WAV E Widgets routines for Motif and
Microsoft Windows. For information on WAV E Widgets, see the PV-
WAV E Application Developer’s Guide.

Users' library routines written and submitted by PV-WAVE users.
Thislibrary contains such entries as routines for compressing
images, making pie charts, creating 2D/3D bar graphs, and
displaying 3D scatterplots.

Theroutinesin the Users' library are not documented in the PV-
WAV E documentation set. For information on aroutine in the user
library, read the header of the . pro file for that routine.

For information on adding routines to the Users' Library, see
Submitting Programsto the Users’ Library on page 232.

Contains routines used to build VDA Tools. These include the VDA
Tools Manager (Tm) routines, VDA Utilities (Wo), and a set of
prewritten VDA Tools (Wz).

PV-WAVE Programmer’s Guide

Creating Your Own Library

You can also create your own routines and add them to the library, or create your
own library. In fact, creating your own library is recommended so your routines
aren’t lost when you upgrade to a new version of PV-WAVE.

TIP Be suretoinclude the new directory in the PV-WAVE search path. You can
do this by maodifying the !Path system variable.

Creating and Running Programs

You can create program filesusing atext editor that can saveafilein ASCII format,
and then execute these programs within PV-WAVE. This method is usually how
programs are created because these programs can be saved in files for future use.
The types of programs you can create include:

e interactive command line programs
» functions and procedures

e main programs

» command or batch files

e journa files

NOTE For information on creating applications with a Graphical User Interface
(GUI), refer to PV-WAVE Application Developer’s Guide.

Creating and Running Programs Interactively at the
Command Line

Normally, functions and procedures are created in files so that they can be used in
future sessions. However, occasionally you may need to create a short program or
function that you do not want to save. The .RUN command provides this option.

Here's an example showing how to create a program interactively using the .RUN
command:

WAVE> .RUN

- FOR I = 0,3 DO BEGIN
- PRINT, 'SQRT of ', I
- PRINT, ' = ', SQRT(I)

- ENDFOR
- END

% Compiled module: S$MAINS
SQORT OF 0
= 0.00000
SQRT OF 1
= 1.00000
SQRT OF 2
= 1.41421
SQORT OF 3
= 1.73205

The example program calculates and prints out the square root for the numbers 0
through 3.

After typing . RUN and pressing <Return>, adash () prompt is displayed indicat-
ing that you are in program mode. When you have completed the program, you
must enter END as the last line and press <Return>. The message $Compiled
module: $MAINS that displaysindicatesthat thisisamain program.

Two other types of programs, procedures and functions, can also be created from
theWAVE > prompt using the .RUN command. Here's an example of how to create
afunction that squares a number:

WAVE> .RUN

- FUNCTION SQUARE, NUMBER
- RETURN, NUMBER"2

- END

$Compiled module: SQUARE

After you type END and press <Return>, the message, $Compiled module:
SQUARE, displays. Now, you can use the SQUARE function to calcul ate the square
of anumber.

A program created interactively like this cannot be saved for usein later sessions
unless you have given it a name, such as SQUARE. Aslong as the program has a
name, you can enter the following command:

SAVE, /Routine

and the routine SQUARE will be saved along with any other routines that you had
already compiled during that session.

PV-WAVE Programmer’s Guide

Creating and Running a Function or Procedure

Using an ordinary text editor that can saveto an ASCI| file, you can createfilesthat
define procedures and functions.

NOTE For much more information on writing procedures and functions, see
Chapter 9, Writing Procedures and Functions, Chapter 10, Programming with
PV-WAVE, and Chapter 11, Tips for Efficient Programming. See also Chapter 13,
Using the PV-WAVE Debugger.

Function Program Example

For example, here’sthe program listing for afilenamed square . pro that defines
afunction to square a number:

FUNCTION SQUARE, NUMBER
RETURN, NUMBER"2
END

The file automatically compiles and executes when being called at the WAVE >
prompt:
WAVE> x = SQUARE(24) & PRINT, X
% Compiled module: SQUARE.
576

The file automatically compiles and executes only under the following
circumstances:

» if thefileisinthe!Path or current directory
and

» thefilenameisthe same as the function or procedure name and hasa . pro
extension.

If thefileis not the same name as the function, then you must use the .RUN
command to compileit. See the section in this manual, WAVE_PATH: Setting Up
a Search Path (UNIX, OpenVMS) on page B-3 for details about search paths.

TIP The PV-WAV E Debugger has abuilt-in editor that you can useto develop and
run programs. See Chapter 13, Using the PV-WAVE Debugger.

Creating and Running Main Programs

A main program is a series of statements that are not preceded by a procedure or
function heading (PRO or FUNCTION) and is compiled as aunit. Main programs
can also be created interactively asindicated in the next section. Since thereisno
heading, it cannot be called from other routines, and cannot be passed arguments.
When PV-WAV E encounters the END statement in amain program as the result of
a.RUN executive command, it compilesit into the special program named
$MAINS and immediately executesit as aunit. Afterwards, it can be executed
again with the .GO executive command.

Main Program Example

For example, amain program filenamed test £ 11 e might containsthefollowing
statements:

FOR I = 3,5 DO BEGIN

PRINT, 'Square of ', I, ' ="', I"2

PRINT, 'Square root of ', I, ' = ', SQRT(I)
ENDFOR
END

To compile and run thismain program filenamed test £ile, enter thefollowing
at the WAVE > prompt:

WAVE> .RUN testfile

Theresults are:

Square of 3 = 9

Square root of 3 = 1.73205
Square of 4 = 16

Square root of 4 = 2.00000
Square of 5 = 25

Square root of 5 = 2.23607

Main Program Compared to Function or Procedure

A main program is a series of statements that is not preceded by a procedure or
function heading (PRO or FUNCTION) and is compiled as aunit. The Editor win-
dow in the Windows version of PV-WAVE isideal for creating programs like this.

Since amain program has no heading, it cannot be called from other routines, and
it cannot be passed arguments. But it can contain commands that communicate
with other applications — either off-the-shelf commercially-available software, or

PV-WAVE Programmer’s Guide

custom applications that you or a coworker have written in C. Furthermore, it can
be stored for later use, either by you or by someone else.

For exampl e, suppose that earlier you had saved a PV-WAV E program on afloppy
disk inafilenamed ditto.pro. Because the program did not include a
FUNCTION or PRO command, it is considered to be amain program. If the disk
drive on your computer is assigned to the A : partition, you can run this program
by entering the following command at the WAVE > prompt:

WAVE> .RUN A:\ditto

If the file had some other filename extension besides . pro, you would have had to
supply that, aswell (e.g., ditto.txt or ditto.pgm).

UNIX and OpenVMS USERS For more information about how to enable PV-
WAV E to communi cate with other applications, refer to the PV-WAVE Application
Developer’s Guide.

Windows USERS For more information about how to enable PV-WAVE to
communicate with other applications, refer to the PV-WAVE Application Devel-
oper’'s Guide.

Main Program Compared to Command File
The differences between a main program and a command file are:

* Main programs must have an END statement, they must be executed with the
.RUN command (or the File=>Run option), and they are executed as a unit.

» Command files do not have an END statement, are executed by typing
@filename, and are executed oneline at atime.

For more information about command files, and how they can be used during your
PV-WAVE session, refer to Running a Command (Batch) File on page 8.

Creating and Running a Command (Batch) File

Each line of acommand file (also called a batch file) isinterpreted exactly asif it
had been entered from the WAVE > prompt. In the command file mode, PV-WAV E
compiles and executes each statement before reading the next statement. Thisis

different than the interpretation of programs, procedures, and functions compiled
using . RNEW or . RUN (explained previously), inwhich all statementsin aprogram
are compiled as asingle unit and then executed. Labels, as described in Satement

Labels on page 48, are not allowed in the command file mode because each state-
ment is compiled independently.

Multi-line statements must be continued on the next line using the $ continuation
character, because in interactive mode PV-WAV E terminates every statement not
ending with $ by an END statement. A common mistake is to include a block of
commandsin a FOR loop inside a command file:

FOR I = 1,10 DO BEGIN

PRINT, I, ' square root = ', SQRT(I)
PRINT, I, ' square = ', I"2
ENDFOR

In command file mode (thisis not the case for functions and procedures), PV-
WAV E compiles and executes each line separately, causing syntax errorsin the
example above because no matching ENDFOR is found on the same line as the
BEGIN when thelineis compiled. The above example can be made to work by
inserting an ampersand between each statement in the block of statements and by
terminating each line (except the last) with a $:

FOR I = 1,10 DO BEGIN & $

PRINT, I, ' square root = ', SQRT(I) & $
PRINT, I, ' square = ', I™2 & $
ENDFOR

NOTE Both the ampersand and the dollar sign are required on every line of a
command file except the last line. For example, with just an ampersand at the end
of each line, the sample program does not run properly because each lineis com-
piled as a separate entity. Hence, a syntax error results when the ENDFOR
statement is compiled because it is seen as asingle statement that is not connected
to aFOR statement. With the dollar sign at the end of each line, no compilation
occurs until the ENDFOR statement. For more information on the dollar sign and
ampersand characters, see Soecial Charactersin the PV-WAVE Reference.

Running a Command (Batch) File

A command fileis simply afile that contains PV-WAV E executive commands and
statements. Command files are useful for executing commands and proceduresthat
are commonly used. The commands and statements in the command file are exe-
cuted asif they were entered from the keyboard at the WAVE > prompt.

There are three ways that you can run a command file:

* You can enter the command file mode (run acommand file) by entering thefol-
lowing at the WAVE > prompt:

PV-WAVE Programmer’s Guide

wavE> efilename

* FromaUNIX or OpenVMS prompt, you can enter the filenamein conjunction
with the wave command:

wave filename

» |If you have created a startup file that has been defined with the environment
variable WAVE_ STARTUP, then you can enter the wave command at the

UNIX or OpenVMS prompt to run the command file. See WAVE_STARTUP:
Using a Sartup Command File on page B-5 for details.

NOTE You cannot execute acommand file and a PV-WAV E command on the
same command line. For instance, if you were to type the following commands at
the WAVE > prompt, the command file will execute, but the PRINT command will
not.

WAVE> @myfile & PRINT, a

PV-WAV E reads commandsfrom the specified fileuntil the end isreached. You can
nest command files by prefacing the name of the new command file with the @
character. The current directory and then all directoriesin the ! Path system variable
are searched for thefile. See WAVE_PATH: Setting Up a Search Path (UNIX, Open-
VMS) on page B-3.

OpenVMS USERS A semicolon (;) after the @ character can be interpreted as
an OpenVMS filename in an OpenV M S environment. Surround the semicolon
within blank spaces or tabs to create a comment after the @ sign.

Command file execution may be terminated before the end of the file with control
returning to the interactive mode by calling the STOP procedure from within the
command file. Calling the EXIT procedure from the command file has the usual
effect of terminating PV-WAVE.

Command File Example
An example of acommand line that initiates command file execution is:

WAVE> emyfile

; Use myfile for statement and command input. If not in the current
; directory, use the search path !Path.

Possible contents of myf£i1e are shown below:

.RUN PROGA
; Run program A.

.RUN PROGB
; Run program B.

PRINT, avalue, bvalue
; Print results.

CLOSE, 3
; Close file on logical unit 3.

The command file should not contain compl ete program units such as procedures
or functions. However, complete program units can be compiled and run by using
the .RUN and .RNEW commands in the command files, as shown in the previous
example.

Creating Journal Files

Journaling provides arecord of an interactive PV-WAVE session. All text entered
at thewAVE > prompt is entered directly into thefile, and any text entered from the
terminal in responseto any other input regquest (such aswith the READ procedure)
is recorded as a comment. The result isafile that contains a complete description
of the PV-WAVE session which can be rerun later.

The JOURNAL procedure has the form:
JOURNAL [, param]

wherethe string parameter paramiseither afilename (if journaling isnot currently
in progress), or an expression to be written to thefile (if journaling is active).

Thefirst call to JOURNAL startsthe logging process. If no parameter is supplied,
ajournal file named wavesave . pro iscreated. If afilenameis specified in
param, the session’s commands will be written to afile of that name.

UNIX USERS Under UNIX, creating anew journal file causes any existing file
with the same nameto belost. Thisincludesthe default filewavesave . pro. Use
afilename parameter with the JOURNAL procedure to avoid destroying existing

journal files.

Programmatically Controlling the Journal File

When journaling is not in progress, the value of the system variable !Journa is 0.

When thejournal fileisopened, the value of thissystem variableisset to thelogical

unit number of the journa file that is opened. This fact can be used by routinesto
check if journaling is active. You can send any arbitrary datato thisfile using the

normal PV-WAVE output routines. In addition, calling JOURNAL with a parame-
ter while journaling isin progress results in the parameter being written to the

10

PV-WAVE Programmer’s Guide

journal file asif the PRINTF procedure had been used. In other words, the
Statement:

JOURNAL, param
is equivalent to:
PRINTF, 'Journal, param

with one exception—the JOURNAL procedure is not logged to the file (only its
output) while a PRINTF statement is logged to the file in addition to its output.

Journaling ends when the JOURNAL procedure is called again without an argu-
ment, or when you exit PV-WAVE.

TIP Thejournal file can be used later asacommand input file to repeat the session,
and it can be edited with any text editor if changes are necessary.

JOURNAL Procedure Example

As an example, consider the following statements:

JOURNAL, 'demo.pro'
; Start journaling to file demo.pro

PRINT, 'Enter a number: '

READ, Z
; Read the user response into variable Z.

JOURNAL, '; This was inserted with JOURNAL.'

; Send a comment to the journal file using the JOURNAL procedure.
PRINTF, !Journal, '; This was inserted ' + $

'with PRINTF.'

; Send another comment using PRINTF.

JOURNAL
; End journaling.

If these statements are executed by a user named bobf on a Sun workstation named
peanut, the resulting journal file demo . pro will look something like:

; SUN WAVE Journal File for bobf@peanut
; Working directory: /home/bobf/wavedemo
; Date: Mon Aug 29 19:38:51 1995

PRINT, 'Enter a number: '

; Enter a number:

READ, Z

11

; 100

; This was inserted with JOURNAL.

PRINTF, !Journal, '; This was inserted ' +$
'with PRINTF.'

; This was inserted with PRINTF.

NOTE Theinput datato the READ statement is shown as acomment. In addition,
the statement to insert the text using JOURNAL does not appear.

Using PV-WAVE in Runtime Mode

PV-WAVE can interpret and execute two kinds of files: source files and compiled

files.

e Source Files— Functions and procedures saved asregular ASCII fileswith a

. pro filename extension. When afunction or procedure of thistypeiscalled,
it isfirst compiled, then executed by PV-WAVE.

» Compiled Files— Functions and procedures that are first compiled in PV-
WAVE, then saved with the COMPILE procedure. By default, such files are
given a . cpr filename extension. Because afile of thistypeis aready com-
piled, it can be executed more quickly than a . pro file.

For detailed information on the COMPILE procedure, seeitsdescriptioninthe
PV-WAVE Reference.

Thisability to handle both source and compiled files allows PV-WAVE to berunin
two different modes:

* Interactive mode — The mode normally used for PV-WAV E application
development and direct access to the PV-WAV E command line, and, under
Windows, to the Home window and command line.

* Runtime mode — Allows direct execution of PV-WAV E applications com-
posed of compiled routines that have been saved with the COMPILE
procedure. The runtime mode is described in the following sections.

Runtime Mode for UNIX and OpenVMS

NOTE All of the interapplication communication methods described in the PV-
WAVE Application Developer’s Guide are supported in runtime mode except the
unidirectional communication routineswavecmd, waveinit, and waveterm.

12

PV-WAVE Programmer’s Guide

Starting PV-WAVE in Runtime Mode (UNIX/OpenVMS)

NOTE To execute a runtime mode (compiled) application, you must have a runt-
ime license. Without a runtime license for PV-WAVE, you will be unable to start
PV-WAV E in runtime mode as described in this section. For information on obtain-
ing aruntime license for PV-WAVE, please contact Visual Numerics.

In runtime mode, you can run a PV-WAV E application directly from the operating
system prompt. When the application is finished running, control returns to the
operating system level.

The application must first be compiled and saved with the COMPILE procedure.
For example, if the procedure caled images is compiled, the command:
COMPILE, ’images’

saves afile containing the compiled procedure. By default, thisfile is named
images. cpr, anditissaved in the current working directory. For detailed infor-
mation on the COMPILE procedure, see its description in the PV-WAVE
Reference.

To execute the compiled, saved application named images . cpr from the oper-
ating system prompt, enter the following command, where - r is aflag that
specifies runtime mode;

wave -r images

When the application is finished running, control is returned to the operating sys-
tem prompt. Note that the . cpr extension is not used when invoking the
application.

You can set the default mode to “runtime” with the environment variable
WAVE FEATURE TYPE by typing on aUNIX system:

setenv WAVE FEATURE TYPE RT

On aOpenVMS system, enter:
DEFINE WAVE FEATURE TYPE RT
Now, the - r flag is not needed, and you can run the application by entering:

wave images

The read-only system variable ! Feature_Type allows you to distinguish between
runtime mode and normal, interactive mode. This system variable ssimply reflects
the current setting of the WAVE FEATURE TYPE environment variable (UNIX)
or logical (OpenVMS).

More than one saved compiled file can be executed at a time from the operating
system prompt. Just separate the application filenames with spaces, as follows:

13

wave file 1 file 2 file 3 ...

The Search Path for Compiled Routine Files (UNIX/OpenVMS)

Whenever a user-written procedure or function is called, PV-WAV E searches first
for saved, compiled files (. cpr files) with the same name asthe called routine. If
asaved, compiled fileis not found, PV-WAVE searches for a sourcefile (. pro
file). PV-WAVE searches the current directory and all directories specified in the
I'Path directory path.

If you placea . pro filein the current working directory that has the same name
asa . cpr filefurther along the directory path, the . cpr filewill always be found
and executed first. To explicitly execute the . pro file, compileit with the .RUN
command or remove the . cpr file from the ! Path directory path.

NOTE The compiled (. cpr) file must have the same name as the called routine.
If the calling name of an application programis images, then the saved, compiled
file must be called images . cpr.

Developing Runtime Applications (UNIX/OpenVMS)

Applications developed for operation in runtime mode must adhere to the

following guidelines:

e Only PV-WAVE routines that are compiled and saved with the COMPILE
command can be executed in runtime mode.

* Thestartup file pointed to by the WAVE_RT STARTUP environment variable
(UNIX) or logical (OpenVMS) must be compiled and saved with the
COMPILE command. The startup file must be in a directory pointed to by the
WAVE _PATH environment variable (UNIX) or logical (OpenVMS). For more
information on this startup file, see WAVE_RT_STARTUP: Using a Startup
Procedure in Runtime Mode on page B-6.

» Executivecommands.RUN, .RNEW, .GO, .STEP, .SKIP, .CON, and the STOP
routine are not recognized in runtime mode.

» Breakpoints specified with the BREAKPOINT procedure are not recognized
in runtime mode.

* Any errorsthat occur in runtime mode are reported as usual, and control is
returned to the operating system prompt.

PV-WAVE Programmer’s Guide

Runtime Mode for Windows

Starting PV-WAVE in Runtime Mode (Windows)

In the Windows version of PV-WAVE, you can run a PV-WAVE application
directly from the DOS prompt in a Windows command shell window. When the
application is finished running, control returns to the operating system level.

The application must first be compiled in PV-WAV E and saved with the COMPILE
procedure. For example, if the procedure called images is compiled in PV-
WAVE, the command:

COMPILE, ’images’
saves afile containing the compiled procedure. By default, thisfile is named
images.cpr, and it is saved in the current working directory. For detailed infor-

mation on the COMPILE procedure, see its description in the PV-WAVE
Reference.

To execute the compiled, saved application named images . cpr from the oper-
ating system prompt, enter the following command, where - r isaflag that
specifies runtime mode:

wave -r images

When the application is finished running, control is returned to the operating sys-
tem prompt. Note that the . cpr extension is not used when invoking the
application.

You can set the default mode to “runtime” with the environment variable
WAVE FEATURE TYPE by typing:

set WAVE FEATURE TYPE=RT
Now, the - r flag is not needed, and you can run the application by entering:
wave images

The read-only system variable ! Feature_Type allows you to distinguish between
runtime mode and normal, interactive mode. This system variable ssimply reflects
the current setting of the WAVE FEATURE TYPE environment variable.

More than one saved compiled file can be executed at a time from the operating
system prompt. Just separate the application filenames with spaces, as follows:

wave file 1 file 2 file 3 ...

15

The Search Path for Compiled Routine Files (Windows)

Whenever a user-written procedure or function is called, PV-WAV E searches first
for saved, compiled files (. cpr files) with the same name as the called routine. If
asaved, compiled fileis not found, PV-WAVE searches for a sourcefile (. pro
file). PV-WAVE searches the current directory and all directories specified in the
I'Path directory path.

The compiled (. cpr) file must have the same name as the called routine. If the
calling name of an application program is images, then the saved, compiled file
must be called images . cpr.

If you placea . pro filein the current working directory that has the same name
asa . cpr filefurther along the directory path, the . cpr filewill aways befound
and executed first. To explicitly execute the . pro file, compileit with the .RUN
command or remove the . cpr file from the ! Path directory path.

Developing Runtime Applications (Windows)

Applications developed for operation in PV-WAV E’s runtime mode must adhere to
the following guidelines:

* Only PV-WAVE routines that are compiled and saved with the COMPILE
command can be executed in runtime mode.

» Thestartup file pointed to by the WAVE_RT STARTUP environment variable
must be compiled and saved with the COMPILE command. The startup file
must be in adirectory pointed to by the WAVE PATH environment variable.
For more information on this startup file, see WAVE_STARTUP: Using a
Sartup Command File on page B-5.

* PV-WAVE executive commands .RUN, .RNEW, .GO, .STEP, .SKIP, .CON,
and the STOP routine are not recognized in runtime mode.

* PV-WAVE breakpoints specified with the BREAKPOINT procedure are not
recognized in runtime mode.

NOTE Any errorsthat occur in runtime mode are reported as usual, and control is
returned to the operating system prompt.

Runtime Mode for Dynamically Loaded Options

Applications devel oped with the Option Programming Interface (OPI) can be used
in runtime mode.

16

PV-WAVE Programmer’s Guide

To load an OPI application in runtime mode, you must include the startup call for
the option at the beginning of the runtime procedure. For example, the commands
math init, stat init,and sigpro init start PV-WAVEIIMSL Mathe-
matics, PV-WAVE:IMSL Statistics, and the PV-WAVE:Signal Processing Toolkit.

Other Ways to Run the Program

Alternatively, you can achieve the same results by saving the commandsin afile,
and then compiling that file using the .RUN command entered at the WAVE >
prompt:

WAVE> .RUN test 06

For details about where to store the file and what to name it, refer to Creating and
Running a Function or Procedure on page 5.

Although thefileisnamed test 06 inthisexample, it is customary to give the
file a name that matches the name of the function or procedure it contains. Other-
wise, that function or procedure is not as easy to use from other PV-WAVE
programs.

NOTE If the program isamain program (not anamed function or procedure), this
program can be executed over and over again using the .GO executive command.
Thisis true whether you process the file with the .RUN command or the
File=>Run command from the Editor window.

.RUN and .GO are special commands call ed executive commands. For moredetails
about using executive commands to control programs, see the PV-WAVE
Reference.

Startup Flags

PV-WAVE has flags for Windows and UNIX that can be used with the “wave”
command for setting initial values for the number of local variables and for the
code size of aWAVE session.

OpenVMS USERS There are no such flagson VMS, but users can get the same
effect by setting environment variables.

wave -lv number — Sets the initial number of local variables to number.

wave -cs number — Setstheinitial size of the code areato number of bytes.

17

The corresponding environment variables for Windows and UNIX are
WAVE_INIT_LVARS and WAVE_INIT_CODESIZE.

18

PV-WAVE Programmer’s Guide

Constants and Variables

Constants and variables are combined with operators and functions to produce
results. A constant is a value that does not change during the execution of a pro-
gram. A variable is alocation with a name that contains a scalar or array value.
During the execution of a program or an interactive terminal session, numbers,
strings, or arrays may be stored into variables and used in future computations.

Constants

The data type of aconstant is determined by its syntax, as explained later in this
section. In PV-WAVE there are eight basic data types, each with its own form of
constant:

Byte — 8-bit unsigned integers.
Integer — 16-bit signed integers.

L ongwor d — 64-bit signed integers on Digital ALPHA UNIX platforms; 32-
bit signed integers on all other platforms.

Floating-Point — 32-bit single-precision floating-point.
Double-Precision — 64-bit double-precision floating-point.
Complex — Real-imaginary pair using single-precision floating-point.

Double Complex — Real-imaginary pair using double-precision floating-
point.

String — Zero or more eight-bit characters which are interpreted as text.

19

In addition, structures are defined in terms of the eight basic datatypes. Chapter 6,
Working with Structures, describes the use of structuresin detail.

Numeric Constants

This section discusses the different kinds of numeric constantsin PV-WAVE and
their syntax. The types of numeric constants are:

* Integer constants.
» Floating-point and double-precision constants.
e Complex constants.

Integer Constants

Numeric constants of different types may be represented by avariety of forms. The
syntax of integer constants is shown in the following table, where “n” represents
one or more digits.

Syntax of Integer Constants

Radix Type Form Examples
Decimal Byte nB 12B, 34B
Integer n 12, 425
Long nL 12L, 94L
Hexadecimal Byte 'n'XB '2E'XB
Integer n'X 'OFX
Long 'n'’XL 'FFXL
Octal Byte "nB "12B
Integer "n "12
'n'o ‘3770
Long "nL "12L
'n'OL 777777TOL

Digitsin hexadecimal constants may include the letters A through F, for the deci-
mal numbers 10 through 15. Also, octal constants may be written using the same
style as hexadecimal constants by substituting an o for the X. The following table
illustrates both examples of valid and invalid constants.

20

PV-WAVE Programmer’s Guide

Examples of Integer Constants

Correct I ncorrect Reason

255 256B Too large, limit is 255
'123'X '123X Unbalanced apostrophe
-'123'X '-123'X Minus sign inside apostrophe
"123 '03G'x Invalid character

'27'0L '27'L No radix

'650 ' XL, 650XL, No apostrophes

"124 "129 9isaninvalid octal digit

Values of integer constants can range from 0 to 255 for bytes, 0to+ 32,767 for inte-
gers, and 0to + (231 — 1) for longwords. Integers that are initialized with absolute
values greater than 32,767 are automatically typed aslongword. Any numeric con-
stant may be preceded by a+ or a— sign. To ensure cross-platform compatibility,
place the + or a— sign outside of the apostrophe.

CAUTION Thereisno checking for integer overflow conditions when performing
integer arithmetic. For example, the statement:

print, 32767 + 10

will give an incorrect answer and no error message. For more details on overflow
conditions and error checking, see Chapter 10, Programming with PV-WAVE.

Floating-point and Double-precision Constants

Floating-point and doubl e-precision constants may be expressed in conventional or
scientific notation. Any numeric constant that includes the decimal point is afloat-
ing-point or double-precision constant.

The syntax of floating-point and double-precision constantsis shownin . The nota-
tion sx represents the sign and magnitude of the exponent, for example: E-2.

Double-precision constants are entered in the same manner, replacing the E with a
D. For example, 1.0D0, 1D, 1.D, all represent a double precision one.

21

Syntax of Floating-point Constants

Form Example
n. 102.

.n 102
n.n 10.2

n Esx 10E5
n.Esx 10.E-3
.n Esx AE+12
n.n Esx 2.3E12
Complex Constants

Complex constants contain areal and an imaginary part, which can be of single or
double-precision floating point numbers. The imaginary part may be omitted, in
which caseit is assumed to be zero.

The form of acomplex constant is:
COMPLEX(real_part, imaginary_part)
or:

COMPLEX(real_part)

For example, COMPLEX (1, 2),isacomplex constant with areal part of one, and
an imaginary part of two. COMPLEX (1) isacomplex constant with areal part of
one and a zero imaginary component.

The ABS function returns the magnitude of a complex expression. To extract the
real part of acomplex expression, usethe FLOAT function; to extract theimaginary
part, use the IMAGINARY function. These functions are explained in the PV-
WAVE Reference.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (')
or quotation marks ("). The value of the constant is simply the characters appear-
ing between the leading delimiter (" or ") and the next occurrence of the delimiter.

non

A double apostrophe (' ") or double quotation mark (
null string; a string containing no characters.

) is considered to be the

22

PV-WAVE Programmer’s Guide

An apostrophe or quotation mark may be represented within a string that is delim-
ited by the same character, by two apostrophes, or quotation marks.

For example, 'Don' 't ' producesDon't; Or you can write; "Don't" to pro-
duce the same resullt.

The following table illustrates valid string constants.

Examples of Correct String Constants

String Value Correct

Hi there '"Hi there'
Hi there "Hi there"
Null String v

I’'m happy "I'm happy"
I’m happy 'I''m happy'
counter 'counter'

129 '129!

The following table illustrates invalid string constants.

Examples of Incorrect String Constants

String Value Incorrect Reason

Hi there 'Hi there" Mismatched delimiters

Null String Missing delimiter

I'mhappy 'I'm happy' Apostrophein string

counter ''counter!'' Double apostrophe is null string
129 "129" Illegal octal constant

NOTE Theentry "129" isinterpreted asanillegal octal constant. Thisisbecause
a quotation mark character followed by a digit from 0 to 7 represents an octal
numeric constant, not a string, and the character 9 isan illegal octal digit.

23

Representing Nonprintable Characters with UNIX/OpenVMS

The ASCII characters with values less than 32 or greater than 126 do not have
printable representations. Such characters are included in string constants by spec-
ifying their octal or hexadecimal values. A character is specified in octal notation
as abackslash followed by itsthree-digit octal value, and in hex as a backslash fol-
lowed by the x or X character, followed by itstwo-digit hexadecimal value. In order
to construct acharacter string which actually containsaliteral backsash character,
it is necessary to enter two consecutive backslash characters. The following table
gives examples of using octal or hexadecimal character notation.

Specifying Non-printing Characters

Specified String Actual Contents Comment

"\033 [;H\033[20"' '<Esc>[;H<Esc>[2J Erase — ANSI termina
"\x1B[;H\X1b[2J' '<Esc>[;H<Esc>[2] Erase — hex notation
'\007' Bell Ring the bell

'\x08" Backspace Move cursor left
'\014" Formfeed Eject current page
"\\hello" \hello' Literal backslash

Representing Nonprintable Characters with Windows

The ASCII characters with values less than 32 or greater than 126 do not have
printable representations. To include such “nonprintable” charactersin astring,
you can use the STRING function. For example, the bell sound is a nonprintable
ASCII “character”. The way to represent this character inastring is.

s='This is a bell:’ + STRING(7B)
PRINT, s
; The text is printed and the bell rings.

The notation “7B” indicates that the parameter is of byte datatype. Theresultis
egual to the decimal ASCII code 7, which isthe bell character. For more informa-
tion, see Using STRING with Byte Arguments on page 116.

Variables

Variables are named repositories where information is stored. A variable may con-
tain ascalar, vector, multidimensional array, or structure of virtually any size.

24 PV-WAVE Programmer’s Guide

Arrays may contain elements of any of the eight basic data types plus structures.
Variablesmay be used to storeimages, spectra, single quantities, names, tabl es, etc.

The following are the basic data types that variables may have:

* Byte— An eight-bit unsigned integer ranging in value from
0 to 255. Pixelsin images are commonly represented as byte data.

* Integer — A 16-bit signed integer ranging from —32,768 to +32,767.

* Longword (Long Integer) — A 32-bit signed integer ranging in value from
approximately minus two billion to plus two billion.

NOTE On Digital ALPHA UNIX platforms only, the longword is 64 hits.

» Floating Point — A 32-bit single-precision number intherange of +1038, with
7 decimal places of significance.

« DoublePrecision — A 64-bit double-precision number in therange of £103°8,
with 14 decimal places of significance.

* Complex — A real-imaginary pair of single-precision floating numbers.

* Double Complex — A real-imaginary pair of double-precision floating
numbers.

» String— A sequence of characters, from 0to 32,767 charactersinlength. This
datatypeisused to transfer a phanumeric strings as well as date/time data for
calendar-based analysis.

e Structure— An aggregation made from the basic data types, other structures,
and arrays. Date/time datais handled internally as a structure.

Attributes of Variables

Each variable has a structure and atype, which can change dynamically during the
execution of a program or terminal session.

One important advantage that PV-WAV E has over program languages such as C
and FORTRAN is that you do not need to declare variables. When avariable is
assigned avalue, it is automatically declared as a specific data type.

NOTE The dynamic nature of PV-WAVE variables may seem unusual to you if
you are used to strongly typed languages such as PASCAL. For example, in PV-
WAVE you can write avalid statement that assigns a scalar variable to an array
variable, or astring variable to an array variable.

25

Structure of Variables

A variable may contain either asingle value (ascalar), or it may contain a number
of values of the same type (an array). Note that one-dimensional arrays are often
referred to as vectorsin the PV-WAV E documentation. Strings are considered asin-
glevalue and a string array contains a number of fixed-length strings. A single
instance of a structureis considered a scalar.

In addition, a variable may associate an array structure with afile; these variables
are called associated variables. Referencing an associated variable causes data to
be read from or written to the file. Associated variables and the related ASSOC
function are described in Chapter 8, Working with Data Files, andin the PV-WAV E
Reference.

Type of Variables

A variable may have one and only one of the following types. undefined, byte, inte-
ger, longword, floating-point, double-precision floating-point, complex floating-
point, string, or structure.

When avariable appears on the |eft-hand side of an assignment statement its
attributes are copied from those of the expression on the right-hand side. For exam-
ple, the statement:

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed.

NOTE Thisisan example of PV-WAV E’s |oose data typing. This may be confus-
ing to programmers who are used to strongly typed languages where such an
assignment statement would produce an error.

Initialy, every variable has the single attribute of undefined. Attempts to use unde-
fined variables result in an error.

Names of Variables

Variables are named by identifiers that have the following characteristics:

» Eachidentifier must begin with aletter and may contain from oneto 31
characters.

» Thesecond and following characters may be aletter, digit, the underscore char-
acter, or the dollar sign.

26

PV-WAVE Programmer’s Guide

» A variable name may not contain embedded spaces, because spaces are con-

sidered to be delimiters.

e Characters after the first 31 are ignored.

* Namesarecaseinsensitive, lowercaselettersare converted to uppercase; so the
variable name abc is equivalent to the name ABC.

« A variable may not have the same name as a function or reserved word. This
will result in asyntax error. The following are reserved words:

Reserved Words

AND BEGIN
DO ELSE
ENDELSE ENDFOR
ENDWHILE EQ

GE GOTO
LE LT

NOT OF

PRO REPEAT
WHILE XOR

The following table illustrates examples of valid and invalid variable names.

Examples of Variable Names

CASE
END
ENDIF
FOR
GT
MOD

COMMON
ENDCASE
ENDREP
FUNCTION
IF

NE

ON_IOERROR OR

THEN

UNTIL

Correct Incorrect Reason

A EOF Conflicts with function name
A6 64 Doesn't start with aletter
INIT STATE _INIT Doesn't start with aletter
ABCSDEF AB@ Illegal character, @

My variable ab cd Embedded space

27

System Variables

NOTE For detailed information on each system variable, see the PV-WAVE
Reference.

System variables are a special class of predefined variables, available to al pro-
gram units. Their names always begin with the exclamation mark character ! .
System variables are used to set the options for plotting, to set various internal
modes, to return error status, and perform other functions.

System variables have a predefined type and structure which cannot be changed.
When an expression is stored into a system variable, it is converted to the type of
the variable if necessary and possible.

Certain system variables are read only, and their values may not be changed. You
may define new system variables with the DEFSY SV procedure.
Examples of system variable references are:

!|Prompt = ’‘Good Morning: ’
; Change the standard WAVE> prompt to a new string.

A = IC
; Store value of the cursor system variable !C in A.

PRINT, ACOS(a) * !Radeg

; Use IRadeg, a system variable that contains a radians-to- degrees
; conversion factor, to convert radians to degrees.

1P.Title = ’'Cross Section’
; Set default plot title. !P is a structure, in which Title is a field.

If an error message appears that refersto the system variables!D, P, I X, 1Y, or ! Z,
the error message will contain an “expanded” name for the system variable. The
“expanded” names of these system variables are:

 Devicefor D
e Plotfor!P
e Axisfor!X,!Y,and!Z

28

PV-WAVE Programmer’s Guide

Expressions and Operators

Variables and constants may be combined, using operators and functions, into
expressions. Expressions are constructs that specify how results are to be obtained.
Expressions may be combined with other expressions, variables, and constants to
yield more complex expressions. Unlike FORTRAN or BASIC expressions, PV-
WAV E expressions may be scalar or array-valued.

Thereisagreat variety of operatorsin PV-WAVE. In addition to the standard oper-
ators — addition, subtraction, multiplication, division, exponentiation, relations
(EQ, NE, GT, etc.), and Boolean arithmetic (AND, OR, NOT and XOR) — opera-
tors exist to find minima and maxima, select scalars and subarrays from arrays
(subscripting), and to concatenate scalars and arrays to form arrays.

Functions, which are operators in themselves, perform operations that are usualy
of amore complex nature than those denoted by simple operators. Functions exist
for data smoothing, shifting, transforming, evaluation of transcendental functions,
etc. For acomplete description of the PV-WAV E functions and procedures, seethe
PV-WAV E Reference.

Expressions may be arguments to functions or procedures. For example:
SIN(A * 3.14159)

evaluates expression 2 multiplied by the value of ©t and then applies the trigono-
metric sinefunction. Thisresult may be used as an operand to form amore complex
expression or as an argument to yet another function. For example:

EXP(SIN(A * 3.14159))

smna

evauatesto e

29

Operator Precedence

Operators are divided into the levels of algebraic precedence found in common
arithmetic. Operatorswith higher precedence are eval uated before thosewith lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in the following
table:

Operator Precedence

Priority Operator

First (highest) * (exponentiation)

Second * (multiplication)
(matrix multiplication)
/ (division)
MOD (modulus)
Third + (addition)
— (subtraction)
< (minimum)
> (maximum)
NOT (Boolean negation)

Fourth EQ (equality)
NE (not equal)
LE (lessthan or equal)
LT (lessthan)
GE (greater than or equal)
GT (greater than)

Fifth AND (Boolean AND)
OR (Boolean OR)
XOR (Boolean exclusive OR)
For example, the expression:
4 + 5 * 2

yields 14 because the multiplication operator has a higher precedence than the
addition operator. Parentheses may be used to override the default evaluation:

(4 + 5) * 2

yields 18 because the expression inside the parenthesesis evaluated first. A useful
rule of thumb iswhen in doubt, parenthesize.

Some examples of expressions are;

30

PV-WAVE Programmer’s Guide

; The value of variable A.

A+ 1
; The value of A plus 1.

A<2+1
; The smaller of A or 2, plus 1.
A <2 %3
; The smaller of A and 6; The multiplication operator (*) has a higher
; precedence than the minimum operator (<).
2 * SQRT(A)
; Twice the square-root of A.
A + 'Thursday’

; The concatenation of the strings A and ‘Thursday’. An error
; will result if A is not a string.

Type and Structure of Expressions
Every entity in PV-WAVE has an associated type and structure. The eight atomic
datatypes, in decreasing order of complexity are:
e Complex single-precision floating point
e Complex double-precision floating point
* Double-precision floating point
* Floating point
* Longword integer

* Integer
* Byte
e String

The structure of an expression may be either ascalar or an array. The type and
structure of an expression depend upon the type and structure of its operands.

NOTE Unlike many other languages, the type and structure of expressionsin PV-
WAV E cannot be determined until the expressionisevaluated. Because of this, care
must betaken when writing programs. For example, avariable may be ascalar byte
variable at one point in aprogram, while at alater point it may be set to acomplex

array.

31

PV-WAV E attempts to eval uate expressions containing operands of different types
in the most accurate manner possible. The result of an operation becomesthe same
type as the operand with the greatest precedence or potential precision. For exam-
ple, when adding abyte variable to afl oating point variable, the byte variableisfirst
converted to floating point and then added to the floating point variable, yielding a
floating point result. When adding a double-precision variable to a complex vari-
able, the result is complex because the complex type has a higher position in the
hierarchy of data types.

When writing expressions with mixed types, caution must be used to obtain the
desired result. For example, assume the variable A is an integer variable with a
value of 5. The following expressions yield the indicated results:
A/ 2
; Evaluates to 2. Integer division is performed. The remainder is
; discarded.
A/ 2.
; Evaluates to 2.5. The value of 2 is first converted to floating point.
A/ 2 + 1.
; Evaluates to 3. Integer division is done first because of operator
; precedence. Result is floating point.
A/ 2. +1

; Evaluates to 3.5. Division is done in floating point and then the 1
; is converted to Floating point and added.

NOTE When other types are converted to complex type, the real part of the result
is obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example:

'123' + 123.0
IS 246.0,
'123.333"' + 33

resultsin aconversion error because 123.333 isnot avalid integer constant. In the
same manner, 'ABC' + 123 alSD causesacornversion error.

Type Conversion Functions

PV-WAVE provides a set of functions that convert an operand to a specific type.
These functions are useful in many instances, such as forcing the evaluation of an

32

PV-WAVE Programmer’s Guide

expression to a certain type, outputting datain a mode compatible with other pro-
grams, etc. The conversion functions are shown in the following table.

Type Conversion Functions

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to integer

LONG Convert to longword integer

FLOAT Convert to floating point

DOUBLE Convert to double-precision Floating point

COMPLEX Convert to single-precision complex value

DCOMPLEX Convert to double-precision complex value

For example, the result of the expression FIX (A) isof single-precision (16-bit)
integer type with the same structure (scalar or array) asthe variable. The variable
may be of any type. These conversion functions operate on data of any structure:
scalars, vectors, or arrays. If A lies outside the range of single-precision integers
(—32,768 to +32,767) an error will result.

CAUTION The statement:

PRINT, FIX(66000)

prints the value 464, which is 66000,16, with no indication that an error occurred.
The FINITE and CHECK_MATH functions test floating point results for valid
numbers, and check the accumul ated math error status respectively. For details on
these error-checking functions, see Chapter 10, Programming with PV-WAVE.

The statement:

A = FLOAT (A)

is perfectly legitimate in; its effect isto force the variable A to have Floating point
type.

Special cases of type conversions occur when converting between strings and byte
arrays. Theresult of the BY TE function applied to astring or string array isabyte
array containing the ASCII codes of the characters of the string. Converting abyte

33

array with the STRING function yieldsastring array or scalar with oneless dimen-
sion than the byte array.

The following table shows examples of conversion on functions.

Examples of Conversion Functions

Example Result

FLOAT (1) 10

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

BYTE (1.2) 1

BYTE (-1) 255 (Bytes are modul o 256)

BYTE ('01ABC') [48,49,65,66,67]

STRING ([65B, 66B,67B]) ABC

FLOAT (COMPLEX (1, 2)) 1.0

COMPLEX ([1, 21,[4, 51) [COMPLEX(1,4),COMPLEX(2,5)]

Extracting Fields

When called with more than a single parameter, the BY TE, COMPLEX,
DCOMPLEX, FIX, LONG, FLOAT and DOUBLE functions create an expression
of the designated type by extracting fields from the input parameter without per-
forming type conversion. Theresult isthat the original binary informationissimply
interpreted as being of the new type. This feature is handy for extracting fields of
data of one type embedded in arrays or scalars of another type.

The general form of the type conversion functionsis:
CONV_FUNCTION(expression, offset [, dimy, ..., dim,])
Where:

CONV_FUNCTION isthe name of one of the conversion functions listed
previoudly.

expression — An array or scalar expression of any type from which thefield isto
be extracted.

offset — Starting byte offset within expression of the field to be extracted. Zerois
thefirst byte.

34

PV-WAVE Programmer’s Guide

dimy, ..., dim, — Thedimensions of theresult. If these dimensionsare omitted, the
result isascalar. If more than two parameters appear, the third and following
parameters are the dimensions of the resulting array.

For example, assume file unit 1 is open for reading on afile containing 112-byte
binary records containing the fields shown below:

Example Fields in Open File

Bytes Type Name

0-7 Double Time

8 Byte Type

9-10 Integer Count

11-110 Floating DATA (20-by-5 array)
111 Byte Quality

The following program segment will read arecord into an array and extract the
fields.

A = BYTARR(112)
; Define array variable to contain record, 112 bytes.
READU, 1, A
; Read the next record.
TIME = DOUBLE (A, 0)
; Extract TIME. Offset = 0, double-precision.
TYPE = BYTE (A, 8)
; Extract TYPE. Starting offset is 8.
COUNT = FIX(A, 9)
; Count, offset = 9, integer.
DATA = FLOAT (A, 11, 20, 5)
; DATA = floating array, dimensions of 20-columns by 5-rows, starting offset is 11 bytes.
QUALITY = BYTE(A, 111)
; Last field, single byte.

Structure of Expressions

Expressions may contain operands with different structures, just as they may con-
tain operands with different types. Structure conversion is independent of type

35

conversion. An expression will yield an array result if any of its operandsis an
array as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Eight functions exist to create arrays of the eight types. BY TARR, INTARR,
LONARR, FLTARR, DBLARR, COMPLEXARR, DCOMPLEXARR, and
STRARR. The dimensions of the desired array are the parameters to these func-
tions. Theresult of FLTARR (5) isafloating point array with one dimension, a
vector, with five elementsinitialized to zero. FLTARR (50, 100) isatwo-
dimensional array, a matrix, with 50 columns and 100 rows.

Thesize of an array-valued expression is equal to the smaller of itsarray operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array,
the last 50 points of the larger array are ignored. Array operations are performed
point-by-point without regard to individual dimensions. An operation involving a
scalar and an array always yields an array of identical dimensions. When two
arrays of equal size (number of elements) but different structure are operands, the
result is of the same structure as the first operand.

For example:

FLTARR(4) + FLTARR(1, 4)
yields FLTARR (4) .

In the above example, arow vector is added to a column vector and arow vector is
obtai ned because the operands are the same size causing the result to take the struc-
ture of thefirst operand.

Here are some examples of expressions involving arrays:

ARR + 1

; Is an array in which each element is equal to the same element in

; ARR plus 1. The result has the same dimensions as ARR. If ARR is
; byte or integer the result is of integer type, otherwise the result is

; the same type as ARR.

ARR1 + ARR2
; Is an array obtained by summing two arrays.

36

PV-WAVE Programmer’s Guide

(ARR < 100) * 2
; Is an array in which each element is set to twice the smaller of
; either the corresponding element of ARR or 100.
EXP(ARR / 10.)
; Is an array in which each element is equal to the exponential of the
; same element of ARR divided by 10.
ARR * 3. / MAX(ARR)
; Is an inefficient way of writing the following line:

ARR * (3. / MAX(ARR))
; The more efficient way.

In the inefficient example above, each point in ARR is multiplied by 3 and then
divided by the largest element of ARR. (The MAX function returnsthe largest ele-
ment of its array argument.) Thisway of writing the statement requires that each
element of ARR be operated ontwice. If (3. / MAX (ARR)) isevauated with
one division and the result then multiplied by each point in ARR the process
requires approximately half the time.

PV-WAVE Operators

The following types of operators are described in this section:
e Assignment, array, numeric, and string operators

* Boolean operators

» Relational operators

Assignment, Array, and Numeric Operators
Summary of Operators

Operator Meaning

O Expression grouping
= Assignment

n Exponentiation

* Multiplication

Matrix multiplication
/ Division

37

Summary of Operators (Continued)

Operator Meaning

+ Addition and string
concatenation

- Subtraction

MOD Modulo operator

[Array concatenation

Parentheses ()

Used in grouping of expressions and to enclose subscript and function parameter
lists. Parentheses can be used to override order of operator evaluation as described
above. Examples:

A(X, Y)
; Parentheses enclose subscript lists, if A is defined as a variable.

SIN(ANG * PI / 180.)
; Parentheses enclose function argument lists.

X=(A+5) /B
; Parentheses specify order of operator evaluation.

Assignment Operator =

The value of the expression on the right side of the equal signis stored in the
variable, subscript element, or range on the left side. For more information, see
Assignment Satement on page 48.

For example:

A = 32
; Assigns the value of 32 to variable A.

Addition Operator +

Besides arithmetic addition, the addition operator concatenates the strings. For
example:

B=23+6
; Assigns the value of 9 to B.

vs]
|

= 'John’ + ' ' + ’'Doe’
; Assigns the string value of “John Doe” to B.

38

PV-WAVE Programmer’s Guide

Subtraction Operator —

Besides subtraction, the minus sign is used as the unary negation operator. For
example:

c=9 -5
; Assigns the value of 4 to C.

c=-2c
; Changes the sign of C.
Multiplication Operator *

Multiplies two operands. For example:
A =5 * 4
; Assigns the value of 20 to A.

Division Operator /

Divides two operands. For example:

A =20/ 4
; Assigns the value of 5 to A.

Exponentiation Operator *

A"Bisegual to A tothe B power. If B isof integer type, repeated multiplicationis
applied, otherwise the formulaAB = eB09A jsevaluated. 0°0 isundefined for
all types of operands.

Matrix Multiplication Operator #
The rules of linear algebra are followed:

» Thetwo operands must conform in that the second dimension of thefirst oper-
and must equal the first dimension of the second operand.

* Thefirst dimension of theresult isequal to thefirst dimension of thefirst oper-
and and the second dimension of theresult isequal to the second dimension of
the second operand.

» Thetype of theresult is double complex, single complex, double-precision or
floating point, in decreasing order of precedence. In mixed-mode operations,
the calculations are performed in the mode yielding the greatest precision. If
neither operand is of one of these types, the type of the result is floating point.

If aparameter is a one-dimensional vector, it isinterpreted as either arow or col-
umn vector, whichever conformsto the other operand. If both operands are vectors,

39

the result of the operation isthe outer product of the two vectors. Resultsin which
the second dimension is equal to 1 (row vectors) are converted to vectors.

Usethe TOTAL function to obtain the inner product which is the sum of the prod-
uct of the elements of the vectors. The expression

TOTAL (A * A)

calculates the inner product of the vector A.

For example, the statement:

PRINT, [1, 2, 3, 4] # [1, 2, 3, 4]

prints the outer product of two four-element vectors whose elements are the inte-
gers1to4, or:

123 4
246 8
369 12
4812 16

NOTE The notion of columns and rows is reversed from that of linear algebra,
athough their treatment is consistent. The main reason for thisisto alow the X
subscript to appear first when subscripting images, asisthe convention. Arraysand
vectorsthat are operandsfor the matrix multiplication operator may be transposed,
either by entering them transposed or by using the TRANSPOSE function.

MoD

Modulo operator. I MOD J isequal to the remainder when T isdivided by J.
When T or J are floating point, double-precision, or complex,

I MODJ =1 - J * [I/J],wherethebracketed valueisthe largest integer
smaller than or equal to the expression in the brackets. For example:

A = 9 MOD 5
; Alis set to 4.

A = (ANGLE + B) MOD (2 * PI)
; Compute angle modulo 2.

Array Concatenation Operators []

Operands enclosed in square brackets and separated by commas are concatenated
toformlarger arrays. Theexpression [A, B] isanarray formed by concatenating
thefirst dimensions of A and B, which may be scalars or arrays.

40

PV-WAVE Programmer’s Guide

Similarly, [A, B, C] concatenates?, B, and C. The second and third dimensions
may be concatenated by nesting the bracket levels: [[1, 21, [3, 4]]isa
two-by-two array with thefirst row containing 1 and 2, and the second row contain-
ing 3 and 4. Operands must have compatible dimensions: all dimensions must be
equal except the dimension that is to be concatenated. For example, [2,

INTARR (2, 2)] areincompatible.

For example:

c = [-1, 1, -1]
; Defines C as three-point vector.

c = [c, 12]
; Adds a 12 to the end of C.
c = [12, C]

; Inserts a 12 at the beginning.

PLOT, [ARR1l, ARR2]
; Plots ARR2 appended to the end of ARR1.

KER = [[1, 2, 11, [2, 4, 2], [1, 2, 1]]
; Defines a 3-by-3 array.

Boolean Operators

Results of relational expressions may be combined into more complex expressions
using the Boolean operators AND, OR, NOT, and XOR (exclusive OR). The action
of these operatorsis summarized as follows:

Operator (oper) Toper T T oper F F oper F
AND T F F
OR T T F
XOR F T F

NOT isthe Boolean inverse and is a unary operator because it only has one oper-
and. NOT trueisfaseand NOT falseistrue.

AND

AND isthe Boolean operator which results in true whenever both of its operands
aretrue, otherwise the result is false. Any non-zero value is considered true. For
integer and byte operands, a bitwise AND operation is performed. For operations
on other types, the result is equal to the first operand if the second operand is not
equal to zero or the null string. Otherwise, it is zero or the null string.

41

NOT

NOT isthe Boolean complement operator. NOT trueisfalse. NOT complements
each bit for integer or byte operands. For floating point operands, the result is 1.0
if the operand is zero, otherwise, the result iszero. NOT isthe Boolean inverse and
isaunary operator because it only has one operand. NOT trueisfalse and NOT
falseistrue.

OR

OR isthe Boolean inclusive operator. For integer or byte operands a bitwise inclu-
sive“or” isperformed. For example, 3 OR 5 equals 7. For floating point operands
the OR operator returnsa 1.0 if neither operand is zero, otherwise zero isthe resuilt.

XOR

The Boolean exclusive “or” function. XOR isonly valid for integer or byte oper-
ands. XOR returns aonebit if the corresponding bitsin the operands are different;
if they are equal, a zero bit is returned.

Examples

When applied to bytes, integers, and longword operands, the Boolean functions
operate on each binary bit.

(1 AND 7)
; Evaluates to 1.
(3 OR 5)
; Evaluates to 7.
(NOT 1)
; Evaluates to —2 (twos-complement arithmetic).

(5 XOR 12)
; Evaluates to 9.

When applied to data types that are not integers, the Boolean operators yield the
following results:

OP1 AND OP2

; Means oP1 if OP2 is true (not zero or not the null string), otherwise
; false (zero or the null string).

OP1 OR OP2
; Means OP2 if OP2 is true, otherwise OP1.

Some examples of relational and Boolean expressions are:
(A LE 50) AND (A GE 25)

42

PV-WAVE Programmer’s Guide

; True if A is between 25 and 50. If A is an array the result is an array
; of ones and zeroes.
(A GT 50) OR (A LT 25)
; True if A is less than 25 or A is greater than 50. This expression is
; the inverse of the first example.
ARR AND ’'FF’'X

; ANDs the hexadecimal constant FF, (255 in decimal) with the
; array ARR. This masks the lower 8 bits and zeroes the upper bits.

Relational Operators

Operator Meaning

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Lessthan or equal to

LT Lessthan

< Comparison to find minimum
> Comparison to find maximum

Relational operators apply arelation to two operands and return alogical value of
true or false. The resulting logical value may be used as the predicate in IF,
WHILE, or REPEAT statements or may be combined using Boolean operatorswith
other logical values to make more complex expressions. For example:

1 EQ 1
istrue, and
1 GT 3
isfase.

The rules for evaluating relational expressions with operands of mixed modes are
the same as those given above for arithmetic expressions. For example, in therela
tional expression:

(2 EQ 2.0)

43

the integer 2 is converted to floating point and compared to the Floating point 2.0.
The result of this expression istrue which is represented by a floating point 1.0.

Thevaluetrueis represented by the following:

* Anodd, non-zero value for byte, integer and longword integer data types.
* Any non-zero value for single, double-precision and complex floating.

e Any non-null string.

Conversely, false is represented as anything that is not true: zero- or even-valued
integers, zero-valued floating point quantities; and the null string.

Therelational operators return avalue of 1 for true and zero for false. The type of
the result is determined by the same rules that govern the types of arithmetic
expressions. So,

(100. EQ 100.)

is1.0, while

(100 EQ 100)

is1, theinteger.

Relational operators may be applied to arrays and the result, which is an array of
ones and zeroes, may be used as an operand. For example, the expression:

ARR * (ARR LE 100)

isan array equal to ARR except that all points greater than 100 have been zeroed.
Theexpression (ARR LE 100) isan array that containsa 1 where the correspond-
ing element of ARR islessthan or equal to 100, and zero otherwise.

Minimum Operator <

Thevalue of A <B isequal to the smaller of A or B. For example:

A=5<3
; Sets A to 3.

ARR = ARR < 100
; Sets all points in array ARR that are larger than 100 to 100.

X = X0 < X1 < X2
; Sets X to smallest operand.
Maximum Operator >

A > Bisegua tothelarger of A or B. For example:

C = ALOG(D > 1E-6)

44

PV-WAVE Programmer’s Guide

; Avoids taking logs of 0 or negative numbers.

PLOT, ARR > 0
; Plots only positive points. Negative points are plotted as zero.

EQ

EQ returnstrue if its operands are equal, otherwise it is false. For floating point
operands true is 1.000; for integers and bytes, it is 1. For string operands, a zero-
length null string represents fal se.

GE

GE isthegreater than or equal to relational operator. GE returnstrueif the operand
on the left is greater than or equal to the one on theright.

One use of relational operatorsisto mask arrays.

A = ARRAY * (ARRAY GE 100)

sets A equal to ARRAY whenever the corresponding element of ARRAY is greater
than or equal to 100; if the element is less than 100, the corresponding element of
AissettoO.

Strings are compared using the ASCI| collating sequence: “ ” islessthan “0”, is
lessthan “9”, islessthan “A”, islessthan “Z”, islessthan “a’, which isless than

“Z .

GT
Greater than relational operator.

LE
Lessthan or equal to relational operator.

LT

Less than relational operator.

NE

NE isthe not equal to relational operator. It is true whenever the operands are not
of equal value.

45

46

PV-WAVE Programmer’s Guide

Statement Types

PV-WAV E programs, procedures, and functions are composed of one or morevalid
statements. Most simple statements may be entered in the interactive mode in
response to the WAVE > prompt. The 12 types of statements are:

* Assignment

* Block

« CASE

e Common Block Definition
* FOR

* Function Declaration
* Function Definition
« GOTO

e IF

* Procedure Call

* Procedure Definition
* REPEAT

« WHILE

Components of Statements

Statements may consist of any combination of three parts:

47

* Alabel field
» The statement proper
* A comment field

Spaces and tabs may appear anywhere except in the middle of an identifier or
numeric constant.

Statement Labels

L abels are the destinations of GOTO statements. The label field, which must
appear before the statement or comment, is simply an identifier followed by a
colon. A line may consist of only alabel field. Label identifiers, as with variable
names, may consist of from oneto 31 a phanumeric characters. The $ (dollar sign)
and _ (underscore) characters may appear after the first character. Some examples
of labels are:

Label 1:
LOOP BACK: A = 12
ISQUIT: RETURN ;Quit the loop.
; Note that comments are allowed after labels.

Adding Comments

The comment field, which isignored, beginswith asemicolon and continuesto the
end of theline. Lines may consist of only acomment field. There are no execution
time or space penalties for commentsin PV-WAVE.

Assignment Statement

The assignment statement stores avalue in avariable. There are four forms of the
assignment statement. They are described in detail in this section.

The following table summarizes the four forms of assignment statements.

Subscript Expression

Syntax Structure Structure Effect

Form 1. none Scalar or Array The expr isstored in Var.

Var = expr

Form 2: Scalar Scalar The scalar expressionis stored in a
Var(subs) = scalar.5 single element of Var.

48 PV-WAVE Programmer’s Guide

Subscript Expression

Syntax Structure Structure Effect

Array Scalar The scalar expression is stored in the

designated elements of Var.

Form 3: Range Scalar The scalar isinserted into the
Var(range) = expr subarray.

Range Array Ilegal
Form 4. Scalar Array The array isinserted in the Var array.
Var(subs) = array

Array Array The elements of the array are stored

in the designated elements of Var.

Form 1

Thefirst (and most basic) form of the assignment statement has the form:
variable = expression
; Stores the value of the expression in the variable.

The old value of the variable, if any, isdiscarded and the value of the expressionis
stored in the variable. The expression on the right side may be of any type or struc-
ture. Some examples of the basic form of the assignment statement are:

MMAX = 100 * X + 2.987
; Stores the value of the expression in MMAX.

NAME = ’'MARY’
; Stores the string ‘MARY’ in the variable NAME.

ARR = FLTARR(100)
; ARR is now a 100-element floating-point array.

ARR = ARR(50:%*)
; Discards elements 0 to 49 of ARR. ARR is now a 50-element array.

Form 2

The second type of assignment statement has the form:
variable(subscripts) = scalar_expression
; Stores the scalar in an element of the array variable.

Here, asingle dement of the specified array is set to the value of the scalar expres-
sion. The expression may be of any type and is converted, if necessary, to the type

49

of the variable. The variable on the left side must be either an array or afile
variable.

DATA (100) = 1.234999
; Sets element (100) of DATA to value.

NAME (INDEX) = ‘JOE’
; Stores a string in the array. NAME must be a string array or an error will result.

Using Array Subscripts with the Second Form

If the subscript expressionisan array, the scalar value will be stored in the elements
of the array whose subscripts are elements of the subscript array. For example, the
Statement:

DATA([3, 5, 7, 9]) =0

will zero thefour specified elementsof DATA: DATA (3),DATA (5),DATA(7),
and DATA (9).

Thesubscript array isconverted to longword typeif necessary before use. Elements
of the subscript array that are negative or greater than the highest subscript of the
subscripted array are ignored.

The WHERE function may frequently be used to select elements to be changed.
For example, the statement:

DATA (WHERE (DATA LT 0)) = -1

will set all negative values of DATA to—1 without changing the positive values. The
result of thefunction WHERE (DATA LT 0) isavector composed of the subscripts
of the negative values of DATA. Using thisvector as asubscript changesall the neg-
ative valuesto -1 in DATA. Note that if the WHERE function finds no eligible
elements, it returns a 1-element vector equal to —1; using this result as a subscript
vector changes no elements of the subscripted array; it resultsin a* subscript out of
range” error as negative subscripts are not allowed. For more information on the
WHERE function, see the PV-WAVE Reference.

Form 3

The third type of assignment statement is similar to the second, except the sub-
scripts specify arange in which all elements are set to the scalar expression.

variable(subscript_range) = scalar_expression
Stores the scalar in the elements of the array variable designated by the sub-
script range.

50

PV-WAVE Programmer’s Guide

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal
to the size of the dimension minus one may be written as *.

For example, ARR (I:J) denotesthose pointsin the vector ARR with subscripts
between T and J. T must be less than J and greater than or equal to zero. J must
belessthan the size of thearray dimension. ARR (I : *) denotesthe pointsin ARR
from ARR (1) tothelast paoint.

For more information on subscript ranges, see Subscript Ranges on page 74.

Assuming the variable B is a512-by-512 byte array, some examples are:
B(*, I) =1

: Stores ones in the ith row.
B(J, *) =1

; Stores ones in the jth column.

B(200:220, *) = 0
; Zeroes all the rows of the columns 200 through 220 of the array B.

B(*) = 100.
; Stores the value 100 in all the elements of the array B.

Form 4

The fourth type assignment statement is of the form:

variable(subscripts) = array
Inserts the array expression into the array variable starting at the element des-
ignated by the subscripts.

Notethat thisformis syntactically identical to the second type of assignment state-
ment, except the expression on the right is an array instead of a scalar. Thisform
of the assignment statement is used to insert one array into another.

Thearray expression on theright isinserted into the array appearing on theleft side
of the equal sign, starting at the point designated by the subscripts.

For example, to insert the contents of an array called A into an array called B, start-
ingatpoint B (13,24):

B(13, 24) = A
; If A'is a 5-column by 6-row array,
;elements B(13:17, 24:29) will be replaced by the contents of the array A.

Another example moves a subarray from one position to another:

B(100, 200) = B(200:300, 300:400)

51

; A subarray of B, specifically the columns 200 to 300 and
; rows 300 to 400, is moved to columns 100 to 200 and rows
; 200 to 300, respectively.

Using Array Subscripts with the Fourth Form

If the subscript expression applied to the variable is an array and an array appears
on the right side of the statement:

var(array) = array

elements from the right side are stored in the elements designated by the subscript
vector. Only those elements of the subscripted variable whose subscripts appear in
the subscript vector are changed.

For example, the statement:

B([2, 4, 61) = [4, 16, 36]

is equivalent to the following series of assignment statements:
B(2) = 4 & B(4) = 16 & B(6) = 36

Subscript elements are interpreted as if the subscripted variable is a vector. For
exampleif A isa 10-by-n matrix, the element A(i,j) has the subscript (i+ 10j). The
subscript array is converted to longword type before use if necessary.

As described above for the second type of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript areignored and
the corresponding element of the array on theright side of the equal signis skipped.

As another exampl e, assume that the vector DATA contains data el ements and that
adata drop-out is denoted by a negative value. In addition, assume that there are
never two or more adjacent drop-outs.

The following statements will replace all drop-outs with the average of the two
adjacent good points:
BAD = WHERE (DATA LT 0)

; Subscript vector of drop-outs.

DATA (BAD) = (DATA(BAD - 1) + DATA(BAD + 1)) / 2
; Replace drop-outs with average of previous and next point.

In this example:

* Elementsof the vector BAD are set to the subscripts of the points of DATA that
are drop-outs using the WHERE function. The WHERE function returnsavec-
tor containing the subscripts of the non-zero elements of its (DATA LT 0).
This Boolean expression is a vector that is non-zero where the elements of
DATA are negative and is zero if positive.

52

PV-WAVE Programmer’s Guide

e Theexpression DATA (BAD - 1) isavector which contains the subscripts
of the pointsimmediately preceding the drop-outs, while similarly, the expres-
sion DATA (BAD + 1) isavector containing the subscripts of the points
immediately after the drop-outs.

» The average of these two vectorsis stored in DATA (BAD) — the points that
originally contained drop-outs.

Associated Variables in Assignment Statements

A special case occurs when using an associated file variable in an assignment state-
ment. For additional information regarding the ASSOC function, see Chapter 8,
Working with Data Files. When afile variableis referenced, the last (and possibly
only) subscript denotes the record number of the array within thefile. Thislast sub-
script must be asimple subscript. Other subscripts and subscript ranges, except the
last, have the same meaning as when used with normal array variables.

Animplicit extraction of an element or subarray in a data record may also be
performed:

A = ASSOC(1, FLTARR(200))
; Variable A associates the file open on unit 1 with records of
; 200-element floating point vectors.
X = A(0:99, 2)
; X is set to the first 100 points of record number 2, the third record of the file.

A(23, 16) = 12
; Sets the 24th point of record 16 to 12.
A(10, 12) = A(10:%, 12) + 1

; Points 10 to 199 of record 12 are incremented. Points 0 to 9 of
; that record remain unchanged.

Blocks of Statements

BEGIN
Satement;

Satement,,
END
A block of statementsis simply agroup of statements that are treated as a single

statement. Blocks are necessary when more than one statement is the subject of a
conditional or repetitive statement, as in the FOR, WHILE, and |F statements.

53

In generdl, the format of a FOR statement with ablock subject is:
FOR Variable = expression, expression po BEGIN

statement
statement2

statement_
ENDFOR
All the statements between the BEGIN and the ENDFOR are the subject of the

FOR statement. The group of statements is executed as a single statement and is
considered to be a compound statement. Blocks may include other blocks.

Syntactically, ablock of statementsis composed of one or more statements of any
type, started by a BEGIN identifier and ended by an END identifier. PV-WAVE
allows the use of blocks wherever asingle statement is allowed. Blocks may also
be nested within other blocks.

For example, the process of reversing an array in place might be written:

FOR I = 0, (N - 1) / 2 DO BEGIN

T = ARR(I)

ARR(I) = ARR(N - I - 1)

ARR(N - I - 1) =T
ENDFOR

Thethree statements between the BEGIN and ENDFOR are the subject of the FOR
statement. Each statement is executed one time during each iteration of the loop. If
the statements had not been enclosed in ablock, only the first statement

(T = ARR(I)) would have been executed each iteration, and the remaining two
statements would have each been executed only once after the termination of the
FOR statement.

To ensure proper nesting of blocks of statements, the END terminating the block
may be followed by the block type as shown in the following table. The compiler
checksthe end of each block, comparing it with the type of the enclosing statement.

NOTE Any block may beterminated by the generic END, although no type check-
ing will be performed.

54

PV-WAVE Programmer’s Guide

End Statements

End Statement Usage

ENDCASE CASE statement
ENDELSE | F statement, EL SE clause
ENDFOR FOR statement

ENDIF IF statement, THEN clause
ENDREP REPEAT statement
ENDWHILE WHILE statement

Listings produced by the PV-WAV E compiler indent each block four spacesto the
right of the previous level to improve the legibility of the program structure.

CASE Statement

CASE expression or
expression: statement

expression: statement
ELSE: Statement
ENDCASE

The CASE statement is used to select one, and only one, statement for execution
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. Each statement that is part of a
CASE statement is preceded by an expression which is compared to the value of
the selector expression. If amatch isfound, the statement is executed and control
resumes directly below the CASE statement.

The EL SE clause of the CASE statement isoptional. If included, it must be the last
clause in the CASE statement. The statement after the EL SE is executed only if
none of the preceding statement expressions match. If the EL SE isnot included and
none of the values match, an error will occur and program execution will stop.
An example of the CASE statement is:

CASE NAME OF

"LINDA’: PRINT, ’‘SISTER’

55

; Executed if NAME = 'LINDA'

"JOHN’ : PRINT, ’‘BROTHER’
; Executed if NAME = 'JOHN'

"HARRY' : PRINT, ’'STEP-BROTHER’

ELSE: PRINT, ’'NOT A SIBLING'
; Executed if no matches.

ENDCASE

Another example, below, shows the CASE statement with the number 1 asthe
selector expression of the CASE. 1isequivalent to trueand is matched against each
of the conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
X GT 50) AND (X LE 100): Y = 13 * X + 4
X LE 200): BEGIN

(

(

Y =14 * X - 5
7 =

X+ Y
END
ELSE: PRINT, ‘X has illegal value’
ENDCASE

In the CASE statement, only one clause is selected, and that clauseisthe first one
whose valueis equal to the value of the case selector expression.

Common Block Definition Statement

COMMON block_name, var, var,,..., var,

The Common Block Definition statement creates a Common Block with the desig-
nated name (up to 31 characterslong) and placesthe variableswhose namesfollow
into that block. Variables defined in a Common Block may be referenced by any
program unit that declares that Common Block.

A Common Block Definition statement is useful when there are variables which
need to be accessed by several procedures. Any program unit referencing a Com-
mon Block may access variablesin the block as though they were local variables.
Variables in a Common statement have a global scope within procedures defining
the same Common Block. Unlikelocal variables, variablesin Common Blocks are
not destroyed when a procedure is exited.

The number of variables appearing in the Common Block Definition statement
determines the size of the Common Block. Thefirst program unit (main program,
function, or procedure) defining the Common Block sets the size of the Common

56

PV-WAVE Programmer’s Guide

Block, whichisfixed. Other program units may reference the Common Block with
the same or fewer number of variables.

Common Blocks share the same spacefor all procedures. Common Block variables
are matched variable to variable, unlike FORTRAN, where storage locations are
matched. Thethird variablein a given Common Block will aways be the same as
the third variable in all declarations of the Common Block regardless of the size,
type or structure of the preceding variables.

Thetwo proceduresin the following example show how variables defined in Com-
mon Blocks are shared:

PRO ADD, A
COMMON SHAREl, X, Y, Z, Q, R
A=X+Y+2Z+ Q+ R
PRINT, X, Y, Z, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHARE1l, A, B, C, D
T=A-B-C-D
PRINT, A, B, C, D, T
RETURN

END

Thevariablesx, v, z, and Q inthe procedure ADD are the same asthe variables 2,
B, C, and D, respectively, in procedure SUB. ThevariableR in ADD isnhot used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an
error would occur when the COMMON definition in ADD was compiled. Thisis
because SUB has already declared the size of the Common Block, SHARE1, which
may not be extended.

Variablesin Common Blocks may be of any type and may be used in the same man-
ner as normal variables. Variables appearing as parameters may not be used in
Common Blocks. There are no restrictions in regard to the number of Common
Blocks used, athough each Common Block uses dynamic memory.

FOR Statement
There are two basic forms of the FOR statement:

FOR var = expr,, expr, DO statement
Form 1: Increment of 1.

FOR var = expr,, expr,, expr; DO statement

57

Form 2: Variable increment.

The FOR statement is used to execute one or more statements repeatedly while
incrementing or decrementing avariable each repetition until acondition ismet. It
isanalogousto the DO statement in FORTRAN. There are two types of FOR state-
ments; one with an implicit increment of 1, and the other with an explicit
increment. If the condition is not met thefirst time the FOR statement is executed,
the subject statement is not executed.

NOTE Thedatatype of the statement and the index variable are determined by the
type of theinitial value expression.

Form 1: Implicit Increment
The FOR statement with an implicit increment of 1 iswritten asfollows:
FOR var = expr,, expr, DO statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The statement is executed, and the index variable isincremented
by one, until the index variable is larger than the second expression. This second

expression is called the limit expression.

Complex limit and increment expressions are converted to floating-point type.
expr, is not evaluated as a Boolean expression with a True/False result, but rather
directly compared to the index variable I with Truereturned only if I < expr, .

An example of a FOR statement is:

A

FOR I =1, 4 DO PRINT, I, I"2

which produces the output:
11

2 4

39

4 16

Theindex variable I isfirst settoaninteger variablewith avalueof 1. Thecall to
the PRINT procedure is executed, then the index isincremented by 1. Thisis

repeated until thevalue of T isgreater than 4, when execution continues at the state-
ment following the FOR statement.

58

PV-WAVE Programmer’s Guide

The next example displays the use of ablock structure in place of the single state-
ment for the subject of the FOR statement. The example isacommon process used
for computing a count-density histogram.
FOR K = 0, N - 1 DO BEGIN

C = A(K)

HIST(C) = HIST(C) + 1
ENDFOR

NOTE A HISTOGRAM function is provided in the Standard Library.

Another exampleis:

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

In this example, X is set to afloating-point variable and steps through the values
(1.5, 25, ..., 10.5).

The indexing variables and expressions may be integer, longword integer, floating-
point, or double-precision. Thetype of theindex variable is determined by thetype
of thefirst expression after the = character.

If you need to use very large integersin a FOR loop condition, be sureto designate
them as longword in the FOR loop statement. For example:

FOR i=300000L, 700000L DO BEGIN

ENDFOR

Form 2: Explicit Increment
The format of the second type of FOR statement is:
FOR var = expr,, expr,, expr; DO statement

Thefirst two expressions describe the range of numbers the variable will assume.

Thethird expression specifiestheincrement of theindex variable. A negativeincre-
ment allows the index variable to step downward. In this case, the first expression

must have avalue greater than that of the second expression. If it doesnot, the state-
ment will not be executed.

The following examples demonstrate the second type of FOR statement:

FOR K = 100.0, 1.0, -1 DO ...
; Decrement K has the values: 100., 99, ...,2., 1.

FOR LOOP = 0, 1023, 2 DO ...
; Increments by 2. LOOP has the values 0, 2, 4,..., 1022.

59

FOR MID = BOTTOM, TOP, (TOP - BOTTOM) / 4.0 DO ...
; Divides range from BOTTOM to TOP by 4.

CAUTION If the value of the increment expression is zero an infinite loop will
occur. A common mistake resulting in an infinite loop is a statement similar to the
following:

FOR X = 0, 1, .1 DO ...

Thevariable X isfirst defined as an integer variable becausetheinitia value expres-
sion isan integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer typeis zero. The correct form of the statement is:

FOR X = 0., 1, .1 DO ...

which defines X as afloating-point variable.

Function Declaration Statement

DECLARE FUNC, name;, name,, ..., name,

You can declare afunction in the program unit in which the function appears. For-
ward declaration of the function (a declaration that occurs before the function
definition) allows the compiler to distinguish between function callsand array ele-
ment references, which have asimilar syntax. Asaresult, program compilationis
more efficient for that particular program unit.

A backward declaration (a declaration that occurs after the function definition)
allowsthe compiler to recognize recursive callsto afunction that is defined later in
the program unit.

Thefirst call to afunction also hasthe effect of declaring that function and increas-
ing the efficiency of the compiler for consecutive calls to that function.

Function Definition Statement
FUNCTION function_name, p;, Py, .-, Pn

A function may be defined as a program unit containing one or more statements
and which returns avalue. Once afunction has been defined, referencesto thefunc-

60 PV-WAVE Programmer’s Guide

tion cause the program unit to be executed. All functions return a function value
which is given as a parameter in the RETURN statement used to exit the function.

Briefly the format of a function definition is, where name can contain up to 31
characters:

FUNCTION Name, parameter,,..., parameter,,
Statement;
Satement,

RETURN, expression
END

For example, to define afunction called AVERAGE that returns the average value
of an array:

FUNCTION AVERAGE, ARR
RETURN, TOTAL (ARR)/N_ELEMENTS (ARR)
END

Oncethe function AVERAGE has been defined, it is executed by entering the func-
tion name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement:

PRINT, AVERAGE (X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result.

Functions can take positional and keyword parameters. For more information on
parameters and parameter passing, see Positional Parameters and Keyword Param-
eters on page 65 and More On Parameters on page 66.

For more information on writing functions, see Chapter 9, Writing Procedures and
Functions.

Automatic Compilation of Functions and Procedures

PV-WAV E will automatically compile and execute a user-written function or pro-
cedure when it isfirst referenced if both of the following conditions are met:

» Thesourcecodeof thefunctionisinthe current working directory or inadirec-
tory in the search path defined by the system variable ! Path. For more
information setting the search path, see Appendix B, Modifying Your Environ-
ment. For more information on system variables, see System Variables on page
28.

61

» The name of the file containing the function is the same as the function name
suffixed by . pro. Thefile name should be in lowercase | etters.

NOTE User-written functions must be defined before they are referenced, unless
they meet the above conditions for automatic compilation. Thisrestriction is nec-
essary in order to distinguish between function calls and subscripted variable
references. For more information on compiling functions and procedures, see
Executive Commands in the PV-WAVE Reference.

GOTO Statement

GOTO, label
The GOTO statement is used to transfer program control to the point in the pro-
gram specified by the label. An example of the GOTO statement is:

GOTO, JUMP1
Statements. . .

JUMP1: X = 2000 + Y

In the above example, the statement at label JUMP1 is executed after the GOTO
statement, skipping intermediate statements. The label may also occur before the
reference of the GOTO to that |abel.

CAUTION Be careful in programming with GOTO statements. It is not difficult
to get into aloop that will never terminate if there is not an escape (or test) within
the statements spanned by the GOTO (and sometimes even when thereis!).

GOTO statements are frequently subjects of |F statements:

IF A NE G THEN GOTO, MISTAKE

IF Statement

The basic forms of the | F statement are:

IF expression THEN statement

62

PV-WAVE Programmer’s Guide

IF expression THEN statement EL SE statement

The IF statement is used to execute conditionally a statement or a block of
statements.

The expression after the IF is called the condition of the IF statement. This expres-
sion (or condition) is evaluated, and if true, the statement following the THEN is
executed. If the expression evaluates to a false value the statement following the
EL SE clause is executed. Control passes immediately to the next statement if the
condition is false and the EL SE clause is not present.

Examples of the IF statement include:
IF A NE 2 THEN PRINT, 'A IS NOT TWO’

IF A EQ 1 THEN PRINT, ‘A IS ONE’ ELSE S

PRINT, 'A IS NOT ONE’
The first example contains no EL SE clause. If the value of A isnot equal to 2, A
IS NOT TwWO isprinted. If A isequal to 2, the THEN clause isignored, nothing
is printed, and execution resumes at the next statement. In the second example
above, the condition of the IF statementis (2 EQ 1). If thevalue of 2 isequal to
1,A IS ONE isprinted, otherwise NOT ONE is printed.

Definition of True in an IF Statement

The condition of the |F statement may be any scalar expression. The definition of
true and false for the different data typesis as follows:

* Byte, Integer and Longword — Odd integers are true, even integers are false.

» Floating-point, Double-precision floating-point and Complex — Nonzero val-
ues are true, zero values are false. The imaginary part of complex floating
numbers isignored.

» String — Any string with anon-zero length is true, null strings are false.

In the following example, the logical expression is a conjunction of two relational
expressions.
IF (LON GT -40) AND (LON LE -20) THEN . . .

If both conditions — LON being larger than —40 and less than or equal to —20 —
are true then the statement following the THEN will be executed.

The THEN and EL SE clauses may also bein the form of ablock (or group of state-
ments) with the delimiters BEGIN and END. (See Blocks of Satements on page
53.) To ensure proper nesting of blocks, you may use ENDIF to terminate the
block, instead of using the generic END.

Below is an example of the use of blocks within an | F statement.

63

IF (EXPression) THEN BEGIN

ENDIF ELSE IF (EMpreSjon) THEN BEGIN

ENDIF ELSE BEGIN

ENDELSE ;End of else clause

IF statements may be nested in the following manner:

IF Pl THEN S1 ELSE $
IF P2 THEN S2 ELSE $

IF Pn THEN Sn ELSE Sx

If condition P1 istrue, only statement S1 isexecuted; if condition P2 istrue, only
statement S2 is executed, etc. If none of the conditions are true statement Sx will
be executed. Conditions are tested in the order they are written. The above con-
struction is similar to the CASE statement except that the conditions are not
necessarily related.

Procedure Call Statement

PROCEDURE_NAME, py, Py, -+ Pn

The Procedure Call statement invokes a system, user-written, or externally defined
procedure. The parameters which follow the procedure's name are passed to the
procedure. Control resumes at the statement following the Procedure Call state-
ment when the called procedure finishes.

Procedures may come from the following sources:

e System procedures built into the PV-WAV E executablefile.

e User-written procedures compiled with the . RUN command.

64

PV-WAVE Programmer’s Guide

e User-written procedures that are compiled automatically. See
Automatic Compilation of Functions and Procedures on page 61.

e Standard Library proceduresthat are installed with PV-WAVE.

Examples
ERASE

Thisisaprocedure call to a subroutine to erase the current window. There are no
explicit inputs or outputs. Other procedures have one or more parameters. For
example:

PLOT, Circle

callsthe PLOT procedure with the parameter Circle.

Positional Parameters and Keyword Parameters

Parameters passed to procedures and functions areidentified by their position or by
akeyword.

Astheir name indicates, the position of positional parameters establishes the cor-
respondence of the parametersin the call and those in the definition of the
procedure or function.

A keyword parameter is a parameter preceded by a keyword and an equal sign (=)
that identifies the parameter.

For example, the PLOT procedure can be instructed to not erase the screen and to
draw using color index 12 by either of the calls:

PLOT, X, Y, Noerase = 1, Color = 12

or:

PLOT, X, Y, Color = 12, /Noerase

Thetwo calls produce identical results. Keywords may be abbreviated to the short-
est non-ambiguous string. The /Keyword construct is equivalent to setting the
keyword parameter to the value 1. For example, /Noerase isequivaent to
Noerase=1.

In the above examples, the parameter X isthefirst positional parameter, because it
is not preceded by a keyword. Y isthe second positional parameter.

Calls may mix arguments with and without keywords. The interpretation of key-
word arguments is independent of their order. The placement of keyword
arguments does not affect the interpretation of positional parameters — keyword
parameters may appear before, after, or in the middle of the positional parameters.

65

Keyword parameters offer the following advantages:

» Proceduresand functions may have alarge number of arguments, any of which
may be optional. Only those arguments that are actually used need be present
in the call.

* Itismuch easier to remember the names of keyword arguments, rather than
their order.

» Additional features can be added to existing procedures and functions without
changing the meaning or interpretation of other arguments.

More On Parameters

Parameters may be of any type or structure, although some system procedures, as
well as user-defined procedures, may require a particular type of parameter for a
specific argument.

Parameters may also be expressions which are evaluated, used in the call, and then
discarded. For example:

PLOT, SIN(Circle)

Thesine of thearray Circle iscomputed and plotted, then the result of the com-
putation is discarded.

Parameters are passed by value or by reference. Parameters that consist of only a
variable name are passed by reference. Expressions, constants, and system vari-
ables are passed by value. The two passing mechanisms are fundamentally
different. The called procedure or function may not return avalue in a parameter
that is passed by value, as the value of the parameter is evaluated and passed into
the called procedure, but is not copied back to the caller. Changes made by the
called procedure are passed back to the caller if the parameter is passed by refer-
ence. For more details, see Parameter Passing Mechanism on page 228.

Procedure Definition Statement

PRO name, py, po, -, P
A sequence of one or more statements may be given a name, compiled and saved
for future use with the Procedure Definition statement.

Once a procedure has been successfully compiled, it may be executed using a pro-
cedure call statement interactively from the WAVE > prompt, from amain program,
or from another procedure or function.

66

PV-WAVE Programmer’s Guide

The general format for the definition of aprocedureis, where name can be up to 31
characterslong:

PRO Name, param, ..., param,
Statement;,
Satement,

RETURN
END

For more information on writing procedures, see Chapter 9, Writing Procedures
and Functions.

Calling a user-written procedure that isin a directory in the search path (! Path)
causesthe procedure to be read from the disk, compiled, saved, and executed, with-
out interrupting program execution.

OpenVMS USERS |If you are running under OpenVMS, see OpenVMS
Procedure Libraries on page 233 for information on creating libraries of
procedures.

REPEAT Statement

REPEAT subject_statement UNTIL condition_expr

The REPEAT statement repetitively executesits subject statement until acondition
istrue. The condition is checked after the subject statement is executed. Therefore,
the subject statement is always executed at least once.

Below are some examples of the use of the REPEAT statement:

A =1
REPEAT A = A * 2 UNTIL A GT B

Thiscodefindsthe smallest power of 2 that isgreater than B. The subject statement
may also be in the form of a block, as shown in the following block of code that
sorts an array:

REPEAT BEGIN
NOSWAP = 1
; Init flag to true.
FOR 1 = 0, N - 2 DO IF ARR(I) GT ARR(I + 1)

THEN BEGIN
NOSWAP = 0

67

; Swapped elements, clear flag.

T = ARR(I)

ARR(I) = ARR(I + 1)

ARR(I + 1) = T
ENDFOR

ENDREP UNTIL NOSWAP
; Keep going until nothing is moved.

The above exampl e sorts the elements of ARR using the inefficient bubble sort
method. A more efficient way to sort array elementsisto use the SORT function.

NOTE The ending statement for a REPEAT loop is ENDREP, not ENDREPEAT.

WHILE Statement

WHILE expression DO statement

WHILE statements are used to execute a statement repeatedly while a condition
remainstrue. The WHILE statement is similar to the REPEAT statement except
that the condition is checked prior to the execution of the statement.

When the WHILE statement is executed, the conditional expression istested, and
if it istrue, the statement following the DO is executed. Control then returnsto the
beginning of the WHILE statement where the condition is again tested. This pro-
cess is repeated until the condition is no longer true, at which point the control of
the program continues at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitially
fase.
Examples of WHILE statements are:

WHILE NOT EOF(1) DO READF, 1, A, B, C
In this example, data are read until the end-of-file is encountered.

The next example demonstrates one way to find the first point of an array greater
than or equal to a selected value assuming the array is sorted in ascending order
(the array contains N elements):

N = N_ELEMENTS (ARR)

; Determine number of elements in ARR.
I =0

; Initializes index.

68

PV-WAVE Programmer’s Guide

WHILE (ARR(I) LT X) AND (I LT N)
DO I =1I+1

; Increments | until a smaller point is found or the end of
; the array is reached.
Another way to accomplish the same thing is with the statements:
P = WHERE (ARR GE X)
; P is a vector of the array subscripts where ARR(l) GE X.
I = P(0)
; Saves first subscript.

69

70

PV-WAVE Programmer’s Guide

Using Subscripts with Arrays

Subscripts provide a means of selecting one or more elements of an array variable.
Thevaluesof one or more selected array elements are extracted when asubscripted
variable reference appearsin an expression. Values are stored in selected array ele-
ments, without disturbing the remaining elements, when a subscript reference
appears on the left side of an assignment statement. The section Assignment Sate-
ment on page 48 discusses the use of the different types of assignment statements
when storing into arrays.

The subscripts of an array element denote the address of the element within the
array. Inthe smple case of aone-dimensiona array, an n-element vector, elements
are numbered starting at 0 with thefirst element, 1 for the second element, and run-
ning to n— 1, the subscript of thelast element. Arrayswith multiple dimensionsare
addressed by specifying a subscript expression for each dimension. For example, a
two-dimensional nx marray isaddressed with a subscript of theform: (i, j), where
O<i<nandO<j<m

Syntax

The syntax of a subscript referenceis:
variable_name (subscript_list)

Or:

(array_expression) (subscript_list)

The subscript list issimply alist of expressions, constants, or subscript ranges
which contains the values of the one or more subscripts. Subscript expressions are

71

separated by commas if there is more than one subscript. In addition, multiple ele-
mentsare sel ected with subscript expressionsthat contain either acontiguousrange
of subscripts or an array of subscripts.

Subscript Reference Discussion

Subscripts may be used either to retrieve the value of one or more array elements
or to designate array elements to receive new values. The expression:

ARR(12)

denotes the value of the thirteenth element of ARR (because subscripts start at 0),
while the statement:

ARR(12) = 5

stores the number 5 in the thirteenth element of ARR without changing the other
elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. With PV-WAVE, like with FORTRAN, the first subscripts vary fastest
in memory.
If A isa2-by-3 array, the command: PRINT, A printsthe array like this:

Ao A

AO,l Al,l

A0,2 A1,2
On the other hand, the command: PM, A printsthe array like this:

AO,O AO,l A0,2

Al,O Al,l Al,2
But regardless of how the array is printed, the values are stored in memory in the

sameway: Ao, A1, Ag1, A1, Ago, Ag . Asanother example, suppose Bisa2 X2 X 2
array. Then, B is stored in memory in the order:

BO,O,O! Bl,O,Ov BO,l,Ol Bl,l,Ov BO,O,ll Bl,O,lv BO,l,ll Bl,l,l

Elements of multidimensional arrays may also be specified using only one sub-
script, in which case the array istreated as a 1D array with the same number of
elements. For instance, in the previous examples, A (2) isthe same element as
A(0,1),A(5) isthesameelementasaA (1,2),andB(5) isthesameas
B(1,0,1).

If an attempt is made to reference anon-existent element of an array using ascalar
subscript (asubscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

72

PV-WAVE Programmer’s Guide

Subscripts may be any type of array or scalar expression. |f a subscript expression
isnot of typeinteger, alongword integer copy is made and used to eval uate the sub-
script. For example:

A(1.4) = A(1.6) = A(1)

Arrays (aswell as scalars) can be assigned to an array el ement referenced by a sca-
lar subscript. For instance: A (S) =ARR, where ARR isan array. In this case, the
elements of ARR are stored sequentially into A beginning at the element A (S) .

Examples
a = INDGEN(5) & a(2) = [10, 20 1] & PRINT, a
0 1 10 20 4
a = LONARR(4, 5) & a(5) = REPLICATE(1, 6) & PM, a
0 0 1 0 0
0 1 1 0 0
0 1 1 0 0
0 1 0 0 0
a = LONARR(4, 5) & a(l,1) = REPLICATE(1, 2, 3) & PM, a
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

“Extra” Dimensions

All “degenerate” trailing dimensions of size 1 are eliminated from arrays. Thus, the
statements:

A = INTARR(10, 5, 5, 1)
INFO, A

print the following:
A INT = Array (10, 5, 5)

This removal of superfluous dimensionsis usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. There-

73

fore, you can specify “extra’ dimensions for an array as long as the extra
dimensions are all zero. For example, consider a vector defined as:

ARR = INDGEN (10)

The following are all valid references to the 6th element of ARR:

ARR(5)
ARR(5, 0)
ARR(5, 0, 0, *, 0)

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

Subscripting Scalars

References to scalars may be subscripted. All subscripts must be zero. For
example:

a=>5

PRINT, a(0)

a(0) =6

PRINT, a

Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting
and ending subscripts of the subarray in each dimension.

Subscript ranges may be combined with scalar and array subscripts and with other
subscript ranges. Any rectangular portion of an array may be selected with sub-
script ranges.

There are four types of subscript ranges:

» A rangeof subscripts, written (€0 : el), denoting al elements whose subscripts
range from the expression €0 to el. e0 must not be greater than el (but it may
equal el).

For example, if the variable VEC is a 50-element vector,
VEC(5 : 9)
is a5-element vector composed of

[VEC(5), ..., VEC(9)]

74

PV-WAVE Programmer’s Guide

» All elementsfrom agiven element to the last element of the dimension, written
as(E : *).

Using the above example,
VEC(10 : *)

is a40-element vector made of
[VEC(10), ..., VEC(49)]

e A simple subscript, (n). When used with multidimensional arrays, simple sub-
scripts specify only elements with subscripts equal to the given subscript in
that dimension.

» All elements of adimension, written (*). Thisform is used with multidimen-
sional arraysto select all elements along the dimension.

For example, if ARR isa 10-by-12 array,

ARR (*, 11)

isa 10-element vector composed of elements

[ARR(O, 11), ARR(1, 11), ..., ARR(9, 11)]
Similarly,

ARR (0, *)

isthe 1-by-12 array,

[ARR(0, 0), ARR(O, 1), ..., ARR(0, 11)]

Multidimensional subarrays may be specified using any combination of the above
forms. For example,

ARR(*, 0 : 4)

isa10-by-5 array. Or, if ARR isa5 x 10 x 15 x 20 array, then
ARR(0, 1:2, 3:*, *)isalx2x12x20array.

Subscript Ranges

Form Meaning

E A simple subscript expression
e0: el Subscript range from e0 to el
E:* All points from element E to end

* All pointsin the dimension

75

Structure of Subarrays

The dimensions of an extracted subarray are determined by the sizein each dimen-
sion of the subscript range. In general, the number of dimensionsis equal to the
number of subscripts. The size of adimension is equal to 1 if asimple subscript
was used for that dimension; otherwise it is equal to the number of elements
selected by the range.

Degenerate dimensions (trailing dimensionswhose sizeisequal to 1) are removed.
Thiswasillustrated in the above example by the expression ARR (*, 11) which
resulted in avector with asingle dimension because the last dimension of the result
was 1 and was removed. On the other hand, the expression ARR (0, *) became
anarray withdimensionsof (1, 12) becausethedimensionwith asize of 1 does
not appear at the end.

Using the examples of VEC, a 50-element vector, and 2, a 10-by-12 array, some
typical subscript range expressions are:

VEC(5 : 10)

; Points 5 to 10 of VEC, a 6-element vector.
VEC(I - 1 : I + 1)

; 3-point neighborhood around I: [VEC(I — 1), VEC(I), VEC(l + 1)].

VEC(4 : %)
; Points in VEC from VEC(4) to the end, a 50 — 4 = 46-element
; vector.

A(3, *)
; A 1-by-12 array: [A(3, 0), A(3, 1), ..., A(3, 11)].

A(*, 0)

; A 10-element vector.
A(X -1 :X+1, Y -1:%Y+1)
; The 9-point neighborhood surrounding A(X,Y), a 3-by-3 array.
A(3 : 5, %)
; A 3-by-12 subarray.
One-dimensional range subscripts can be used with multidimensional arrays. For

example, if Aisa2x2x2x2x2array, thena (*) isa32-element vector containing
al theelementsof A, and A (5: *) isavector containing the last 27 elements of A.

Arrays aswell as scalars can be assigned to array elements referenced by range
subscripts.

76

PV-WAVE Programmer’s Guide

Examples

a = FLTARR(5, 5) & a(*) =1 & a(0:3,1:%) =
1.00000 2.00000 2.00000 2.00000 2.00000
1.00000 2.00000 2.00000 2.00000 2.00000
1.00000 2.00000 2.00000 2.00000 2.00000
1.00000 2.00000 2.00000 2.00000 2.00000
1.00000 1.00000 1.00000 1.00000 1.00000

a = FLTARR(2, 4) & a(*) = INDGEN(8) & PM,
0.00000 2.00000 4.00000 6.00000
1.00000 3.00000 5.00000 7.00000

a = DBLARR(3, 3, 3) & a(*,1:*,0) = INDGEN(6
0.0000000 0.0000000 3.0000000
0.0000000 1.0000000 4.0000000
0.0000000 2.0000000 5.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000

a(*,*,2) = REPLICATE(1, 3, 3) & PM, a
0.0000000 0.0000000 3.0000000
0.0000000 1.0000000 4.0000000
0.0000000 2.0000000 5.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000

a(0:0,2:2,2:*) =2 & PM, a
0.0000000 0.0000000 3.0000000
0.0000000 1.0000000 4.0000000
0.0000000 2.0000000 5.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000

)

2

a

&

&

PM,

PM,

a

a

77

1.0000000 1.0000000 2.0000000
1.0000000 1.0000000 1.0000000
1.0000000 1.0000000 1.0000000

See the section Assignment Statement on page 48 for more information describing
the assigning of values to subarrays.

Arrays as Subscripts to Other Arrays

Arrays may be used to subscript other arrays. Each element in the array used asa
subscript selects an element in the subscripted array. When used with subscript
ranges, more than one element is selected for each subscript element.

If no subscript ranges are present, the length and structure of the result is the same
asthat of the subscript expression. The type of the result is the same asthat of the
subscripted array. If only one subscript is present, all subscripts are interpreted as
if the subscripted array has one dimension.

In the simple case of a single subscript, S, which isavector, the process may be
written as:

As iIf0O<§ <n
A(S) = Ay if §<0 (for0 <i<m)
A,_1if §=n

assuming that the array A has n elements, and S has m elements. Theresult A (S)

has the same structure and number of elements as does the subscript vector S. Just
as with scalar subscripts and range subscripts, array subscripts can represent one-
dimensional indicesinto multidimensional arrays; thus, the dimensionality of A is
arbitrary.

If an element of the subscript array islessthan or equal to zero, thefirst element of
the subscripted variable is selected. If an element of the subscript array is greater
than or equal to thelast subscript in the subscripted variable (N, above), thelast ele-
ment is selected.

Example
A= [6, 5,1, 8, 4, 3]
B= [0, 2, 4, 1, -1, 10]

78

PV-WAVE Programmer’s Guide

C = A(B)

PRINT, C
6 1 4 5 6 3

Thefirst element is6 becauseit isin the zero position of A. Thesecondis 1 because
thevaluein B of 2indicatesthethird positionin 2, and so on. Thelast two elements
of C arethe endpoints of A, because the last two subscripts of B are out of range.

As another example, assume the variable A is a 10-by-10 array. The expression:
A(INDGEN(10) * 11)

yields a 10-element vector equal to the diagonal elements of A. The one dimen-
sional subscripts of the diagonal elements, Agg, A1 4, ..., Agg are0, 11, 22, ..., 99
(the same as elements of the vector INDGEN (10) * 11).

The WHERE function, which returns a vector of subscripts, may be used to select
elements of an array using expressions similar to:

A (WHERE (A GT 0))

which resultsin avector composed only of the elements of A that are greater than O.

Combining Array Subscripts with Others

Array subscripts may be combined with:
» Subscript ranges

e Simple scalar subscripts

» Other array subscripts

When it encounters a multidimensional subscript that contains one or more sub-
script arrays, PV-WAVE builds an array of subscripts by processing each subscript,
from |eft to right. The resulting array of subscripts is then applied to the variable
that isto be subscripted.

Aswith other subscript operations, trailing degenerate dimensions (those with a
size of 1) are eliminated.

Combining Array Subscripts with Scalar or Range
Subscripts

When combining an n-element subscript array with an m-element subscript range,
the resulting subarray is of dimension nxm.

79

For example, the expression A ([1,3],5) yieldsthe vector [A; 5, Az5], and the
expressonA([1, 3, 5], 7 : 9) yiedsa3-by-3array composed of the
elements:

Al, 7 Al, 8 Al, 9
A3, 7 A3, 8 A3, 9
A5, 7 A5, 8 A5, 9

Each element of the 3-element subscript array (1, 3, 5) is combined with each ele-
ment of the 3-element range (7, 8, 9).

Examples

The common process of zeroing the edge elements of atwo-dimensional n-by-m
array is.

A(*, [0, M - 1]) =0

A([0, N - 1], *) =0

For another example of combining array and range subscripts, consider:

A DBLARR(5, 10, 5, 10, 5)

B = [-1, 0, 5, 3.9]

INFO, A(B, *, 2:*, 1:3, 0)
<Expressions DOUBLE = Array (4, 10, 3, 3)

Combining with Other Subscript Arrays

If all subscripts are arrays, then all these arrays must have the same number of ele-
ments; in this case, each element of the first subscript array is combined with the
corresponding elements of the other subscript arrays.

For example:

a=FINDGEN (6, 6) & PM, a([0,2,4], [1,3,5])
6.00000 (= A4 ;)
20.0000 (= A, 3)
34.0000 (= A4 5)

Or, if aisa3D array, then:
a(fo,21, [1,3], [0,2]) = 10

assigns the value 10 to the elements Ay, Az,

80

PV-WAVE Programmer’s Guide

If multiple array subscripts are mixed with scalars or ranges, then the resulting sub-
script array isthe Cartesian product of all of the subscripts. For example, if Aisa
3D array, then the expressiona ([0,2,31, [1,3]1,0) yieldsthe 2D array:

AO, 1,0 AO, 3,0
A2, 1,0 AZ, 3,0
A3, 1,0 AS, 3,0
Also, note that since extra“0 dimensions’ are allowed, a2D array A can be sub-

scripted with the Cartesian product of two subscript arrays. For example, the
expressionA([0,2,31, [1,3],0) yiedsthe 2D array:

A1 Aoz
Ay 1 Ags
As1Ass

Storing Elements with Array Subscripts

One or more values may be stored in selected elements of an array by using an
array expression as a subscript for the array variable appearing on the left side of
an assignment statement. Val ues are taken from the expression on the right side of
the assignment statement and stored in the elements whaose subscripts are given by
the array subscript. The right-hand expression may be either a scalar or array.

See Assignment Satement on page 48 for details and examples of storing with vec-
tor subscripts.

Examples

A([2, 4, 6]) =0

Zzeroeselementsa (2),A (4),and A (6), without changing other elements of A.
The following statement:

A([2, 4, 6]) = [4, 16, 36]
is equivalent to the statements:
A(2) = 4
A(4) = 16
A(6) = 36

One way to create a square n-by-n identity matrix is:

81

A = FLTARR(N, N)
A(INDGEN(N)* (N + 1)) = 1.0

The expression INDGEN (N) * (N + 1) resultsinavector containing the 1D sub-
scripts of the diagonal elements. Yet another way isto use two array subscripts:

A = FLTARR(N, N)
A (INDGEN (N), INDGEN(N)) = 1.0

The statement:
A(WHERE(A LT 0)) = -1
sets negative elements of A to minus 1.

Consider also the following examples:

a = INTARR(4, 4, 4) & af(lo0,2,3],[1,3],0:1) = 10 & PM, a
0 10 0 10
0 0 0 0
0 10 0 10
0 10 0 10
0 10 0 10
0 0 0 0
0 10 0 10
0 10 0 10
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
a = INTARR(4, 4) & a(lo0,2,3]1,[1,3],0) = INDGEN (6) & PM, a
0 0 0 3
0 0 0 0
0 1 0 4
0 2 0 5
a = INTARR(4, 4) & a (INDGEN (4) , INDGEN(4)) = 10 & PM, A
10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

82

PV-WAVE Programmer’s Guide

Memory Order
To facilitate optimum performance, it is useful to know the memory order of the
elementsin the array. Given a 2-by-3 array created with the statement
a = INTARR (2, 3)

the elements of A are ordered in memory as:

AO,O!Al,OvAO,l!Al,l!AO,ZvAl,Z

Similarly, in arrays of dimension higher than two, the elements are stored such that
thefirst dimension varies fastest, the next dimension varies the next fastest, and so
on. For more information, see Subscript Reference Discussion on page 72.

Knowledge of the memory order is also important when attempting to subscript
multidimensional arrays with a single subscript, in which case the array is treated
as avector with the same number of elements. In the above example, A(2) isthe
same eement as A(0,1) and A(5) isthe same element as A(1,2).

Matrices
If A isan mxn array, the command
PRINT, A
yields:
Ago onnn An 1o
Ag g e An 1ot

The fact that the array is printed this way may disturb those who are used to the
linear algebra convention for listing a matrix. For this reason PV-WAVE is
equipped with aset of input/output routines that subscribeto thelinear algebracon-
vention. RMF and PMF read and write files according to the linear agebra
convention, and RM and PM are the interactive versions of RMF and PMF. For
instance, the command:

PM, A

yields:

83

NOTE Regardlessof how thearray isread in or printed out, memory storage order
is unaffected. Thus, the distinction between arrays and matrices in PV-WAVE is
completely superficial.

Reading and Printing Matrices Interactively

Matrices can be entered interactively using the RM procedure and printed to the
screen using PM (see the PV-WAV E Reference). In this example, amatrix isinter-
actively entered and printed along with itsinverse.
RM, a, 3, 3
; Enter 3 by 3 matrix A.
row 0: 3 1 2
row 1: 4 5 1
row 2: 7 3 9
; User is prompted to enter the rows of the matrix.
PM, a
; Print the matrix.

3.00000 1.00000 2.00000
4.00000 5.00000 1.00000
7.00000 3.00000 9.00000

PM, INVERT (a)
; Print the inverse of A.

0.823530 -0.0588235 -0.176471
-0.568628 0.254902 0.0980392
-0.450980 -0.0392157 0.215686

The matrix multiplication operator is“#". For instance

RM, p, 4, 2
row 0: 2 4

row 1: 1 3

84

PV-WAVE Programmer’s Guide

row 2: 5 6

row 3: 0 7

; Enter 4 by 2 matrix P.

RM, q, 2,

; Enter 2 by 3 matrix Q.

row 0: 1 3 5
row 1: 2 4 6

PM, p # g

3

; Print the matrix product of P and Q.

10.0000
7.00000
17.0000
14.0000

22.
15.
39.
28.

0000
0000
0000
0000

34.
23.
61.
42.

0000
0000
0000
0000

Matrices also can be entered elementwise, starting with the (0, 0) subscript. Asis
standard in mathematics, the first subscript refers to the row and the second to the
column. For example:

w = FLTARR (3,

3

)

; Allocate w to be a 3 by 3 float array.

w(0, 0) =
w(0, 1) =
w(0, 2) =
w(l, 0) =
w(l, 1) =
w(l, 2) =
w(2, 0) =
w(2, 1) =
w(2, 2) =

O O J O Ul B W N R

; Assign values to w.

PM, w

; Print W as a matrix.

1.00000
4.00000
7.00000

PRINT, w

1.00000
2.00000
3.00000

; Print W as an array. Note that it is the transpose of the previous statement.

2.
5.
8.

4.
5.
6.

00000
00000
00000

00000
00000
00000

.00000
.00000

9.00000

7.
8.
9.

00000
00000
00000

85

In amatrix, the elements are stored columnwisg; i.e., the e ements of the O-th col-
umn are first, followed by the elements of the 1-st row, etc. Continuing the above
example, the elementsin the O-th column (1, 4, 7) comefirst, followed by thosein
the 1-st column (2, 5, 8), etc.

FOR k = 0, 8 DO PRINT, k, w(k)

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

© g 0 Ul W N R O
VW O W LU R

Reading a Matrix From a File

In this example, the RMF procedureis used to read a matrix contained in an exter-
na file. Thefile cov.dat containsthe following data:

1.0 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639
0.523 1.0 0.479 0.506 0.418 0.462 0.547 0.283 0.645
0.395 0.479 1.0 0.355 0.27 0.254 0.452 0.219 0.504
0.471 0.506 0.355 1.0 0.691 0.791 0.443 0.285 0.505
0.346 0.418 0.27 0.691 1.0 0.679 0.383 0.149 0.409
0.426 0.462 0.254 0.791 0.679 1.0 0.372 0.314 0.472
0.576 0.547 0.452 0.443 0.383 0.372 1.0 0.385 0.68
0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.0 0.47
0.639 0.645 0.504 0.505 0.409 0.472 0.68 0.47 1.0

After reading the matrix, principal components are computed for a nine-variable
covariance matrix. (This example uses the PV-WAVE:IMSL Statistics
PRINC_COMP function.)

OPENR, unit, ‘cov.dat’, /Get Lun
RMF, unit, covariances, 9, 9
CLOSE, unit

values = PRINC_COMP (covariances)
PM, values, Title = "Eigenvalues:"
Eigenvalues:

4.67692

1.26397

86

PV-WAVE Programmer’s Guide

.844450
.555027
.447076
.429125
.310241
.277006
.196197

O O O O O o o

Printing a Matrix to a File

This example retrieves a statistical data set using the PV-WAVE:IMSL Statistics
function STATDATA, then outputs the matrix to thefile stat . dat.

stats = STATDATA (5)
; Get the data from STATDATA.

PM, stats
; Print the 13 by 5 matrix to standard output.

7.00000 26.0000 6.00000 60.0000 78.5000
1.00000 29.0000 15.0000 52.0000 74.3000
11.0000 56.0000 8.00000 20.0000 104.300
11.0000 31.0000 8.00000 47.0000 87.6000
7.00000 52.0000 6.00000 33.0000 95.9000
11.0000 55.0000 9.00000 22.0000 109.200
3.00000 71.0000 17.0000 6.00000 102.700
1.00000 31.0000 22.0000 44.0000 72.5000
2.00000 54.0000 18.0000 22.0000 93.1000
21.0000 47.0000 4.00000 26.0000 115.900
1.00000 40.0000 23.0000 34.0000 83.8000
11.0000 66.0000 9.00000 12.0000 113.300
10.0000 68.0000 8.00000 12.0000 109.400
; Print the 13 by 5 matrix to a file.

OPENW, unit, ’‘stat.dat’, /Get Lun

PMF, unit, stats
; Use PMF to output the matrix.

CLOSE, unit
; Close the file.

Subarrays

Using subscript ranges, it is possible to extract submatrices. For instance, the 0-th
and 2-nd row of matrix w are extracted by using the following statements:

87

PM, w
; Print W as a matrix.

1.00000 2.00000 3.00000
4.00000 5.00000 6.00000
7.00000 8.00000 9.00000

PM, w([0, 2], *)

1.00000 2.00000 3.00000
7.00000 8.00000 9.00000

Matrix Expressions

Complicated matrix expressions are possible. Using the matrices
defined above, the following statements compute the inverse of a:
PM, a
; Print the matrix.

3.00000 1.00000 2.00000
4.00000 5.00000 1.00000
7.00000 3.00000 9.00000

PM, a # INVERT (a)
; AA~L should be identity. Error due to round off.

1.00000 0.00000 0.00000
1.19209e-07 1.00000 -1.19209e-07
9.53674e-07 -2.98023e-08 1.00000

In the following code segment, (3.5A + W) (Q'Q) is computed:

PM, g
1.00000 3.00000 5.00000
2.00000 4.00000 6.00000

; Compute and print (3.5A + W)(Q'Q).
PM, (3.5 * a + w) # (TRANSPOSE(q) # q)

288.000 654.000 1020.00
499.000 1131.00 1763.00
1049.50 2388.50 3727.50

PV-WAVE Programmer’s Guide

Working with Structures

Introduction to Structures

PV-WAV E supports structures and arrays of structures. A structure is a collection
of scalars, arrays, or other structures contained in a variable. Structures are useful
for representing datain a natural form, for transferring data to and from other pro-
grams, and for containing a group of related items of various types.

Beforeastructure can be used, it must be defined. When you define a structure, you
actually create a new datatype. The definition includes a structure name and alist
of structure fields. Each structure field is given atag name and tag definition (data
type). Thetag definition may be an expression or avariable. It definesthe datatype
of the datathat can be placed in thefield. A structure definition, per se, does not
contain any data values; however, avariable of a particular structure type always
contains data.

A structure field may be defined as any type of data representable by PV-WAVE.
Fields may contain scalars, arrays of the eight basic data types, and even other
structures or arrays of structures.

Just asyou cannot alter the basi c definition of aninteger or floating-point datatype
in PV-WAVE, you cannot alter a structure definition after it has been created. You
can, however, delete a structure definition aslong asit is not currently being refer-
enced by any variables. See the next section for more information on deleting
structure definitions.

When structure definitions are referred to, they must be enclosed in braces. For
example:

89

PRINT, {struct name}

The braces distinguish structure definitions from variable names, function names,
or other identifiers.

Defining and Deleting Structures

A structureis created by executing a structure definition expression. Thisisan
expression of the following form:

{ Structure_name, Tag_name, : Tag_def, ... : ...,
Tag_name, : Tagdef, }

Tag names must be unique within a given structure, although the same tag name
may be used in more than one structure. Structure and tag names follow the same
rules as all PV-WAVE identifiers: they must begin with aletter, following charac-
ters may be letters, digits, or the underscore or dollar sign characters, and case is
ignored.

As mentioned above, each tag definition is a constant, variable, or expression
whose type and dimension defines the type and dimension of the field. The result
of astructure definition expression is a structure definition that is global in scope
and can be used to create variables of the particular structure type.

A structure that has already been defined may be referred to by simply enclosing
the structure’s name in braces:

variable = { Sructure name}

The variable created as aresult of this command is a structure of the designated
name with all of itsfieldsfilled with zeros or null strings.

The variable created by the above statement and the structure definition
{Structure_name} are separate entities. The variable is said to be of type
{Sructure_name}. Thedefinition { Sructure_name} isanalogousto any datatype,
such asinteger or double. Just as any number of values can be of type integer, any
number of variables may reference a given structure definition.

When referring to a structure definition, the tag names need not be present, asin:
variable ={ Sructure_name, expry, ..., expr, }

All of the expressions are converted to the type and dimension of the original tag
definition. If a structure definition of the first form (where the tag names are
present) is executed and the structure already exists, each tag name and the struc-

90

PV-WAVE Programmer’s Guide

ture of each tag field definition must agree with the original definition or an error
will result.

Example of Defining a Structure

Assume a star catalog isto be processed. Each entry for a star contains the follow-
ing information: Star name, right ascension, declination, and an intensity measured
each month over thelast 12 months. A structure for thisinformation isdefined with
the statement:

STAR = { CATALOG, NAME: ’‘’, RA: 0.0, $
DEC: 0.0, INTEN: FLTARR(12) }

This structure definition is the basis for all examplesin this chapter.

The above statement definesastructure type named CATALOG in avariable named
STAR, which containsfour fields. Thetag namesareNAME, RA, DEC, and INTEN.
Thefirst field, with the tag NAME, contains a scalar string as given by its tag defi-
nition; the following two fields each contain floating-point scalars, and the fourth
field, INTEN, contains a 12-element floating-point array. Note that the type of the
constants, 0.0, isfloating point. If the constants had been written as 0 the fieldsrRa
and DEC would contain integers.

Defining a Structure within a Structure

The following example shows how to embed or nest a structure within another
structure definition.

STAR = {CATALOG, NAME:’’, RA=0.0}
; Create structure, STAR, of type CATALOG.

STAR2 = {CATALOG2, P0OS:0.0, DEC:0}
; Create a second structure, STAR2, of type CATALOG2.

ALL = {TOTAL, TAG1l:{CATALOG}, TAG2:STAR2}

; Create a third structure ALL which contains the previously defined
; structures as fields. Note that the tag definition can be either the

; name of a structure definition ({CATALOG}) or a variable of type

; structure (STAR2).

Deleting a Structure Definition

The DELSTRUCT procedure lets you delete a structure definition, aslong as the
structure definition is not referenced by any variables. To determineif a structure
definition is referenced, use the STRUCTREF procedure. Variables that are local

to aprocedure or function can be deleted only by exiting the procedure or function.

91

You can delete variables at the SMATINS level with the DELVAR procedure.
Because structure definitions can include other structure definitions, the parent
structure definition must be deleted before any nested structure definitions can be
deleted.

Deleting a structure definition frees all the memory used to store the structure
name, the tag names, and the information about the data type of each structure ele-
ment. If you want to delete a structure to free memory, then you must delete all
referenced variables as well. However, if you simply want to reuse the structure
name, then you do not have to delete all the referenced variables. Use the Rename
keyword with the DEL STRUCT procedure. This changes the name of the structure
to anew unigue name and frees the original name for reuse. This new nameis cho-
sen by the system. You cannot specify the name directly. All variables that
referenced the original structure name will automatically reference the new name.

For more information on DELSTRUCT and STRUCTREF, see the PV-WAVE
Reference.

Creating Unnamed Structures

As noted previously, atypical structure definition consists of aname and alist of
fields. You can also create a structure that you do not name.

Unnamed structures are useful if you:
* do not want to use a structure definition globally.
* do not want to invent new names for structure definitions.

« want the structure definition to be deleted automatically when it is no longer
referenced.

* want to create a structure-type variable that contains an array field that can
vary.

Scope of Named and Unnamed Structures

Named structure definitions are global in scope. A named structure definition is
created only once and then can be referenced by any number of variables. It is
important to note that a named structure definition is not associated directly with
any particular variable.

An unnamed structure, on the other hand, is closely associated with a specific vari-
able. When the variable that is associated with an unnamed structureis deleted, so
is the unnamed structure definition.

92

PV-WAVE Programmer’s Guide

Syntax of an Unnamed Structure Definition

The syntax of an unnamed structure definition is:
x ={, tag_name,: tag_def,, tag_name,: tag_def}

The data type of variable x references the unnamed structure definition. Unlike
named structure definitions, when all variablesthat reference an unnamed structure
definition are deleted, the unnamed structure definition is also deleted. If you copy
avariable that references an unnamed structure definition (e.g., y = x), then both
variables reference the same unnamed structure definition. Only when both vari-
ables are deleted will the unnamed structure definition be deleted.

Creating Variable-length Array Fields

The unnamed structure definition can be useful if you want to create astructure def-
inition that contains array fields whose lengths can change. For example, suppose
you want to create several variables that have the same structure except that one
element is an array that you want to have different lengths for different variables.
Using named structures, you would haveto create adifferent structurefor each case
(because named structure definitions cannot be altered). For example:

a={structa, xdim:2, ydim:4, arr:intarr(2,4)}
b={structb, xdim:2, ydim:8, arr:intarr(2,8)}
However, the unnamed structure allowsyou to solve this problem. For example, the

following function returns a structure-type variabl e whose tag names are the same,
but whose array length is different for each variable:

function my struct, x, y
RETURN, { , xdim:x,ydim:y, array:intarr(x,y)}
END

Now, you can create a and b as follows:

a = my struct(2, 4)
b = my struct(2, 8)

Internal Names of Unnamed Structures

PV-WAV E generates a name internally for an unnamed structure definition. This
name alwaysbeginswith a$. Thisensuresthat an unnamed structure definition will
never conflict with a named structure definition (because identifiers cannot begin
with $).

The INFO command lets you see this internal name:

93

INFO, a, /Struct

*** Structure $2, 3 tags, 20 length:
XDIM INT 2
YDIM INT 4
ARRAY INT Array (2, 4)

CAUTION Do not attempt to use the internal name for an unnamed structure in
any other command. For example:

c = {$2}

or

PRINT, STRUCTREF ({$2})

In these cases, the $ character isinterpreted as a line continuation character. The
remainder of the line after $ isignored, and PV-WAVE waits for you to enter the

rest of the command on the next line. No error message isdisplayed until you enter
another line that does not contain a $.

Structure References

The basic syntax of areferenceto afield within astructureis:

Variable_name . Tag_name

Variable_name must be a variable that contains a structure;
Tag_nameisthe name of the field and must exist for the structure.

If thefield referred to by thetag nameisitself astructure, the tag name may option-
aly befollowed by one or more additional tag names. For example:

VAR .TAG1.TAG2

This nesting of structure references may be continued up to ten levels. Each tag
name, except possibly the last, must refer to afield that contains a structure.

Subscripted Structure References

I'n addition, a subscript specification may be appended to the variable or tag names
if thevariableisan array of structures, or if thefield referred to by thetag contains
an array:

Variable_name . Tag_name(Subscripts)
Variable name(Subscripts) . Tag_name ...

94

PV-WAVE Programmer’s Guide

or
Variable_name(Subscripts) . Tag_name(Subscripts)
Each subscript is applied to the variable or tag name it immediately follows.

The syntax and meaning of the subscript specification is similar to ssimple array
subscripting: it may contain asimple subscript, array of subscripts, or a subscript
range. See Chapter 6, Using Subscripts, for more information about subscripts.

If avariable or field containing an array is referenced without a subscript specifi-
cation, all elements of the item are affected. Similarly, when a variable that
contains an array of structures is referenced without a subscript but with atag
name, the designated field in al array elementsis affected.

The complete syntax of references to structuresis:
Structure_ref := Variable_name [(subscripts)] . Tags
Tags := [Tags.] Tag
Tag := Tag_name [(subscripts)]

Optional items are enclosed in square brackets, []. For example, al of the follow-
ing are valid structure references:

A.B
A.B(N, M)
A(12).B
A(3:5).B(*, N)
A(12) .B.C(X, *)

The semantics of storing into a structure field using subscript ranges are slightly
different than that of simplearrays. Thisisbecausethe dimension of arraysinfields
isfixed. See Storing into Structure Array Fields on page 97.

Examples of Structure References

The name of the star contained in STAR isreferenced as STAR . NAME, the entire
intensity array isreferred to as STAR . INTEN, while the nth element of
STAR.INTENISSTAR.INTEN (N) . Thefollowing arevalid statementsusing the
CATALOG structure:

STAR = {CATALOG, NAME: ’'SIRIUS’, RA: 30., $
DEC: 40., INTEN: INDGEN(12)}
; Store a structure of type CATALOG into variable STAR. Define
; the values of all fields.

95

STAR.NAME = ’'BETELGEUSE’
; Set name field. Other fields remain unchanged.
PRINT, STAR.NAME, STAR.RA, STAR.DEC
; Print name, right ascension, and declination.
Q = STAR.INTEN(5)
; Set Q to the value of the 6th element of STAR.INTEN. Q will be a floating-point scalar.
STAR.RA = 23.21
; Set RA field to 23.21.
STAR.INTEN = 0

; Zero all 12 elements of intensity field. Because the type and size of
; STAR.INTEN are fixed by the structure definition, the semantics of
; assignment statements are somewhat different than with normal variables.

B = STAR.INTEN(3:6)
; Store 4th through 7th elements of INTEN field in variable B.

STAR.NAME = 12

; The integer 12 is converted to string and stored in the name field
; because the field is defined as a string.

MOON = STAR

; Copy STAR to MOON. The entire structure is copied and MOON
; contains a CATALOG structure.

Using INFO with Structures

Use INFO, /Structure to determinethetype, structure, and tag name of each
field in astructure. In the example above, a structure was stored into variable
STAR. The statement:

INFO, /Structure, STAR
prints the following information:

** Structure CATALOG, 4 tags, 60 length:

NAME STRING ' (null) "
RA FLOAT 0.0

DEC FLOAT 0.0

INTEN FLOAT Array (12)

Calling INFO with the Sructure keyword and no parameters prints alist of all
defined structures and tag names. In addition to the Structure keyword, the User -
struct and Sysstruct INFO keywords can also be used to obtain information about
structures. See Chapter 12, Getting Session Information, for information on these
keywords.

96

PV-WAVE Programmer’s Guide

Parameter Passing with Structures

As explained in Parameter Passing Mechanism on page 228, PV-WAVE passes
simple variables by reference and everything else by value.

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the pro-
cedure are passed back to the caller.

Fields within a structure are passed by value. For example, to print the value of
STAR .NAME:

PRINT, STAR.NAME

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence STAR . NAME is an expression and is passed by value. This
worksas expected unlessthe called procedure returnsinformation in the parameter,
asinthecall to READ:

READ, STAR.NAME

which does not read into STAR . NAME, but interprets its parameter as a prompt
string. The proper code to read into the field is:

B = STAR.NAME
; Copy type and attributes to variable.

READ, B
; Read into a simple variable.

STAR.NAME = B
; Store result into field.

Storing into Structure Array Fields

As was mentioned above, the semantics of storing into structure array fieldsis
dightly different than storing into simple arrays. The main differenceis that with
structures a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use
the subscript of the lower-left corner, not a range specification.

Other differences occur because the size and type of afield arefixed by theoriginal
structure definition and the normal PV-WAV E semantics of dynamic binding are
not applicable.

Therulesfor storing into array fields are:

97

Rule 1
VAR.TAG = scalar_expr

Thefield TAG isan array. All elements of VAR .TAG are set to
scalar_expr. For, example:

STAR.INTEN = 100
; Sets all 12 elements of STAR.INTEN to 100.

Rule 2
VAR.TAG = array_expr

Each element of array_expr is copied to the array VAR.TAG. If
array_ expr contains more elements than does the destination array an
error results. If it contains fewer elements than VAR.TAG, the unmatched
elements remain unchanged. Example:

STAR.INTEN = FINDGEN (12)
; Sets STAR.INTEN to the 12 numbers 0, 1, 2, ..., 11.

STAR.INTEN = [1, 2]

; Sets STAR.INTEN(O) to 1 and STAR.INTEN(1) to 2. The
; other elements remain unchanged.

Rule 3
VAR.TAG(subscript) = scalar_expr

Thevalue of the scalar expression issimply copied into the designated ele-
ment of the destination. If subscript is an array of subscripts, the scalar
expression is copied into the designated elements. Example;

STAR.INTEN(5) = 100
; Sets the 6th element of STAR.INTEN to 100.
STAR.INTEN([2, 4, 6]) = 100.

; Sets elements 2, 4, and 6 to 100.

Rule 4
VAR.TAG(subscript) = array_expr

Unless VAR.TAG isan array of structures, the subscript must be an array.
Each element of array_expr iscopied into the element of VAR.TAG given
by the corresponding element subscript. Example:

STAR.INTEN([2, 4, 6]) = [5, 7, 9]
; Sets elements 2, 4, and 6 to the values 5, 7, and 9.

98 PV-WAVE Programmer’s Guide

Rule 5
VAR .TAG (subscript_range) = scalar_expr

Thevalue of the scalar expression is stored into each element specified by
the subscript range. Example:

STAR.INTEN(8 : *) = 5
; Sets elements 8, 9, 10, and 11, to the value 5.

Rule 6
VAR.TAG (subscript_range) = array_expr

Each element of the array expression is stored into the element designated
by the subscript range. The number of elementsin the array expression
must agree with the size of the subscript range. Example:

STAR.INTEN(3 : 6) = findgen(4)
; Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and
; 3, respectively.

See Creating Variable-length Array Fields on page 93 for information on placing
variable-length arrays in structures.

Creating Arrays of Structures

Anarray of structuresissimply an array inwhich each element isastructure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow essentially the same rules as simple arrays.

The easiest way to create an array of structuresisto usethe REPLICATE function.
Thefirst parameter to REPLICATE is areference to the structure of each element.
Using the above example of a star catalog and assuming the CATALOG structure
has been defined, an array which contains 100 elements of the structureis created
with the statement:

CAT = REPLICATE ({ CATALOG }, 100)

Alternatively, since the variable STAR contains an instance of the structure
CATALOG:

CAT = REPLICATE (STAR, 100)
Or, to define the structure and an array of the structure in one step:

CAT = REPLICATE({ CATALOG, NAME : ’'’, RA: 0.0, $
DEC : 0.0, INTEN : FLTARR(12) }, 100)

99

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are general and lead to many possibilities, only a
small number of which can be explained here. In general what seems reasonable
usually works.

Examples of Arrays of Structures
Using the above definition in which the variable CAT contains a star catal og of

CATALOG structures:
CAT.NAME = ’‘EMPTY’

; Set the NAME field of all 100 elements to EMPTY.
CAT(I) = {CATALOG, ’'BETELGEUSE’, 12.4, $

54.2, FLTARR(12)}
; Set the ith element of CAT to the contents of the CATALOG structure.

CAT.RA = INDGEN (100)
; Store a 0.0 into CAT(0).RA, 1.0 into CAT(1).RA, ..., 99.0 into CAT(99).RA.

PRINT, CAT.NAME + ’,'
; Prints name field of all 100 elements of CAT, separated by commas.

WHERE (CAT.NAME EQ ’SIRIUS’)
; Find index of star with name of SIRIUS.

—
I

CAT.INTEN
; Extract intensity field from each entry. Q will be a 12-by-100 floating point array.

0
1]

PLOT, CAT(5).INTEN
; Plot intensity of 6th star in array CAT.

CONTOUR, CAT(5 : 50).INTEN(2:8)
; Make a contour plot of the (7, 46) floating-point array taken from
; months (2:8) and stars (5:50).
CAT = CAT(SORT (CAT.NAME))
; Sort the array into ascending order by names. Store the result back into CAT.

MONTHLY = CAT.INTEN # REPLICATE(1,100)
; Determine the monthly total intensity of all stars in array. MONTHLY
; is now a 12-element array.

Structure Input and Output

Structuresareread and written using the formatted and unformatted /O procedures
READ, READF, PRINT, PRINTF, READU, and WRITEU. Structures and arrays

100 PV-WAVE Programmer’s Guide

of structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input and Output with Structures

Writing a structure with PRINT, or PRINTF and the default format, outputs the
contents of each element using the default format for the appropriate datatype. The
entire structureis enclosed in braces. “{ }". Each array begins anew line.

For example, printing the variable STAR, as defined in the first example in this
chapter, results in the output:

{ SIRIUS 30.0000 40.0000

0.000001.000002.000003.00000
4.000005.000006.000007.00000
8.000009.0000010.000011.0000

}

When reading a structure with READ, or READF and the default format, white
space should separate each element. Reading string el ements causes the remainder
of theinput line to be stored in the string element, regardless of spaces, etc.

A format specification may be used with any of these procedures overriding the
default formats. The length of string elementsis determined by the format specifi-
cation (i.e., to read the next 10 charactersinto a string field, use an 210 format).
For more information about format specification, see Explicitly Formatted Input
and Output on page 155.

Unformatted Input and Output in Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element without interpretation or modification, except
in the case of strings. Each data type, except strings, has a fixed length expressed
in bytes; thislength, with the addition of padding, isaso the number of bytesread
or written for each element.

All instances of structures contain an even number of bytes. Aswith most C com-
pilers, PV-WAVE begins fields that are not of byte type on an even byte boundary.
Thus, a*“padding byte’” may appear after abyte field to cause the following non-
byte type field to begin on an even byte. A padding byte is never added before a
byte or byte array field. For example, the structure:

{EXAMPLE, T1: 1B, T2: 1}

101

occupiesfour bytes. A padding byteisadded after field T1 to causetheinteger field
T2 to begin on an even byte boundary.

String Input and Output

Strings are exceptions to the above rules because the length of strings within struc-
turesis not fixed. For example, one instance of the { CATALOG} structure may
contain aNAME field with afive-character name, while another instance of the same
structure may contain a 20-character name.

When reading into astructurefield that contains a string, PV-WAV E reads the num-
ber of bytes given by the length of the string. If the string field contains a 10-
character string, 10 characters are read. If the data read contains a null byte, the
length of the string field is truncated, and the null and following characters are
discarded.

When writing fields containing strings with the unformatted procedure WRITEU,
PV-WAV E writes each character of the string and does not append a null byte.

String Length Issues

Reading into or writing out of structures containing strings with READU or
WRITEU istricky when the strings are not the same length. For example, it would
be difficult for a C program to read variable-length string data written from a PV-
WAV E application because PV-WAV E does not append a null byte to the string
when itiswritten out. And from the other side of the coin, it isnot possibleto read
into a string element using READU unless the number of charactersto read is
known. One way around this problem isto set the lengths of the string elementsto
some maximum length using the STRING function with a format specification.

For example, it is easy to set the length of al NAME fieldsin the CAT array to 20
characters:

CAT.NAME = STRING(CAT.NAME, Format=' (A20)")

Thisstatement will truncate nameslarger than 20 characterslong and will pad with
blanks those names shorter than 20 characters. The structure or structure array may
then be output in aformat suitable to be read by C or FORTRAN programs.

Toread intothe CAT array from afilein which each NAME field occupies, for exam-
ple, 26 bytes:
CAT = REPLICATE ({ CATALOG, STRING(’ ', $

Format=' (A26)'), 0., 0., FLTARR(12) }, 100)

; Make a 100-element array of CATALOG structures, storing a
; 26-character string in each NAME field.

102

PV-WAVE Programmer’s Guide

READU, 1, CAT
; Read the structure.

As mentioned above, 26 byteswill be read for each NAME field. The presence of a
null bytein the file will truncate the field to the correct number of bytes.

Advanced Structure Usage

Facilities exist to process structuresin ageneral way using tag numbers rather than
tag names. Tags may be referenced using their index, enclosed in parenthesis, as
follows:

Variable name. (Tag_index)
The tag index ranges from O to the number of fields minus 1.

The N_TAGS function returns the number of fieldsin a structure. The
TAG_NAMES function returns a string array containing the names of each tag.

Example of Tag Indices

Using tag indices, and the above-mentioned functions, we specify a procedure
which reads into a structure from the keyboard. The procedure prompts you with
the type, structure, and tag name of each field within the structure:

PRO READ STRUCTURE, S
; A procedure to read into a structure, S, from the keyboard with
; prompts.

NAMES = TAG_NAMES (S)
; Get the names of the tags.

FOR I = 0, N TAGS(S)-1 DO BEGIN
; Loop for each field.
A = S.(I)
; Define variable A of same type and structure as the ith field.
INFO, S.(I)
; Use INFO to print the attributes of the field.
READ, ’'Enter value for field ', §
NAMES(I), ': ', A
; Prompt user with tag name of this field, and then read into variable A.
S.(I) = A
; Store back into structure from A.
ENDFOR
END

103

Note, in the above procedure the READ procedure reads into the variable A rather
than s. (1), because S. (I) isan expression, not asimple variable reference.
Expressions are passed by value; variables are passed by reference. The READ
procedure prompts you with parameters passed by value and reads into parameters
passed by reference.

Working with Lists and Associative Arrays

Lists and associative arrays allow you to create dynamic data structuresin PV-
WAVE. Lists contain collections of variables and/or expressions. An associative
array islike alist, except each element in an associative array is given a unique
name. This name is then used to reference its associated array element.

Unlike other kinds of arrays, the elements of alist or associative array do not have
to be the same data type. Furthermore, the contents and size of lists and associative
arrays can be modified dynamically, while an application is running.

NOTE A list or associative array definition creates a new data type.

assarr name = | keyl | varl|— key2| var2 [key3 |exprl

list name

varl — var2f—exprl— var3

Figure 6-1 A list, shown on top, consists of an array of variables and expressions, which do
not have to be of the same data type. An associative array, shown on the bottom, consists
of pairs of key names (strings) and values (variables or expressions). A list is referenced
using subscript numbers, just like a 1D array. The elements of an associative array are ref-
erenced by key name.

Defining a List
Usethe LIST function to create alist:
result = LIST(expr, ,..., expr,)

where expr,, ..., expr, are expressions or variables. These expressions or variables
are the elements of the list array.

104

PV-WAVE Programmer’s Guide

The elements of alist can be any of the eight basic PV-WAVE data types, other
structures or arrays of structures, and other lists or associative arrays. In addition,
lists and associative arrays can be used as structure fields.

Example

A listiscreated using the LIST function. The elementsin the list do not have to
have the same data type.

lst = LIST(1B, 2.2, ’3.3’, {,a:1, b:lindgen(2)})
The INFO command shows the contents of the list.

INFO, 1lst, /Full

LST LIST= List (4)

BYTE= 1

FLOAT = 2.20000

STRING = '3.3'

STRUCT = ** Structure $1, 2 tags, 24 length:

A INT 1

B LONG Array(2)

The PRINT command aso shows the contents of thelist.

PRINT, lst
{ 1 2.200003.3{ 1 0 1}

Defining an Associative Array

Usethe ASARR function to create an associative array. You can call ASARR inthe
following two ways:

result = ASARR(key,, expr, ..., key,, expr,)

where key,, expry, ..., key,, expr, are pairs of key names (strings) and expressions
or variables. A key name is a string that uniquely identifies the expression or vari-
able that immediately follows.

result = ASARR(keys arr, values list)

where keysis an array of key names (strings) and valuesisalist array containing
the expressions and/or variables. Thefirst element in the keys array is paired with
(and uniquely identifies) the first element in the values array, and so on.

105

Example 1

An associative array is created using the first form of the ASARR function,
described previously. Key names and values are specified as separate parameters.

as = ASARR('byte’, 1B, ’‘float’, 2.2, ’string’,$
"3.3', ’'struct’, {,a:1, b:lindgen(2)})

Example 2

An associative array, equivalent to the array in Example 1, is created using the sec-
ond form of the ASARR function, described previously. An array of key namesis
created first, followed by an array of values. Note that the values do not have to be
of the same data type.

as=ASARR(['byte’, 'float’, ’'string’, ’'struct’]l, $
LIST(1B, 2.2, ‘3.3’, {,a:1, b:lindgen(2)}))

The INFO command shows the contents of the associative array.
INFO, as, /Full

AS AS. ARR = Associative Array(4)

byte BYTE = 1

struct STRUCT = ** Structure $3, 2 tags, 12 length:
A INT 1

B LONG Array(2)

float FLOAT = 2.20000

string STRING = ’3.3’

The PRINT command also shows the contents of the array.

PRINT, as
{"byte’ 1 'struct’{ 1 0 1} ’'float’ 2.20000 ’'string’3.3 }

Defining a List within a Structure within an Associative
Array

The following example shows how to nest a structure and a list within an associa-
tive array. This example has applicationsin GUI tool development, where
associative arrays can be used to store information about the attributes of a GUI
tool.

strDef = {Main Data Str, attrs:ASARR(), vars: LIST() }
; Define a data structure to hold variables and attributes for a GUI tool.

dataStr = ASARR()
; Create an empty associative array that will hold the GUI tool data structure.

106

PV-WAVE Programmer’s Guide

; This array will be filled in later, possibly in another procedure.

dataStr(’Wgl’) = {Main Data_ Str}
; Call the tool Wg1.

dataStr ('Wgl’) .attrs(’size’) = [512, 512]
; Set a size attribute for the Wg1 tool.

dataStr(’Wgl’) .vars = LIST('VAR1’, ’'VAR2')
; Set a list of variables for the Wg1 tool.

How to Reference a List

To reference elementsin alist, follow the same rules asyou would to reference ele-
ments of any 1D array:

variable_name(subscript_list)

wherevariable_nameisavariablethat containsalist, and subscript_listisalist of
expressions, constants, or subscript ranges containing the values of one or more
subscripts.

Nested lists are subscripted like multi-dimensional arrays:
variable_name(subscript, subscript, ...)

NOTE If the elementsof nested listsare of type structure or associative array, they
follow the same rules for referencing structures or associative arrays.

How to Reference an Associative Array
The basic syntax of areference to aelement of an associative array is:
variable_name (key_name)

where variable_name must be a variable that contains an associative array, and
key_name is the name of the key (a string) and must exist for the associative array.

Embedded, nested associative arrays use a subscripting scheme similar to that of
multi-dimensional arrays:

variable_name(key_name;, key _name,, ...)

NOTE If the elementsof nested associative arraysare of type structure or list, they
follow the rules for subscripting structures or lists.

107

Supported Operations for Lists

You can perform the following kinds of operations on lists.

Insert

Insert elements expr, ..., expr,, between the (i—1)-th and i-th element of the list.

l1st = [lst(0:i-1), exprl,..., exprn, lst(i:*)]

Append

Append elements expr, ..., expr,, after the last element in the list.
l1st = [1lst, exprl,..., exprnl]

Prepend

Prepend elements expr, ..., expr, before the first element in the list.
lst = [exprl,...,exprn, lst]

Replace

Replace elements between element start and element end with the elements expr,
ey EXPI,

lst = [lst(0:start), exprl,...exprn, lst(end:*)]

Delete

Delete e ements between element start and element end.

lst = [1lst(O:start), 1lst(end:*)]

Create Sublists

The method for creating sublists is the same as creating subarrays. For example:

sublist = lst (from:to)
; Create a sublist from a specific range of elements.

toend = lst(from:*)

; Create a sublist from a specified element to the last element.
startto = 1lst(0:to)

; Create a sublist from the first element to a specified element.
sublist = 1st([0,2,5])

; Create a sublist containing specified elements only.

108

PV-WAVE Programmer’s Guide

Enumeration

Lists can be referenced in loops just like other kinds of arrays:

FOR 1 = 0, N _ELEMENTS(lst) - 1 do BEGIN
lst(i) = 1st(i) + 1
; do something with the variable

ENDFOR

Supported Operations For Associative Arrays

You can perform the following kinds of operations on associative arrays.

Create a New Element

If the associative array asa exists, the following statement adds a new expression
to the array with the given key name:

asa(’'newkey’) = expr

Concatenate

Thefollowing statement concatenates the associative arrays asa,, asa,, ... , asa, in
the associative array asa_new.

asa new = [asal, asa2,..., asan]

Subset

Thefollowing statement creates a new associative array that is a subset of an exist-
ing associétive array.

NOTE Only the key names are required to specify the subset.

asa_sub = asa(['keyl’, ’'key2’])

Retrieve Keys

The ASKEY S function returns the key names for an associative array.

keys = ASKEYS (asa)

Thefollowing statements show how you can enumerate associative array elements.

keys = ASKEYS (asa)
for i = 0, N _ELEMENTS(asa) - 1 do asa(keys(i)) = expr

109

Test for Keys

The ISASKEY function lets you test for the presence of akey namein an associa-
tive array.

result = ISASKEY (asa, 'key’)

Lists, Associative Arrays Input and Output

To read and write lists and associative arrays, use the procedures READ, READF,
PRINT, and PRINTF. Listsand associative arrays are transferred in much the same
way as simple data types, with each element of the list or associative array trans-
ferred in order.

Writing a List or Associative Array with PRINT or PRINTF

You can write alist or an associative array with PRINT or PRINTF. By defaullt,
each element of thelist or associative array is output in the default format of the
element’s datatype. The entirelist or associative array isenclosedin{ } (braces).
Each value of an associative array element is preceded by the key name enclosed
in~ » (double quotes).

Example

The contents of an associative array are printed with the PRINT command. This
example uses the same code that was used previously to demonstrate nesting.

strDef = {Main Data Str, attrs:ASARR(), vars: LIST()}
; Define a data structure to hold variables and attributes for a GUI tool.

dataStr = ASARR()

; Create an empty associative array that will hold the GUI tool data structure.
; This array will be filled in later, possibly in another procedure.

dataStr(’Wgl’) = {Main Data Str}
; Call the tool Wg1.
dataStr('Wgl’) .attrs(’size’) = [512, 512]

; Set a size attribute for the Wg1 tool.

dataStr(’Wgl’) .vars = LIST('VAR1’, ’'VAR2')
; Set a list of variables for the Wg1 tool.

PRINT, dataStr
; Print the contents of the associative array.

{'wgl’ {{’size’ 512 512}{ VAR1l VAR2}}}

110

PV-WAVE Programmer’s Guide

Reading a List or Associative Array with READ or READF

You can read datainto an associative array or list using the READ or READF func-
tion. The method for doing thisis similar to reading datainto a structure; however,
associative array elements must be read in a particular order. You can determine
this order with the ASKEY S function, as shown in the following example:
as = ASARR(’'byte’, 1B, ’‘float’, 2.2, ’string’,s$
"hello’, ’'struct’, {,a:1, b:lindgen(2)})
; Create an associative array.
PRINT, ASKEYS (as)
byte struct float string
; Get the correct order of elements in the associative array. Note that the order
; is different than the order of the parameters in the ASARR function used to
; create the array.
READ, as
: 4 56 7 8.8 hello
; Read in some data. Input to READ and READF must be separated by at least

; one space.

PRINT, as
{"byte” 4 "struct” 5 6 7}
"float” 8.80000 ”string” hello}

111

112 PV-WAVE Programmer’s Guide

Working with Text

Working with text in PV-WAVE is equivalent to working with strings. A stringisa
sequence of 0 to 32,767 characters. Strings have dynamic length (they grow or
shrink to fit), and there is no need to declare the maximum length of a string prior
to using it. Aswith any datatype, string arrays can be created to hold more than a
single string. In this case, the length of each individua string in the array depends
only on its own length, and is not affected by the lengths of the other string
elements.

Example String Array

In some of the examplesin this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element,
and is created using the statement:

TREES = [’Beech’, ’'Birch’, ’‘Mahogany’, $
‘Maple’, ’'Oak’, 'Pine’, ’'Walnut’]
Executing:

PRINT, ’'>’' + TREES + ‘<’
results in the output:

>Beech< >Birch< >Mahogany< >Maple< >0Oak< >Pine< >Walnut<

113

Basic String Operations

PV-WAV E supports several basic string operations.

Concatenating Strings
The addition operator, +, is used to concatenate strings.

Formatting
The STRING function is used to format data into a string.

Converting to Upper or Lower Case

The STRLOWCASE function returns a copy of its string argument converted to
lower case. Similarly, the STRUPCASE function converts its argument to upper
case.

Removing White Space

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Determining String Length
The STRLEN function returns the length of its string argument.

Manipulating Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract sub-
strings from their string arguments.

Concatenating Strings

The addition operator concatenates strings. For example, the command:

A = 'This is ' + ’'a concatenation example.’
PRINT, A

resultsin the output:
This is a concatenation example.

Thefollowing statements build a scalar string containing alist of the names found
in the TREES string array separated by commas:

114

PV-WAVE Programmer’s Guide

NAMES = '
; The list of names.

FOR I = 0, 6 DO BEGIN
IF (I NE 0) THEN NAMES = NAMES + ', '
; Add comma before next name.

NAMES = NAMES + TREES(I)
; Add the new name to the end of the list.

ENDFOR
PRINT, NAMES
; Show the resulting list.

Running the above statements gives the result:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut

String Formatting
The STRING function has the form:

result = STRING(Expression,, ..., Expression,,)

It convertsits parameters to characters, returning the result as a string expression.
It isvery similar to the PRINT statement, except that its output is placed into a
string rather than being output to the screen. Aswith PRINT, the Format keyword
can be used to explicitly specify the desired format. See the discussions of freefor-
mat and explicitly formatted I/O in Choosing Between Free or Fixed (Explicitly
Formatted) ASCII /O on page 148 for details on data formatting.

Asasimple example, the following statements:

A = STRING (Format=’ ("The values are:", $
/, (I))’, INDGEN(5))

; Produce a string array.

INFO, A
; Show its structure.

FOR I = 0, 5 DO PRINT, A(I)
; Print the result.

produce the following output:

A STRING = Array(6)

The values are:

0
1

115

2
3
4

Using STRING with Byte Arguments

Thereis aclose association between a string and abyte array — astring is simply
an array of bytesthat is treated as a series of ASCII characters. It is therefore con-
venient to be able to switch between them easily.

When STRING is called with a single argument of type byte and the Format key-
word is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing
the byte valuesfrom the original argument. Thus, the result has one lessdimension
than the original argument. A two-dimensional byte array becomes a vector of
strings, abyte vector becomes a scalar string. However, abyte scalar also becomes
astring scalar. For example, the statement:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output:
Hello

This occurs because the argument to STRING, as produced by the array concate-
nation operator [], isabyte vector. Itsfirst elementis 72B whichisthe ASCII code
for “H”, the secondis 101B which isan ASCII “€’, and so forth.

As discussed in the section Explicitly Formatted Input and Output on page 155, it
iseasier to read fixed length string datafrom binary filesinto byte variablesinstead
of string variables. It is therefore convenient to read the datainto a byte array and
use this special behavior of STRING to convert the data into string form.

Another use for this feature builds strings that have unprintable charactersin them
inaway that doesn’t actually require entering the character directly. Thisresultsin
programs that are easier to read, and which also avoid file transfer difficulties.
(Some forms of file transfer have problems transferring unprintable characters).

For example:

tab = STRING (9B)
; 9 is the decimal ASCII code for the tab character.

bel = STRING (7B)
; 7 is the decimal ASCII code for the bell character.

PRINT, ’'There is a’, tab, ’'tab here.’, bel
; Output a line containing a tab character, and ring the terminal bell.

Executing these statements gives the output:

116

PV-WAVE Programmer’s Guide

There is a tab here.
and rings the bell.

Applying the STRING function to a byte array containing a null (zero) value will
result in the resulting string being truncated at that position. Thus, the statement:

PRINT, STRING([65B, 66B, 0B, 67B])
produces the output:
AB

becausethe null bytein thethird position of the byte array argument terminatesthe
string and hides the last character.

The BY TE function, when called with a single argument of type string, performs
theinverse operation to that described here, resulting in abyte array containing the
same byte values as its string argument. For additional information about the

BY TE function, see Type Conversion Functions on page 32.

Converting Strings to Upper or Lower Case

The STRLOWCA SE and STRUPCA SE functions convert their argumentsto lower
or upper case. They have the form:

result = STRLOWCA SE(string)
result = STRUPCA SE(string)

where string is the string to be converted to lower or upper case.

Thefollowing statements generate atable of the contents of TREES showing each
namein its actual case, lower case, and upper case:

FOR I = 0, 6 DO PRINT, TREES(I), STRLOWCASE (TREES(I)), $
STRUPCASE (TREES (I)), Format = ’ (A,T15,A,T30,A)’

The resulting output from running this statement is:

Beech beech BEECH
Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE
Oak oak OAK

Pine pine PINE
Walnut walnut WALNUT

117

A common use for case folding occurs when writing procedures that require input
from the user. By folding the case of theresponsg, it is possibleto handl e responses
written in any case. For example, the following statements can be used to ask “ Yes
or No” style questions:

ANSWER = '’
; Create a string variable to hold the response.
READ, 'Answer Yes or No: ’, ANSWER

IF (STRUPCASE (ANSWER) EQ ’'YES’) THEN
PRINT, ’'Yes’ else PRINT, ’'No’

; Compare the response to the expected answer.

Removing White Space from Strings

The STRCOMPRESS and STRTRIM functions remove unwanted white space
(tabs and spaces) from a string. This can be useful when reading string data from
arbitrarily formatted strings.

STRCOMPRESS returns a copy of its string argument with all white space
replaced with a single space, or completely removed. It has the form:

result = STRCOMPRESS(string)

where string is the string to be compressed. The default action isto replace each
section of white space with a single space. Use of the Remove_All keyword causes
white space to be completely eliminated. For example:

A = ' This is a poorly spaced sentence.’

; Create a string with undesirable white space. Such a string might
; be the result of reading user input with a READ statement.

PRINT, ’>’, STRCOMPRESS(A), '<’
; Print the result of shrinking all white space to a single blank.

PRINT, ’'>’, STRCOMPRESS (A, /REMOVE ALL), ’'<’
; Print the result of removing all white space.

resultsin the output:

> This is a poorly spaced sentence.<
>Thisisapoorlyspacedsentence.<

STRTRIM returns acopy of its string argument with leading and/or trailing white
space removed. It has the form:

result = STRTRIM(string[, flag])

118

PV-WAVE Programmer’s Guide

where string isthe string to be trimmed and flag is an integer that indicates the spe-
cific trimming to be done. If flag is 0, or is not present, trailing white spaceis
removed. If itis 1, leading white space is removed. Both are removed if it is equal
to 2.

Asan example:

A= This string has leading and ' + $
‘trailing white space !
; Create a string with unwanted leading and trailing blanks.
PRINT, ’'>’, STRTRIM(A), '<’
; Remove trailing white space.
PRINT, ’'>’, STRTRIM(A, 1), '<’
; Remove leading white space.
PRINT, ’'>’, STRTRIM(A, 2), '<’
; Remove both.

Executing these statements produces the output:

> This string has leading and trailing white spacecx
>This string has leading and trailing white space <
>This string has leading and trailing white spacec<

When processing string data, it is often useful to be able to remove leading and
trailing white space and shrink any white space in the middle down to single
spaces. STRCOMPRESS and STRTRIM can be combined to handle this:

A = ' Yet another poorly spaced ' + $
'sentence.’

; Create a string with undesirable white space.

PRINT, ’‘>’, STRCOMPRESS (STRTRIM(A, 2)), ‘<’
; Eliminate unwanted white space.

Executing these statements gives the result:

>Yet another poorly spaced sentence.c<

Determining the Length of Strings
The STRLEN function obtains the length of a string. It has the form:

result = STRLEN(string)
where string is the string for which the length is required.

For example, the following statement:

119

PRINT, STRLEN(’This sentence has 31 ' +$
'characters’)

results in the outpuit:
31

while the following statement prints the lengths of all the names contained in the
array TREES:

PRINT, STRLEN (TREES)
The resulting output from running this statement is:

5585346¢6

Manipulating Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract sub-
strings from their string arguments.

The STRPOS function is used to search for the first occurrence of a substring. It
has the form:

result = STRPOS(object, search_string[, pos])

where object is the string to be searched, search_string is the substring to search
for, and posisthe character position (starting with position 0) at which the search
is begun. The argument posisoptional. If it isomitted, the search is started at the
first character (character position 0). Thefollowing statements count the number of
times that theword dog appearsinthestring dog cat duck rabbit dog
cat dog:

ANIMALS = ’'dog cat duck rabbit dog cat dog’
; The string to search — dog appears 3 times.
I =0
; Start searching in character position 0
CNT = 0
; Number of occurrences found
WHILE (I NE -1) DO BEGIN
I = STRPOS (ANIMALS, ‘dog’, I)
; Search for an occurrence
IF (I NE -1) THEN BEGIN CNT = CNT + 1 & $
I =TI+ 1 & END
; If one is found, count it and advance to the next character position.
ENDWHILE
PRINT, '‘Found ', cnt, " occurrences of ’'dog’"

120

PV-WAVE Programmer’s Guide

Running the above statements produces the result:

Found 3 occurrences of ‘dog’

The STRPUT procedure inserts the contents of one string into another. It has the
form:
STRPUT, destination, source [, position]

where destination isthe string to be inserted into, sourceisthe string to beinserted,
and position is the first character position within destination at which source will
be inserted. The argument position is an optional argument. If it is omitted, the
insertion is started at the first character (character position 0). The following state-
ments use STRPOS and STRPUT to replace every occurrence of the word dog
with theword CAT inthe string dog cat duck rabbit dog cat dog:

ANIMALS = ’'dog cat duck rabbit dog cat dog’
; The string to modify — dog appears 3 times.

WHILE (((I = STRPOS(ANIMALS, ’‘dog’))) NE -1) DO STRPUT, ANIMALS,
"CAT', I
; While any occurrence of dog exists, replace it.

PRINT, ANIMALS

Running the above statements produces the result:

CAT cat duck rabbit CAT cat CAT

The STRMID function extracts substrings from alarger string. It has the form:
result = STRMID(expression, position, length)

where expression is the string from which the substring will be extracted, position
isthe starting position within expression of the substring (the first position is posi-
tion 0), and length is the length of the substring to extract. If there are not length
characters following position, then the substring will be truncated. The following
statements use STRMID to print atable matching the number of each month with
its three-letter abbreviation:
MONTHS = ’JANFEBMARAPRMAYJUNJULAUGSEP'’ +$

" OCTNOVDEC’

; String containing all the month names.

FOR I = 1, 12 DO PRINT, I,’ ",

STRMID (MONTHS, (I - 1) * 3, 3)

; Extract each name in turn. The equation (I-1)* 3 calculates
; the position within MONTH for each abbreviation.

The result of executing these statementsis:

1 JAN

121

FEB
MAR
APR

JUN
JUL
AUG

O W I o U1 W N
<

SEP

=
o

oCcT

Juy
[

NOV
DEC

=
N

Using Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument, which is the string on which they act.

If the argument is not of string type, it is converted to string type according to the
same default formatting rules that are used by the PRINT, or STRING routines.
The function then operates on the converted result. Thus, the statement:

PRINT, STRLEN(23)
returns the result:
8

because the argument 23 isfirst converted to the string
! 23 ' which happens to be a string of length eight.

If the argument is an array instead of a scalar, the function returns an array result
with the same structure as the argument. Each element of the result correspondsto
an element of the argument.

For example, the following statements:

A = STRUPCASE (TREES)
; Get an uppercase version of TREES.

INFO, A
; Show that the result is also an array.

PRINT, TREES
; Display the original.

122

PV-WAVE Programmer’s Guide

PRINT, A
; Display the result.

resultsin the output:
A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut

BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the indi-
vidual descriptionsin the PV-WAVE Reference.

Using Regular Expressions

To use the PV-WAVE string handling functions STRMATCH, STRSPLIT, and
STRSUBST, you must understand how regular expressions work.

Regular expressionsare used in UNIX-based utilitiessuchasgrep, egrep, awk,
and ed. UNIX users are probably familiar with the powerful pattern matching
capabilities of regular expressions.

NOTE Regular expressions are not the same as wildcard characters. See the sec-
tion Regular Expressions vs. Wildcard Characters on page 127 for information on
this common source of confusion.

This section provides an elementary introduction to regular expressions. Addi-
tional sources of information on regular expressions are listed at the end of this
section.

Simple Regular Expressions: A Brief Introduction

This section introduces some simple regular expression examples. More complex
examples are presented in Practical Regular Expression Examples on page 126.

Regular expressions can be very complex. Indeed, entire books have been written
on the subject of regular expressions. Regular expressions normally consist of
characters that you wish to match and specia charactersthat perform specific pat-
tern matching functions. For alist of commonly used specia characters see Basic
Special Characters Used In Regular Expressions on page 125.

In PV-WAVE, the STRMATCH, STRSPLIT, and STRSUBST commands take reg-
ular expression arguments to perform pattern matching operations. The following
examples demonstrate the use of regular expressionsin the STRMATCH function.

123

Matching a Single Character

The regular expression special character * . * (dot) matches any single character
except anewline.

For example, the regular expression used in the STRMATCH function:
result=STRMATCH (string, '.at’)

matches any string containing the following sequence of characters:
bat
cat
mat

oat

Matching Zero or More Characters

The regular expression specia character ’ *’ (asterisk) matches zero or more of
the preceding character.

For example, the regular expression used in the STRMATCH function:

result=STRMATCH (string, ’'x*y’)

matches the following strings (zero or more “Xx” characters, followed by asingle
v

Y

xy

XXY

XXXY

Matching One or More Characters

The regular expression specia character * + (plus) matches one or more of the
preceding character.

For example, the regular expression used in the STRMATCH function:
result=STRMATCH (string, ’'x+y’)

matches the following strings:
Xy
XXy

XXXY

124 PV-WAVE Programmer’s Guide

Other Special Characters

Other characters — such as brackets, braces, parentheses, back-slashes and so on
— also have meaning in aregular expression, depending on the regular expression
syntax used.

Seethetablein the following section for alist of the most basic regular expression
special characters.

Basic Special Characters Used In Regular Expressions

The following table lists the most basic regular expression special characters and
explains what they match.

Special
Char acter Matches
any single character except newline

A the first character of the string (when used as the first character in the
regular expression)

$ the last character of the string (when used as the last character in the
regular expression)

* zero or more of the preceding character. (This character is amodifier,
which means that it specifies how many times you expect to see the
preceding character. Therefore, this character isonly significant if itis
preceded by another character.)

+ one or more of the preceding character. (This character is aso a modi-
fier, because it must be preceded by another character.)

?

[~ ...

()

zero or one of the preceding character. (This character is also amodifier,
because it must be preceded by another character.)

asingle character that isin the enclosed group of characters; either alist
of characters, like [abc], or arange of characters, like [0-9], or both [0-9
ABC w-Z]

any character except those enclosed in the square brackets, like [*0-9]
acts as an OR operator, separating two regular expressions

encloses sub-expressions (used for grouping and for the registers
variable in the STRMATCH function)

125

Escaping Special Characters

To match a special character as you would a normal character, you must “ escape
it” by preceding it with a backslash (\). Note, however, that in PV-WAVE strings,
two backslashes tranglate to a single backslash. For example, to match aperiod (.)
inaregular expression in a PV-WAVE function, you must use ’ \\ . ’

NOTE To match asingle backslash in a PV-WAVE string, you have to use two
pairs of backslashes ' \\\ \ ’ . Each pair, in PV-WAVE strings, makes asingle
backslash, thusyou end up with asingle escaped backs ash. In other words, thefirst
pair of backslashesisthe “escape’ character, and the second pair isthe “ escaped”
backslash.

TIP If you get confused writing strings with multiple backslashesin PV-WAVE,
you can print the string to see what you get. For example:

PRINT, ‘\\\\’
A\

Practical Regular Expression Examples

Assumethat string isastring array defined in PV-WAVE. The following PV-
WAV E commands demonstrate the regular expression pattern matching used in the
STRMATCH command.

result=STRMATCH (string, ’a’)
Matches any string containing the character ' a .

result=STRMATCH (string, ’”*[CcBblat’)
Matches any string beginning (*) with cat, bat, and so on: ' Cat Woman’,
'catatonic’, ‘Batman, the animated series’;but does not match: ' cat’
(begins with a space), ' cab’, and so on.

result=STRMATCH (string, ’'Ll+’)

Matches any string containing ' L.’ followed by one or more occurrencesof ' 1’: ’Get
a Llama’ matches; ' larry the llama’ does not match (first 1 in 11ama is lower
case).

result=STRMATCH (string, ' ["C].*x$")
Matches a string that starts (*) with any character that is not * ¢’ ([*C]), and is fol-
lowed by zero or more other characters (. *), and ends with ' x’ (x$). The patterns
"ux’, ‘under stdfx’,and ’corx’ match; 'x’ does not match (x matches the
[*C1, but there’s nothing to match the x3).

126

PV-WAVE Programmer’s Guide

result=STRMATCH (string, ‘\\.’)
Matches any string containing a period. ' 3.14159’ matches; ' the quick brown
fox’ does not match. Remember that it takes two backslashes in a PV-WAVE string to
produce the single backslash that “escapes” the dot (.), as explained previously.
result=STRMATCH (string, ’.’)
Matches any string containing any character (that is, any non-null string).

result=STRMATCH (string, ’'"3$’)
Matches only empty strings (start and end with nothing in between).

result=STRMATCH (string, '~ *$')
Matches either blank or null strings (Between the beginning (*) and the end () there
are only zero or more spaces (*)).

result=STRMATCH (string, '*...$’)
Matches only three-character strings.

result=STRMATCH (string, '~...+$8’)
Matches strings three characters or longer.

result=STRMATCH (string, ’*[\011]1*[-+]12[0-91+[\011]*$")
This interesting example matches any integer number, possibly surrounded by spaces
and/or tabs. This expression means:

From the beginning of the string (*), zero or more spaces or tabs (\011 is the octal
ASCII number for a tab character), zero or one sign [-+], one or more digit [0-9],
zero or more spaces/tabs, and finally match the end of string.

Regular Expressions vs. Wildcard Characters

Many users understandably confuse wildcard characters and regular expressions,
because both are used for pattern matching, and because some of the same charac-
ters, like asterisk (*), question mark (?), and square brackets ([]), are used in both,
yet have different meanings.

NOTE Wildcard characters are commonly used in file matching contexts on
Microsoft Windows systems. On UNIX systems, wildcards are used in the Bourne
shell and C shell, aswell asinthe commands £ ind and cpio. The most common
wildcard isthe asterisk (*), which matches any group of characters.

A common misconception isthat the asterisk (*) isawildcard character in regular
expressions. In regular expressions, asterisk (*) means “match zero or more of the
preceding character.”

To make a“wildcard” (that is, an expression that matches anything) with regular
expressions, you must use /. *’ (dot asterisk). This expression means, “match
zero or more of any character.”

127

Example of Wildcards vs. Regular Expressions

For example, most computer users have used the asterisk (*) as awildcard charac-
ter in system commands such as 1s and dir. For example:

dir file.*

isawildcard expression that matches anything that beginswith“file.”, such as
file.c,file.o,file.dat,file.pro, and soon.

However, the regular expression character * means something entirely different
from the wildcard character *. In regular expressions, the asterisk means match
zero or more of the preceding character.

Therefore, the regular expression, file. *’, would match:
file.dat
myfile.c
myfile
myfiles

This result is quite different from the wildcard example shown previoudly.

Regular Expressions are Versatile

You can, of course, construct aregular expression that is equivalent to the wildcard
expression shown previoudly. Here is aregular expression that performs the same
pattern matching function as the wildcard expression file. * :

rAFile\\. . *’

Here, the caret (*) matchesthe beginning of thestring. The“\ \ .” matchesasingle
dot (.), and the” . *” matches zero or more of any characters.

For More Information

For an excellent explanation of regular expressions, see:

* UNIXPower Tools, Jerry Peek, Tim O’ Reilly, and Mike Loukides, O’ Reilly &
Associates/Bantam, 1993.

* Mastering Regular Expressions: Powerful Techniques for Perl and Other
Tools, Jeffry Friedl, O’ Reilly & Associates, 1997.

Many general books on UNIX programming contain information on regular
expressions. |n addition, books on the Perl programming language usually explain

128

PV-WAVE Programmer’s Guide

regular expressionsin detail (Perl usesregular expressions extensively). For exam-
ple, see:

e Programming Perl, Larry Wall, Tom Christiansen, and Randal L. Schwartz,
O'Reilly & Associates, Inc., Second Edition, 1996.

UNIX users can find regular expressions explained in the man page for the ed
command.

129

130 PV-WAVE Programmer’s Guide

Working with Data Files

PV-WAVE provides many aternatives for working with data files. There are few
restrictions imposed on data files and there is no unique PV-WAVE format. This
chapter describes input and output methods and routines, and gives examples of
programs that read and write data using PV-WAVE, C, and FORTRAN commands.

NOTE |If you work with Hierarchical Data Format (HDF) files, then refer also to
The PV-WAVE HDF Interface in the PV-WAV E Reference for details on how to
access HDF functions from within PV-WAV E.

Simple Examples of Input and Output

PV-WAV E variables point to portions of memory that are set aside during asession
to store data. Thefirst stepin analyzing dataisusually to transfer it into PV-WAV E
variables.

This section provides a*“birds-eye view” of how PV-WAVE |/O (Input/Output)
works by providing some examples showing how datais transferred in and out of
variables.

Example 1 — Input

The following example illustrates how easy it isto read a single column of data
pointscontained inthefiledatal.dat into avariable £ 1ow. The data points can
then be plotted. Thefiledatal . dat contains the data points:

131

23.
34.
78.
46.
44 .

U PN

Try entering the following commands to read and plot the data points:

status = DC_READ FREE (’datal.dat’, flow)

; DC_READ_FREE handles the opening and closing of the file. It

; takes the values in the file “data1.dat” and places them into a

; floating-point variable named flow. The variable flow is dimensioned
; to match the number of points read from the file. The returned value
; status can be checked to see if the process completed successfully.

PLOT, flow
; Display the variable flow in a window.

With two commands, the data is transferred from the file into the variable £ 1 ow
and displayed in a window.

An alternate set of commands that achieves a similar result is shown below.

flow = FLTARR(9)

; Define a variable that holds a single column of data containing
; 9 data points. Even though there are only 5 data points in the
; file, the array is made larger so that data points can be added later.

OPENR, 1, ’‘datal.dat’
; Open the file “data1.dat” for reading.
READF, 1, flow
; Read the data from the file into the variable flow.
CLOSE, 1
; Close the file.
PLOT, flow
; Display the variable flow in a window.

Example 2 — Output

Here's a simple example showing how you can transfer datafrom avariable to a
file:
ylow = [77, 63, 42, 56]
; Define ylow to be a vector of integers.
status = DC_WRITE FREE(’data2.dat’, ylow, $
/Column)

; DC_WRITE_FREE handles the opening and closing of the file. It
; takes the values in “ylow” and stores them in a file named
; “data2.dat”. Because the Column keyword was supplied, each

132

PV-WAVE Programmer’s Guide

; value is written on a different line of the file. The returned value
; status can be checked to see if the process completed successfully.

Or you can use the OPENW command to create anew file that contains these same
values:

OPENW, 2, ‘data3.dat’
; Open the file “data3.dat” for writing.

PRINTF, 2, '77'
PRINTF, 2, 63’
PRINTF, 2, ’'42'
PRINTF, 2, ‘56’
: Write the values to the file, each value on a new line.
CLOSE, 2
; Close the file.

Now use the following commands to change a data point in the existing file
data3.dat:

OPENU, 1, ’‘data3.dat’

; Open the file “data3.dat” for updating.
PRINTF, 1, ’'89'

; Replaces the value 77 with the new value 89.
CLOSE, 1

; Close the file.

Now the contents of data3 .dat look like:

89
63
42
56

Conclusion

These two examples have introduced you to afew of the commands that are avail-
ablefor reading and writing data. The rest of this chapter elaborates on the various
commands and concepts that you need to know to confidently transfer datain and
out of PV-WAVE.

Opening and Closing Files

PV-WAVE has several commands for opening and closing datafiles; you select the
command that matches the way you intend to use thefile.

133

Opening Files

Before afile can be processed by PV-WAVE, it must be opened and associated with
anumber called thelogical unit number, or LUN for short. All 1/0O isdone by spec-
ifying the LUN, not the filename.

The LUN is supplied as part of the function call. For example, to open the file
named data .dat for reading on file unit 1, you would enter the following
command:

OPENR, 1, ’'data.dat’

Oncethefileisopened, you can choose between several /O routines. Each routine
fillsa particular need — the oneto use depends on the particular situation. Refer to
the examples in this chapter to get an idea of how (and when) to open and close
datafiles.

NOTE If you are using one of the /O routinesthat start with theletters“DC”, you
do not need to explicitly open and close the file, because these steps happen auto-
matically. For more details, refer to Functions for Smplified Data Connection on
page 146.

Basic Commands for Opening Files

The three main OPEN commands are listed in the following table:

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opensanew filefor input and output. Under UNIX and Windows,
if the named file already exists, the previous contents are
destroyed. Under OpenVMS, afile with the same name and a
higher version number is created.

OPENU Opens an existing file for input and output.

The general form for using any of the OPEN proceduresis:

OPENYX, unit, filename

where unit refers to the logical file unit that will be allocated for opening thefile
named filename, and x is either an R, W, or U, depending on which of the three
OPEN commands you choose to use.

134

PV-WAVE Programmer’s Guide

NOTE The three commands shown above recognize keywords that modify their
normal behavior. Some keywords are generally applicable, while others only have
effect under agiven operating system. For more information about keywords, refer
to the descriptions for the OPENR, OPENW, and OPENU procedures. These
descriptions can be found in the PV-WAV E Reference.

When to Open the File for I/O (Input/Output)

Usually you must open thefile before any 1/O can be performed. But there are two
situations where you don’t need to open the file before doing any 1/O:

* Reserved LUNs— There are three file units that are always open — in fact,
the user is not allowed to close them. These files are standard input (usually
the keyboard), standard output (usually the workstation's screen), and stan-
dard error output (usualy the workstation’s screen). These three files are
associated with LUNs 0, —1, and —2 respectively. Because these file units are
always open, you do not need to open them prior to using them for 1/O. For
more information about the three reserved file units, refer to Reserved Logical
Unit Numbers (-2, -1, 0) on page 136.

» Simplified 1/0 Routines— Any 1/O function that begins with the two | etters
“DC” automatically handlesthe opening and closing of thefileunit. Thisgroup
of functions has been provided to simplify the process of getting your datain
and out of PV-WAV E. For more information about the DC |/O functions, refer
to Functions for Smplified Data Connection on page 146.

Closing Files

Always close the file when you are done using it. Closing afile removes the asso-
ciation between thefileand itsLUN and thusfreesthe LUN for use with adifferent
file. Thereisusually an operating-system-imposed limit on the number of filesyou
may have open at once. Although this number islarge enough that it rarely causes
problems, you may occasionally need to close afile before opening another file. In
any event, it isagood ideato only keep needed files open.

Closing aLUN isdone with the CLOSE procedure. For example, to close file unit
1, enter this command:

CLOSE, 1

Also, remember that PV-WAVE closes all open files asit shuts down. Any LUN

you allocated isautomatically deall ocated when you exit PV-WAV E with the EXIT
or QUIT command.

135

NOTE If FREE_LUN is called with afile unit number that was previously allo-
cated by GET_LUN, it calls CLOSE before deallocating the file unit.

Logical Unit Numbers (LUNs)

PV-WAVE logical unit numbers arein therange {—2...128}; they are divided into
three groups:

Reserved Logical Unit Numbers (-2, -1, 0)

0, -1, and —2 are special file units that are always open within PV-WAVE:

0 (zero) — The standard input stream, which is usualy the keyboard. This
implies that the statement:

READ, X
is equivalent to
READF, 0, X

The user would then enter the values of X from the keyboard, as shown in the
following statements:

READ, X
0.2, 0.4, 0.6
The line preceded with the colon (:) denotes user input.

-1 (negative 1) — The standard output stream, which is usually the worksta-
tion’s screen. Thisimplies that the statement:

PRINT, X

is equivalent to

PRINTF, -1, X

The following command can be used to send a message to the screen:
PRINT, ’‘Hello World.’

Thefollowing line:

Hello World.

is sent to the workstation's screen.

136

PV-WAVE Programmer’s Guide

e -2 (negative 2) — The standard error stream, which is usually the worksta-
tion’s screen.

Because the READ and PRINT procedures automatically use the standard input
and output streams (files) by default, basic ASCI|
I/O is extremely simple.

Operating System Dependencies

The reserved files units have a special meaning which is operating-system depen-
dent, as explained in the following sections:

UNIX

Thereserved LUNs are equated to stdin, stdout, and stderr respectively.
This means that the normal UNIX file redirection and pipe operations work with
PV-WAVE. For example, the shell command:

% wave < wave.inp > wave.out &

causes PV-WAVE to execute in the background, reading its input from thefile
wave . inp and writing its output to the file wave . out.

OpenVM S

Thereserved LUNSs are equated to SYS$INPUT, SYS$SOUTPUT, and
SYSS$SERROR respectively. This means that the DCL DEFINE statement can be
used to redefine where PV-WAV E gets commands and writes its output. It also
means that PV-WAV E can be used in command and batch files.

Logical Unit Numbers for General Use (1...99)

These arefileunitsfor normal interactive use. When using PV-WAV E interactively,
you can select any number in this range.

Thefollowing statements show how astring, “Hello World.”, could be sent to afile
named hello.dat:

OPENW, 1, ’'hello.dat’

; Open LUN 1 for hello.dat with write access.
PRINTF, 1, ’‘Hello World.’

; Insert the string “Hello World.” into the file hello.dat.

CLOSE, 1
; You're done with the file, so close it.

137

Logical Unit Numbers Used by GET_LUN/FREE_LUN
(100...128)

These arefile units that are managed by the GET_LUN and FREE _LUN proce-
dures. GET_LUN and FREE_LUN provide a standard mechanism for routinesto
obtain aLUN.

GET_LUN allocates afile unit from a pool of free unitsin the range{100...128} .
This unit will not be allocated again until it isreleased by acall to FREE_LUN.
Meanwhile, it is available for the exclusive use of the program that allocated it.

CAUTION When writing procedures and functions, be sure not to explicitly
assign file unit numbersin therange { 100...128} . If a procedure or function reads
or writesto an explicitly assigned file unit, there is a chance it will conflict with
other routines that are using the same unit. Always use the GET_LUN and
FREE_LUN procedures to manage LUNS.

Sample Usage — GET_LUN and FREE_LUN
A typical procedure that needs afile unit might be structured in the following way:

PRO demo
OPENR, Unit, ’file.dat’, /GET_LU'N

; Get a unique file unit and open the file.
(Other commands go here.)

FREE LUN, Unit
; Return the file unit number. Since the file is still open,
; FREE_LUN will automatically call CLOSE.

END

NOTE All procedures and functionsthat open files, including those that you write
yourself, should use GET_LUN and FREE_LUN to obtain file units. Never use a
file unit in the range { 100...128} unlessit was previously allocated with
GET_LUN.

138

PV-WAVE Programmer’s Guide

How is the Data File Organized?

In ASCI]I files, the file can either be organized by rows or columns; the fact that
ASCII files are human-readable helps you interpret their contents. In binary files,
however, the organization of the file may be considerably less clear; you need to
know something about the application that created the file, and understand the
operating system under which the application was running to fully understand the
organization of thefile.

Column-Oriented ASCII Data Files

A column-oriented datafile is one that contains multiple data values arranged in
columns; because it is ASCII, the data is human-readable. At the end of each row
isacontrol character, such as Ctrl-J or Ctrl-M, that forces aline feed and carriage
return.

In a column-oriented file, the valuesin each column are related in some way; ulti-
mately, you will probably want to group all the datain each column into adifferent
variablefor further analysis. A typical column-oriented datafileisshownin Figure
8-1.

NOTE Not al filesthat contain columns of values contain column-oriented data.
For example, if you are reading every value in the file into the same variable, the
fileisprobably arow-oriented file, despiteits apparent columnar organization. The
organi zation of row-oriented filesisdiscussed further in Row-Oriented ASCII Data
Files on page 140.

139

Name: Hour
Type: Integer
Dimension 1: *

Name: Month JAN O 334110 0.5382 0.2683
Type: String | JAN 2 33.7718 0.3849 0.2465
Dimension 1: * | JAN 4 342258 0.3116 0.2465
JAN 6 34.6347 1.4532 0.4215
JAN 8 38.8444 2.0452 0.7581
JAN 10 44,7400 0.7629 0.7511
JAN 12 47.4997 0.2935 0.6559
JAN 14 47.5487 0.8376 0.7142
JAN 16 44,5487 0.8376 0.7142
JAN 18 39.4317 1.5540 0.5852
JAN 20 36.9194 0.8124 0.4210
JAN 22 35.4489 0.6462 0.3712
FEB O 30.4813 0.4902
FEB 2 29.8589 Name: SO2
FEB 4 29.9985 -Igyilrfr)'nee':nz!gﬁt? .
FEB 6 . :
FEB 8 ?);&?’F%;t .
imension 1:
FEB 10 Name: Fahrenheit
Type: Float

Dimension 1: *

Figure 8-1 Typical file organization for a column-oriented ASCII data import file. In this
example, the first column of data is associated with a variable named Month, the second col-
umn with a variable named Hour, the third column with a variable named Fahrenheit, the
fourth column with a variable named CO, and the fifth column with a variable named SO2.

Row-Oriented ASCII Data Files

A row-oriented datafileis one that contains multiple data values arranged in a con-
tinuous stream; becauseit isASCI|, the datais human-readable. When reading this
kind of file, the size of thevariablesin the variablelist determineshow many values
get transferred. The data type of the variables also influences how the data gets
interpreted, because if the data is not the expected type, PV-WAVE performs type
conversion as it reads the data. A typical row-oriented datafileis shown in Figure
8-2.

140

PV-WAVE Programmer’s Guide

Name: Source/
Type: String

Scalar

| Reykjavik_Labs9211304.3256.876 9.801 4.672 9.456 7.439

Name: Date
Type: Integer
Scalar

Name: Bin
Type: Float
Dimensions: 10-By-3

921) (.432, .887) (.734,
457) (.589, .495) (.576, .729) (.934,
.782) (.554, .348) (.776, .892) (.340, . 817,\412) (.667,

Name: Chute 456) (.992, .480) (.739, .308) (.812,|.394) (.234, .
Type: Integer .345) (.544, .923) (.845, .342) (.567,1912) (.423, .

Dimensions: 22-by-1

Name: Phase_Shift
Type: Complex
Dimensions: 8-by-4

Name: Mill
Type: Byte
Dimensions: 8-by-8

Figure 8-2 Typical file organization for a row-oriented ASCII data import file. Spaces are
being used as the delimiter to separate adjacent data values. In this example, the first group
of data is associated with a variable named Source, the second group with a variable named
Date, the third group with a variable named Bin, the fourth group with a variable named
Chute, the fifth group with a variable named Mill, and the sixth group with a variable named
Phase_Shift.

How Long is a Record?

It can be important to understand the concept of records, especialy if you are per-
forming certain types of 1/0. The following sections discuss records, both in the
context of formatted and unformatted data.

UNIX and OpenVMS USERS Differences between the UNIX and OpenVM S
operating systems are al so noted, when they exist.

141

Record Length in ASCII (Formatted) Files

In an ASCII text file, the end-of-line is signified by the presence of either a Ctrl-J
or a Ctrl-M character, and arecord extends from one end-of-line character to the
next. However, there are actually two kinds of records:

v physical records
v logica records

For column-oriented files, the amount of datain aphysical record is often sufficient
to provide exactly one value for each variablein the variable list, and thenit isa
logical record, aswell. For row-oriented files, the concept of logical recordsis not
relevant, since datais merely read as contiguous values separated by delimiters,
and the end-of-line isinterpreted as yet another delimiter.

Changing the Logical Record Size

If you are using one of the DC_READ routinesfor simplified 1/0, and you are read-
ing column-oriented data, you can useacommand line keyword to explicitly define
adifferent logical record size, if you wish. The “DC” routines are introduced in
Functions for Smplified Data Connection on page 146.

NOTE By default, PV-WAVE considers the physical record to be one linein the
file, and the concept of alogical record is not needed. So in most cases, you do not
need to define alogical record. But if you are using logical records, the physical
records in the file must all be the same length.

For more details about the keywords that control logical record size, refer to the
descriptions for the DC_READ_FIXED and DC_READ_FREE routines; these
descriptions are found in the PV-WAV E Reference.

Record Length in Binary (Unformatted) Files

Binary datais acontinuous stream of ones and zeros. To fully understand the orga-
nization of binary files, you need to know something about the application that
created the file, and understand the operating system under which the application
was running. You would then choose variables for the variable list that match that
organization. The type and size of the variablesin the variable list establish a
framework by which the ones and zerosin thefile are interpreted.

UNIX and OpenVMS USERS For binary files, neither the concept of physical
or logical recordsis relevant, although when using PV-WAVE in an OpenVMS
environment, the concept of records (at the operating system level) may still affect

142

PV-WAVE Programmer’s Guide

your work. For an example showing why you must consider record length when
working in an OpenVMS environment, refer to Record-Oriented 1/0 in OpenVMS
Binary Files on page 143.

For more information about how the operating system affectsthe transfer of binary
data, refer to Reading UNIX FORTRAN-Generated Binary Data on page 183 and
Reading OpenVMS FORTRAN-Generated Binary Data on page 186.

Number of Records in a File

OpenVMS USERS |n the OpenVMS operating system, the number of records
in afileis aways known because that information is included in the file header
description. For an example of how to view the header description for an Open-
VMSfile, refer to Creating Indexed Files on page 207.

UNIX USERS Inthe UNIX operating system, files are not divided into records,
unless the application or individual that created it chose to organize it by records
when creating thefile.

Record-Oriented I/O in OpenVMS Binary Files

All OpenV M Sfilesaredividedinto recordsat the operating system level. Thebasic
rule of 1/0O with record-oriented binary filesisthat the form of theinput and output
statements should match. For instance, the statements:

WRITEU, unit, A
WRITEU, unit, B
WRITEU, unit, C

generate three output records, and should be later input with statements of the
form:

READU, unit, A
READU, unit, B
READU, unit, C

In contrast, the statement:
WRITEU, unit, A, B, C

generates a single output record, and should be later input with the single
statement:

READU, unit, A, B, C

143

NOTE In the examples shown above, it is assumed that the type and size of vari-
ables A, B, and C isthe same during both the writing and the reading of the data.
Otherwise, the dataisinterpreted differently by the READU commandsthan it was
interpreted previously by the WRITEU commands.

For more information about OpenV M Sfiles, refer to OpenVM S Specific | nforma-
tion on page 204; that section contains more information on how OpenVMS
handlesfiles.

Example — Transferring Record-Oriented Data Under OpenVMS

When writing to OpenVMSfiles, PV-WAVE aways transfers at least asingle
record of data. If the amount of data required exceeds a single record, more |/O
occurs. For example, these commands open afile with 80 character records:

OPENW, unit, "filename", 80
The statement:
WRITEU, unit, FINDGEN (512)

causes 2048 bytes to be output (each floating point value takes 4 bytes), and thus
causes 26 recordsto be output (2048/80 = 25.6). Thelast record is not entirely full,
and is padded at the end with zeroes.

On later input, the same ruleis applied in reverse — 26 records are read, and the
unused portion of the last oneis discarded.

UNIX USERS Thisexample does not apply to the UNIX operating system, since
UNIX files are not record-oriented.

Types of Input and Output

PV-WAVE divides /O into two categories. These are summarized, along with a
brief discussion of advantages and disadvantages, in the following table:

144 PV-WAVE Programmer’s Guide

Comparison of Binary and Human-Readable Input/Output

Advantages Disadvantages
Binary 1/0 Binary I/Oisthesimplest and most Binary datais not always portable.
efficient form of 1/0. Binary data files can only be moved

easily to and from computers that
Binary datais more compact than share the same internal data represen-
ASCII data tation.

Binary datais not directly human
readable, so you can't typeittoa
workstation's screen or edit it with a
text editor.

ASCII I/O ASCII dataisvery portable. Itis ASCII I/O is slower than binary 1/0
easy to move ASCII datafilesto because of the need to convert
various computers, even comput- between the internal binary represen-
ersrunning different operating sys- tation and the equivalent ASCII char-
tems, aslong asthey all use the acters.

ASCII character set.

ASCII data requires more space than
ASCII data can be edited with a binary datato store the same infor-
text editor or typed to the worksta- mation.
tion’s screen because it uses a
human readable format.

Each Type of I/O has Pros and Cons

Thetype of 1/0 you use will be determined by considering the advantages and dis-
advantages of each method. Also, when transferring datato or from other programs
or systems, the type of 1/O is determined by the application. The following sugges-
tions are intended to give arough idea of the issues involved, although there are
always exceptions:

» Datathat needs to be human readable should be written using a human-read-
able character set. Thetwo main character setsin use are ASCII and EBCDIC;
the PV-WAV E documentation assumes that you are using ASCII. The PV-
WAV E routinesfor human-readable |/O arelisted in ASCII I/O — Free Format
on page 149 and ASCII 1/0 —Fixed Format on page 149.

* Images and large data sets are usually stored and manipulated using binary 1/
O in order to minimize processing overhead. The ASSOC function is often the
natural way to access such data, and thusis an important function to under-
stand. The ASSOC function is discussed in Associated Variable Input and
Output on page 194.

145

* Images stored in the TIFF format can be easily transferred using the
DC _READ_TIFF and DC_WRITE_TIFF functions. Device Independent Bit-
map (DIB) images can be transferred with the DC_READ_DIB and
DC_WRITE_DIB functions. Other images, either 8-bit or 24-bit, are trans-
ferred with the DC_READ_*_BIT and DC_WRITE_*_BIT functions, where
the* represents either an 8 or a 24, depending on the type of image data that
you have. The various DC routines that can be used to transfer image data are
discussed in Input and Output of Image Data on page 175.

» Datathat needsto be portabl e should be written using the ASCI| character set.
Another option isto use XDR (eXternal Data Representation) binary files by
specifying the Xdr keyword with the OPEN procedures. Thisis especialy
important if you intend to exchange data between computers with markedly
different internal binary dataformats. XDR isdiscussed in External Data Rep-
resentation (XDR) Files on page 188.

» For ASCII files, freely formatted |/O is easier to use than explicitly formatted
I/0, and isamost as easy as binary /O, so it is often a good choice for small
files where there is no strong reason to prefer one method over another. Free
format 1/0O is discussed in Free Format Input and Output on page 151.

* Theeasiest routinesto usefor thetransfer of both imagesand formatted ASCI|
dataarethe DC_READ and DC_WRITE routines. They are easy to use
because they automatically handle many aspects of datatransfer, such as open-
ing and closing the datafile. The “DC” routines are introduced in the next
section, Functions for Simplified Data Connection.

Functions for Simplified Data Connection

PV-WAVE includes agroup of /O functions that begin with the two letters“DC”;
this group of functions has been provided to simplify the process of getting your
datain and out of PV-WAVE. This group of 1/0 functions does not replace the
READ, WRITE, and PRINT commands, but does provide an easy-to-understand
alternative for most 1/0 situations.

NOTE The DC_* routines that import and export ASCII data do not support the
transfer of datainto or from structures. An exceptionto thisisthe!DT, or date/time,
structure. It is possible to transfer date/time datausing DC_* routines.

ThefunctionsDC_READ_FREEand DC _READ_FIXED arewell-suited for read-
ing column-oriented data; thereis no need to use thelooping construct necessitated
by other PV-WAVE procedures used for reading formatted data. The functions
DC WRITE_FREE and DC_WRITE_FIXED are equally well-suited for writing

146

PV-WAVE Programmer’s Guide

column-oriented ASCII datafiles. To see a figure showing a sample column-ori-
ented file, refer to Figure 8-1 on page 140.

The DC functions are easy to use because they automatically handle many aspects
of datatransfer, such as opening and closing the datafile. Another advantage of the
DC I/O commands is that they recognize C-style format strings, even though all
other PV-WAVE 1/O routines recognize only FORTRAN-style format strings.

NOTE By default, DC_WRITE_FREE generates CSV (Comma Separated Value)
ASCII datafiles, and the corresponding function, DC_READ_ FREE, easily reads
CSV files.

For specific information about any of the DC routines, refer to exampleslater in
this chapter, or refer to individual function descriptions in the PV-WAV E Refer-
ence. For information on the two routines used to perform DC routine error
checking, refer to Other 1/0O Related Routines on page 150.

Binary I/O Routines

Binary I/O transfersthe internal binary representation of the data directly between
memory and the file without any data conversion. Useit for transferring images or
large data setsthat require higher efficiency. The routinesfor binary 1/0 are shown
in the following table:

Routines for Binary Input/Output

Function Description

READU Read binary data from the specified file unit.

WRITEU Write binary data to the specified file unit.

DC WRITE 8 BIT Write (or read) binary 8-bit datato (or from)

DC READ 8 BIT afile without having to explicitly choose a
LUN.

DC WRITE 24 BIT Write (or read) binary 24-bit datato (or from)

DC _READ 24 BIT afile without having to explicitly choose a
LUN.

DC WRITE_TIFF Write (or read) TIFF image data. You do not

DC_READ_TIFF have to explicitly choose a LUN.

ASSOC Map an array definition to a datafile,

providing efficient and convenient direct
access to binary data.

147

Routines for Binary Input/Output (Continued)

Function Description

GET_KBRD Read single characters from the keyboard.

For more information about the routines shown in the previous table, refer to Input
and Output of Binary Data on page 174, Associated Variable Input and Output on
page 194, and Getting Input from the Keyboard on page 203.

ASCII I/0 Routines

ASCII dataisuseful for storing data that needs to be human readable or easily por-
table. ASCII I/O worksin the following manner:

* Input — ASCII characters are read from the input file and converted to an
internal form.

* Output — Theinternal binary representation of the datais converted to ASCI|
characters that are then written to the output file.

PV-WAV E provides a number of routines for transferring ASCI| data; these rou-
tinesarelisted in ASCII I/O — Free Format on page 149 and ASCII 1/O —Fixed
Format on page 149.

Choosing Between Free or Fixed (Explicitly Formatted) ASCII I/O

ASCII /O is subdivided further into two categories; the two categories are com-
pared below.

Fixed Format 1/0

You provide an explicit format string to control the exact format for the input or
output of the data. For a column-oriented datafile, with data going into more than
one variable, thisimplies that the valuesin the input or output file line up in well-
defined, fixed-width columns, as shown earlier in Figure 8-1 on page 140.

Because the datavalues end up being restricted to certain locations ontheline, this
styleof 1/Oiscalled fixed format I/O. The exact format of the character datais spec-
ified to the I/O procedure using aformat string (viathe Format keyword). If no
format string is given, default formats for each type of data are applied.

Free Format |1/O

PV-WAV E uses default rules to format the data and uses delimiters to differentiate
between different data valuesin the file. During input, the values in the file do not

148

PV-WAVE Programmer’s Guide

have to line up with one another because PV-WAVE is not imposing arigid struc-
ture (format) on thefile.

You do not have to decide how the data should be formatted because, in the case of
input, PV-WAV E automatically looks for delimiters separating data values, and in
the case of output, automatically places delimiters between adjacent data values.
Becausethevaluesare“free” to be anywhere ontheline, aslong asthey areclearly
separated by delimiters, this style of 1/0 is called free format 1/O.

ASCII I/O — Free Format

Routines for Freely Formatted ASCII I/O

Procedure Description

PRINT Write ASCII datato the standard output file
(LUN -1).

READ Read ASCII datafrom the standard input file
(LUN 0).

PRINTF Write (or read) ASCII datato (or from) the

READF specified LUN.

DC_WRITE_FREE Write (or read) ASCII datato (or from) afile

DC_READ_FREE without having to explicitly choose a LUN.

For al theroutineslisted in the previoustable, you do not have to provide aformat
string to transfer the data. (Because the valuesin the file are all separated with
delimiters, no format string is needed.) The free format I/O routines are discussed
in more detail in Free Format Input and Output on page 151.

ASCII I/0 — Fixed Format

Routines for Explicitly Formatted ASCII I/O

Procedure Description

PRINT Write ASCII datato the standard output file
(LUN -1).

READ Read ASCII data from the standard input file
(LUN 0).

PRINTF Write (or read) ASCII datato (or from) the

READF specified LUN.

149

Routines for Explicitly Formatted ASCII /0O (Continued)

Procedure Description
DC WRITE _FIXED Write (or read) ASCII datato (or from) afile
DC READ_FIXED without having to explicitly choose a LUN.

For all theroutines shown in the previoustable, you use the Format keyword to pro-
vide the format string that is used to transfer the data. The first routines listed
(PRINT, READ, PRINTF, READF) recognize FORTRAN:-like formats; the DC
routines accept either C or FORTRAN format strings. The explicit format 1/0 rou-
tinesare discussed in more detail in Explicitly Formatted Input and Output on page
155.

NOTE The STRING function can aso generate ASCI| output that is sent to a
string variableinstead of afile. For more information about the STRING function,
refer to alater section, Using the STRING Function to Format Data on page 173.

Other I/0 Related Routines

In addition to performing /O to an open file, there are several routinesthat provide
other file management capabilities. These additional routines are shown in the
following table:

Additional I/O Routines

Procedure Description

GET_LUN Allocate and free LUNSs.

FREE_LUN

FINDFILE L ocate files that match a file specification.

FLUSH Ensure all buffered datafor aLUN has actually
been written to thefile.

POINT_L Position the file pointer.

UN

EOF Check for the end-of file condition.

INFO, /Files Print information about open files.

FSTAT Get detailed information about any LUN.

150

PV-WAVE Programmer’s Guide

Additional 1/0 Routines (Continued)

Procedure Description

DC_ERROR_MSG Returns the text string associated with the nega-
tive status code generated by a“DC” data
import/export function that does not complete
successfully.

DC_OPTIONS Sets the error message reporting level for
al “DC” import/export functions.

For additional information about DC_ERROR_MSG and DC_OPTIONS, refer to
their descriptionsin the PV-WAV E Reference. For more information about the rest
of the routines shown in the previous table, refer to alater section, Miscellaneous
File Management Tasks on page 199.

Free Format Input and Output

Freeformat ASCII 1/O is extremely easy to use. The main advantage of free for-
matted ASCII 1/O isthat you do not have to provide aformat string to format the
data, because you assume that adjacent values are separated by delimiters.

Theroutines for performing freely formatted ASCII 1/O arelisted in ASCII I/O —
Free Format on page 149.

Free Format Input

Input is performed on scalar variables. In other words, array and structure variables
are treated as collections of scalar variables. For example:

Z_hi = INTARR (5)

READ, Z hi

causes PV-WAVE to read (from the standard input stream) five separate values to
fill each element of thevariable Z_hi.

Input data must be separated by commas or white space (tabs and blank spaces).

If the current input lineisempty and there are variablesleft to befilled, another line
isread. If the current input line is not empty but there are no variables |eft to be
filled, the remainder of the lineisignored.

When reading into a variable with data type String, all characters remaining in the
current input line are placed into the string.

151

When reading into numeric variables, PV-WAV E attempts to convert theinput into
avalue of the expected type. Decimal points are optional and exponential (scien-
tific) notation is alowed. If afloating-point value is provided for an integer
variable, the value is truncated.

Importing String Data

When PV-WAV E reads strings using freeformats, it readsto the end of theline. For
thisreason, it isusually convenient to place string variables at the end of thelist of
variables to be input. For example, if S isastring variable and I isan integer, do
not do this:

READ, S, I
; Read into the string first.

: hello world 34
; PV-WAVE prompts for input. The user enters a string value
; followed by an integer.

: 34
; Because this is a freely formatted read statement, and the READ
; procedure does not recognize delimiters inside strings, the entire
; previous line was placed into the string variable S, and PV-WAVE
; still expects a value to be entered for I. Consequently, PV-WAVE
; prompts for another line.

PRINT, S
; Show the result of S.

results in the output:

'Hello world 34’

Importing Data into Complex Variables

Complex scalar values are treated as two floating-point values. When reading into
avariable of complex type, the real and imaginary parts must be separated by a
commaand surrounded by parentheses. If only asinglevalueisprovided, it istaken
asthereal part of the variable, and the imaginary part is set to zero.

Here are some examples of how to enter complex data from the keyboard:

Z lo = COMPLEX (0)
; Create a complex variable.
READ, Z lo
(3,4)
; PV-WAVE prompts for input: Z_lo is set to COMPLEX(3,4).

READ, Z lo

152

PV-WAVE Programmer’s Guide

: 50
; PV-WAVE prompts for input: Z_lo is set to COMPLEX(50,0).

Importing Data into a Structure

The following statements demonstrate how to load data into a complicated struc-
ture variable and then print the results:
A = {alltypes, a:0b, b:0, c:0L, d:1.0, e:1D,$
f:complex(0), g:’'string’, e:fltarr(5)}
; Create a structure named “alltypes” that contains all eight of
; the basic data types, as well as a floating-point array.
READ, A
12345 (6,7) eight
; Read freely formatted ASCII data from the standard input;
; PV-WAVE prompts for input. Enter values for the first six numeric
; fields of A, and the string. Notice that the complex value was
; specified as (6,7). If the parentheses had been omitted, the complex
; field of A would have received the value COMPLEX(6,0), and the 7
; would have been used for the next field. When reading into a string
; variable with the READ procedure, and no format string has been
; provided, PV-WAVE starts from the current point in the input and
; continues to the end of the line. Thus, the values intended for the
; rest of the structure are entered on a separate line, as shown in the next step.
9 10 11 12 13
: There are still fields of A that have not received data, so PV-WAVE
; prompts for another line of input.
PRINT, A
; Show the result.

Executing these statements results in the following output:
{ 1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight
9.00000 10.0000 11.0000 12.0000 13.0000 }

When producing the output, PV-WAV E uses default formats for formatting the val-
ues, and attempts to place as many items as possible onto each line. Because the
variable A isastructure, curly braces, “{” and “}”, are placed around the output.
The default formats are shown in Free Format Output on page 155.

Importing Date/Time Data

The following statements show how to read afile that contains some data values
and also some chronological information about when those data values were
recorded. The name of thefileisevents.dat:

153

01/01/92 05:45:12 10
02/01/92 10:10:10 15.89
05/15/92 02:02:02 14.2

This example shows how to usethe DC_READ_FREE function to read this data.
When using DC_READ_FREE, the date data and the time data can be placed into
the same date/time structure using predefined templates. To see a complete list of
the date/time templates, refer to Date/Time Templates on page 159.

To read the date/time from the first two columnsinto date/time variables and then
read the third column of floating point datainto another variable, use the following
statements:

datel = REPLICATE ({!DT},3)

; The system structure definition of date/time is |DT. Date/time
; variables must be defined as |DT arrays before being used if the
; date/time data is to be read as such.

status = DC_READ FREE ("events.dat", $
datel, datel, floatl, /Column, $
Dt Template=[1,-1])

; The variables date1 is used twice, once to read the date data and
; once to read the time data.

To see the values of the variables, you can use the PRINT command:

FOR I = 0,2 DO BEGIN
PRINT, datel(I), floatl(I)
; Print one row at a time.

ENDFOR

Executing these statements results in the following output:
{ 1992 01 01 05 45 12.00 } 10.0000

{ 1992 02 01 10 10 10.00 } 15.8900

{ 1992 05 15 02 02 02.00 } 14.2000

Becausedatel isastructure, curly braces, “{" and “}"”, are placed around the out-
put. When displaying the values of datel and f1oat1, PV-WAVE uses default
formats for formatting the values, and attempts to place as many items as possible
onto each line.

For more information about the internal organization of the |DT system structure,
refer to Working with Date/Time Data in the PV-WAVE User’'s Guide. For more
information about using the DC_READ_FREE function with date/time data, refer
to its description in the PV-WAVE Reference.

154

PV-WAVE Programmer’s Guide

Free Format Output

The format used to output numeric datais determined by the data type.
Output Formats Used When Writing Data

Output Formats Used by PRINT, PRINTF, and

Data Type DC_WRITE_FREE
Byte 14

Integer 18

Long Integer 112

Float G13.6

Double G16.8

Complex '(, G13.6,",, G136, ")’
String A (character data)

NOTE When writing string data, each string (or element of astring array) iswrit-
ten to the file, flanked with a delimiter on each side. Thisimpliesthat the strings
should not contain delimiter charactersif you intend use free format input at alater
timeto read thefile.

The current output lineisfilled with characters until one of the following happens
(in the following order):

(a) Thereisno more datato output.

(b) The output lineisfull. The line width is controlled by the device char-
acteristics, as determined by the terminal characteristics (tty), or thefile's
record characteristics (disk file).

(c) An entire row is output in the case of multidimensional arrays.

When writing the contents of astructure variableto afile, its contents are bracketed
with curly braces, “{” and “}”.

Explicitly Formatted Input and Output

Explicit formatting allows a great deal of flexibility in specifying exactly how
ASCII dataisformatted. Formats are specified using a syntax that is very similar

155

tothat used in FORTRAN or C format statements. Scientists and engineersalready
familiar with FORTRAN or C will find PV-WAV E formats easy to write.

The routines for performing explicitly (fixed) formatted ASCII |/O arelisted in
ASCII 1/O — Fixed Format on page 149.

All datais handled in terms of basic datatypes. Thus, an array is considered to be
acollection of scalar dataelements, and astructureisprocessed intermsof itsbasic
components. Complex scalar values are treated as two floating-point values.

Using FORTRAN or C Formats for Data Transfer

All formatted ASCII 1/O routines recognize FORTRAN-style format strings, and
for formatted 1/O routines that begin with the prefix “DC”, C-style format strings
can be used, aswell. The format string specifies the format in which datais to be
transferred as well as the data conversion required to achieve that format.

FORTRAN and C datatransfer codes are discussed in more detail in Appendix A,
FORTRAN and C Format Strings. You can also find examples of using format
codes with any of the descriptions of the commands for transferring explicitly for-
matted data; these descriptions are in the PV-WAVE Reference.

How is the Format String Interpreted?

The variable names provided in acall to an I/O routine comprise the variable list.
The variable list specifies the data to be moved between memory and thefile. The
Format keyword can be included in the parameter list of an ASCII 1/0 routine to
provide aformat string that explicitly specifies the appearance of the transferred
data.

Theformat string is traversed from left to right, processing each record terminator
and format code until an error occurs, or until no variables are left in the variable
list. In FORTRAN-style formats, the commafield separator serves no purpose
except to delimit the format codes.

When reading or writing data from the file, the datais formatted according to the
format string. If the datatype of theinput data does not agree with the data type of
the variablethat isto receive the result, PV-WAV E performstype conversionif pos-
sible, and otherwise, issues a type conversion error and stops.

If the last closing parenthesis of the format string is reached and there are no vari-
ablesleft in the variable list, then format processing terminates. If, however, there
are still variables to be processed in the variable list, then part or al of the format
specification is reused. This processis called format reversion, and is discussed
more in Format Reversion on page 157.

156

PV-WAVE Programmer’s Guide

In a FORTRAN-style format string, when aslash (/) or newline () record termi-
nator is encountered, the current record is completed and anew oneis started. For
output, this meansthat anew lineis started. For input, it means that the rest of the
current input record is ignored, and the next input record is read.

When aformat code that does not transfer data is encountered, it is processed
according to its meaning. When aformat code that transfers datais encountered, it
is matched up with the next entry in the variable list. All recognized format codes
arelisted in Appendix A, FORTRAN and C Format Strings.

CAUTION Itisan error to specify avariable list with aformat string that doesn’t
contain aformat code that transfers data to or from the variable list. Because the
command expects to transfer data to the variablesin the variable list, an infinite
loop would result. For example, consider the following statement:

PRINTF, 1, names, years, salary, Format= $
" ("Name", 28X, "Year", 4X, "Total Salary")’

This statement resultsin amessage stating that an infinite loop is detected (because
no datais being transferred to the named variables), and thus execution is being
halted. On the other hand, the following statement is acceptable because there are
no variables included as part of the parameter list:

PRINTF, 1, Format= $
' ("Name", 28X, "Year", 4X, "Total Salary")'’

Should | Use a FORTRAN or C Format?

The only functionsthat recognize the C format strings are those that begin with the
prefix “DC”. The DC functions are the onesthat have been designed specifically to
simplify the process of transferring data.

All other procedures and functions that transfer data recognize only the FOR-
TRAN-style format statements. The FORTRAN format codes that are recognized
by PV-WAVE arelisted in Appendix A, FORTRAN and C Format Strings.

Format Reversion

Format reversionisaway to transfer alot of datawith aformat string that, at first
glance, seemsto be“too short” . When using format reversion, the current record is
terminated, anew oneisstarted, and format control revertsto thefirst group repest
specification that does not have an explicit repeat factor.

NOTE |If you are using a C-style format string, the entire format string is reused.

157

If the format does not contain a group repeat specification, format control returns
to theinitial opening parenthesis of the format string. For example, the command:

PRINT, Format = $
' ("The values are: ", 2("<", I1, "»"))’, INDGEN(6)

results in the outpuit:

The values are: <0><1>
<2><3>

<4><5>

The process involved in generating this output is:
1) Output the string, “The values are:”.

2) Process the group specification and output thefirst two values. The end
of the format specification is encountered, so end the output record. Data
remains, so revert to the group specification

2("<"1 Il, n>n)
using format reversion.

3) Repeat the second step until no data remains, and then for output, end
the output record, or for input, stop reading data values.

At thispoint, format processing is complete. To see other examples of format rever-
sion, refer to Appendix A, FORTRAN and C Format Strings.

Transferring Date/Time Data

PV-WAV E supports the transfer of date/time datain and out of datafiles. Some
examples of date/time data which you may wish to read are:

10/20/92 12:00:10.90
21/01/93 11:06:29.0875
10-JAN-1992 12:46
MAR:1993 $25440.0

Although there are several waysto read data'time data, you would want to choose
the method that makes the most sense for your application and best matches the
style of program you are writing:

» Useclassical programming constructs — With this method, you open the
file, loop to read the data, close the file, and run the data through one of the
date/time conversion routines. This method is shown below in Method 1 —
Read the File with READF on page 160.

158

PV-WAVE Programmer’s Guide

* Useoneof theDC_READ routines— With this method, you define one or
more variables that use the date/time system structure organization, and then
use DC_READ_ FIXED or DC_READ_FREE to transfer the data into those
variables using date/time templates. This method is shown in Method 2 —
Read the Filewith DC_READ_FIXED on page 162.

Method 2 utilizes the DC_READ routines. As discussed in Functions for Smpli-
fied Data Connection on page 146, the DC routines have been provided as yet
another alternative for the process of transferring datain and out of PV-WAVE.

Date/Time Templates

Thetemplatesthat can be used with the formatted ASCI1 1/O routines are shownin
the following table.

Templates for Transferring Date/Time Data
Number Template Description
MM*DD*YY[YY]
DD*MM*YY[YY]
ddd*YY[YY]
DD*mmm[mmmmmm]*YY[YY]
[YY]YY*MM*DD
-1 HH*MnMn* SS[.SSSS]
—2 HHMnMn
M = Month, D = Day, Y = Year, H = Hour, Mn = Minute, S = Second

ga b~ W N B

The asterisk (*) shown above represents a delimiter that separates the different
fields of data. The delimiter can also be adash (/), acolon (), ahyphen (-), or a
comma(,).

Positive template numbers are for transferring date data, while negative template
numbers are for transferring time data. To see examples of the types of data that
can be transferred using each of these templates, refer to Working with Date/Time
Data in the PV-WAVE User’'s Guide.

159

Example — Reading Date/Time Data

Assume that you have afile, chrono . dat, that contains some data values,
including athree-character label showing where the data was recorded, and aso
some chronological information about when those data val ues were recorded:

LAM 10/02/90 09:32:00 10.00 32767
COS 10/02/90 09:36:00 15.89 99999
SNV 10/02/90 09:37:00 14.22 87654

Method 1 — Read the Filewith READF

To read thelabel from thefirst columninto astring variable, the date and timefrom
the second and third columns into one date/time variable and read the fourth and
fifth columns of datainto another two variables, use the following commands:

loc = STRARR(3) & calib = LONARR(3)

datel = STRARR(3) & timel = STRARR(3)

decibels = FLTARR(3)
; Create variables to hold the location, calibration, date, time,
; and decibel level.

OPENR, 1, ’‘chrono.dat’
; Open data file for input.

locs = ' ' & datels = locs & timels = datels
; Define scalar strings.

calibs = 1L
; Define a long integer scalar.

I =0
; Initialize counter.

WHILE (NOT EOF (1)) DO BEGIN
; Loop over each record of data.
READF, 1, locs, datels, S
timels, decibelss, calibs, Format = $
"(A3, 2(1X, A8), 1X, F5.2, 1X, I5)"
; Read scalars; the first three are string variables, the fourth is
; a float, and the fifth one is an integer.
loc(I) = locs & datel(I) = datels & $
timel(I) = timels & calib(I) = calibs $
& decibels(I) = decibelss
; Store in each vector.
IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & $
STOP, "Too many records."
; Increment counter and check for too many records.

ENDWHILE

160

PV-WAVE Programmer’s Guide

CLOSE, 1
; Close the file.
my dt_arr = STR TO DT (datel, timel, $
Date Fmt=1, Time Fmt = -1)
; Use one of the conversion utilities, STR_TO_DT, to convert
; the strings to date/time data. The variable date1 uses
; Template 1, while the variable time1 uses Template —1. The

; result array, my_dt_arr, holds both the MM/DD/YY and the
; HH:MM:SS data.

Another adternative is to read the time and date data as integers instead of strings.
Thisisthe approach you must takeif your time/date data does not have the custom-
ary delimiters separating the months, days, and years, or the hours, minutes, and
seconds, as shown in the sample file below:

LAM 100290 093200 10.00 32767
COS 100290 093600 15.89 99999
SNV 100290 093700 14.22 87654

In this situation, instead of defining datel and time1l to be strings, you would
define different variables — one for each component of the date/time data:

year = INTARR(3) & mon = year & day = year

hour = INTARR(3) & min = hour & sec = hour
; Define integer arrays to hold the months, days, years, hours,
; minutes, and seconds data.

years = 0 & mons = 0 & days = 0

hours = 0 & mins = 0 & secs = 0
; Define integer scalars for use inside the read loop.

loc = STRARR(3) & calib = LONARR(3)
decibels = FLTARR(3)
; Create variables to hold the location, calibration, and decibel level.

locs = ' ' & calibs = 1L
; Initialize string and long integer scalars.

OPENR, 1, ’'chrono.dat’

; Open data file for input.
I =0

; Initialize counter.
WHILE NOT EOF (1) DO BEGIN

; Beginning of read loop.

READF, 1, locs, mons, days, years, $
hours, mins, secs, $

decibelss, calibs, Format = $
"(A3, 2(1X, 3(1I2)), 1X, F5.2, 1X, I5)"

161

; Read scalars; the first one is a string variable, the next six
; are integer variables, the eighth is a float, and the ninth one is an integer.

year(I) = years & mon(I)= mons
day(I) = days & hour(I) = hours
min(I) = mins & sec(I) = secs

; Store in each vector.

IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & $
STOP, "Too many records."

; Increment counter and check for too many records.

ENDWHILE
CLOSE, 1

Now that the date/time data has been read into variables, these variables can be
used as input to the conversion utility, VAR_TO_DT:

my dt_arr = VAR TO DT(year, mon, day, hour, min, sec)
; Use one of the conversion utilities, VAR_TO_DT, to convert the
; variables to date/time format.

Regardless of whether you read the data as strings and use the STR_TO_DT func-
tion for conversion, or read the data as integer values and use the VAR_TO_DT
function for conversion, thevalueof the my dt_arr array isthesame. You can
easily view the contentsof my dt _arr usingthe PRINT command:

PRINT, my dt arr

{ 1990 10 2 9 32 0.00000 86946.397 0 }
{ 1990 10 2 9 36 0.00000 86946.400 0 }
{ 1990 10 2 9 37 0.00000 86946.401 0 }

Becausethevariablemy dt arr isastructure, curly braces, “{” and “}”, are
placed around the output. For more information about the internal organization of
date/timestructures, refer to Working with Date/Time Data in the PV-WAVE User's
Guide.

M ethod 2 — Read the Filewith DC_READ_FIXED

The following statements present another method for reading date/time datainto
variables (the same data that was used for Method 1). Because this method utilizes
theDC_READ_FIXED function, itisableto use aC-styleformat string to read the
data. The datafileis repeated below for your convenience:

LAM 10/02/90 09:32:00 10.00 32767
COS 10/02/90 09:36:00 15.89 99999
SNV 10/02/90 09:37:00 14.22 87654

162

PV-WAVE Programmer’s Guide

This method automatically handlesthe string to date and string to time conversion,
although it doesrequirethat the date/time variable, datel, be predefined asadate/
time system structure;

datel = REPLICATE ({!DT},3)
; The system structure definition of date/time is |DT. Date/time
; variables must be defined as DT structure arrays before being
; used if the date/time data is to be read as such.
loc = STRARR(3) & calib = LONARR(3)
decibels = FLTARR(3)
; Explicitly define the string, integer, and floating-point vectors.
status = DC_READ FIXED("chrono.dat", $
loc, datel, datel, decibels, calib, $
/Column, Format="%s %8s %8s %$f %d", $
Dt Template=[1,-1])
; DC_READ_FIXED handles the opening and closing of the file.
; It transfers the values in “chrono.dat” to the variables in the
; variable list, working from left to right. The variable date1
; appears in the variable list twice, once to read the date data
; and once to read the time data.

Notice how inthismethod, thevariable date1 isspecified twice. Becausedatel
is defined as a date/time structure, it has predefined tags for the various classes of
chronological information. By including date1l inthevariablelist twice, both the
date data and the time datais combined in the same !DT structure, using two dif-

ferent date/time templates (1 for date values and —1 for time values).

For more information about the internal organization of the !DT system structure,
refer to Working with Date/Time Data in the PV-WAVE User’s Guide.

Reading, Sorting, and Printing Tables of Formatted Data

Explicitly formatted I/O has the power and flexibility to handle almost any kind of
formatted data. A common use of explicitly formatted 1/O isto read and write
tables of data.

Example — Reading Data From a Word-Processing Application

Frequently, datafilesare produced by aword-processing or spreadsheet application
program. This example shows how to import thiskind of datainto variables.

Method 1 — Read the Filewith READF

Consider adatafile containing employee data records. Each employee has aname
(String — 16 columns) and the number of years they have been employed (Integer

163

— 3 columns) on the first line. The next two lines contain their monthly salary for
the last twelve months. A sample file named bullwinkle . wp with thisformat
might look like:

Bullwinkle 10

1000.0 9000.97 1100.0 2000.0

5000.0 3000.0 1000.12 3500.0 6000.0 900.0

Boris 11

400.0 500.0 1300.10 350.0 745.0 3000.0

200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10

950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0

Rocky 11

1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12

Thefollowing statements read datawith the above format and produce a summary
of its contents:

OPENR, 1, ’‘bullwinkle.wp’
; Open data file for input.

name = '’ & years = 0 & salary = FLTARR(12)
; Create variables to hold the name, number of years, and monthly
; salaries. The type of each variable is automatically determined by
; the type of initial value it is given.

PRINT, ’‘Name Years Yearly Salary’
; Output a heading for the summary.

PRINT, === mmmmmmmmmmmmmmmmmmm oo oo ’
; Output a ruling line for the heading.

WHILE (NOT EOF (1)) DO BEGIN
; Loop over each employee.
READF, 1, name, years, salary, $

Format = " (Al6, I3, 2(/, 6F10.2))"
; Read the data on the next employee.
PRINT, Format = " (Alé, I5, 5X, F10.2)",$

name, years, TOTAL(salary)
; Output the employee information. Use the TOTAL function
; to compute the yearly salaries from the monthly salaries.
ENDWHILE
CLOSE, 1

164

PV-WAVE Programmer’s Guide

The output from executing the statements shown aboveis:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Boris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

DC_READ_FIXED isnot used in this method because the file, asit is shown on
page 164, is neither a column-organized file or a row-organized file; it falls some-
wherein between. In other words, the name and years-of -service dataare organized
by columns, while the yearly salary datais organized in rows. But the file can be
rearranged, as shown below in the next method, and then using
DC_READ_FIXED becomes a viable (and time-saving) option.

Method 2 — Read the Filewith DC_READ_FIXED

Suppose the file was much longer than we are able to show in this example, and
you wanted to use PV-WAV E'’s powerful data connection and table building utili-
tiesto read and process the data. If the file was organized a bit differently,
DC_READ_FIXED could be used to read the data. Then, the BUILD _TABLE
function could be used to quickly organize the data in atable structure. The new
file organization is shown below:

Bullwinkle Boris Natasha Rocky

10 11 10 11

1000.0 9000.97 1100.0 2000.0

5000.0 3000.0 1000.12 3500.0 6000.0 900.0
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
950.0 1050.0 1350.0 410.0 797.0 200.36

2600.0 2000.0 1500.0 2000.0 1000.0 400.0
1000.0 9000.0 1100.0 0.0 0.0 2000.37

5000.0 3000.0 1000.01 3500.0 6000.0 900.12

165

Thefollowing statements read the datafile shown above and display a summary of
its contents on the screen:

name = STRARR(4) & years = INTARR(4)
salary = FLTARR(12, 4)

; Create variables to hold the name, number of years, and monthly
; salaries.

status = DC_READ FIXED(’bullwinkle.wp’, $
name, years, salary, Format= " (4Al6, " + $
"/, I3, 3(10X,I3), /, 48(F7.2, 3X))", $
Ignore=["$BLANK LINES"])
; DC_READ_FIXED handles the opening and closing of the file. It
; transfers the values in “bullwinkle.wp” to the variables in the variable
; list, working from left to right. The two slashes in the format string
; force DC_READ_FIXED to switch to a new record in the input file.
; When reading row-oriented data, each variable is “filled up” before
; any data is transferred to the next variable in the variable list. The
; value of the Ignore keyword insures that all blank lines are skipped
; instead of being interpreted as data.

PRINT, ‘Name Years Yearly Salary’
PRINT, === -mmmmmmmmmmmmmmm oo oo mem oo !
; Print a heading and ruling line for the heading.

yearly salary = FLTARR(4)

FOR I = 0,3 DO BEGIN
; One row at a time, total the monthly salaries.
yearly salary(I) = TOTAL(salaryl[*,I])

; Use array subscripting notation to total all twelve months of
; salary for each employee.

ENDFOR

zz = BUILD TABLE('name, years, yearly salary’)
; Create a table structure, with each column of information being an
; individual tag of the structure.

FOR I = 0,3 DO BEGIN
; Print one row at a time.

PRINT, Format="(Al6, 3X, I5, 5X, F10.2)", 8
zz (I) .name, zz(I).years, zz(I).$
yearly salary
; Print the employee information. Each column of information
; iIs now a tag of the zz table.
ENDFOR

166 PV-WAVE Programmer’s Guide

NOTE You do not need to understand structures to work with tables. For a com-
parison of tables and structures, refer to the Creating and Querying Tables in the
PV-WAVE User’'s Guide.

Just like in Method 1, the output from executing the statements shown aboveis:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Boris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

Now you could easily enter commandsto sort the table, using avariety of criteria.
Suppose you want to rearrange the tabl e (in descending order) so that the employee
with the highest salary is listed first:

by val = QUERY TABLE (zz, $

'* Order By yearly salary Desc’)
FOR I = 0,3 DO BEGIN

; Print one row at a time.

PRINT, Format="(Alé, 3X, I5, 5X, F10.2)", $
by val(I).name, by val(I).years, $
by val(I).yearly salary
; Print the employee information. Each column of information
; is a tag of the by_val table.
ENDFOR

The output is now sorted in descending order by yearly salary:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Rocky 11 32500.50
Natasha 10 14257.36
Boris 11 6805.35

Now suppose you want to rearrange the table (in ascending al phabetical order) so
that the employees are listed a phabetically:

167

by val = QUERY TABLE(zz, ’'* Order By name’)

FOR I = 0,3 DO BEGIN
; Print one row at a time.
PRINT, Format="(Al6, 3X, I5, 5X, F10.2)", $
by val(I).name, by val(I).years, $
by val(I).yearly salary
; Print the employee information.
ENDFOR

The output is now sorted in ascending al phabetic order:

Name Years Yearly Salary
Boris 11 6805.35
Bullwinkle 10 32501.09
Natasha 10 14257.36
Rocky 11 32500.50

For more information about functions for sorting and organizing table structures,
and the keywords that can be used inside the QUERY _TABLE sort string, refer to
the PV-WAVE User’s Guide.

Reading Records Containing Multiple Array Elements

Frequently, data is written to files with each record containing single elements of
more than one array. For example, afile might contain observations of altitude,
pressure, temperature, and vel ocity, with each line (or record) containing avalue
for each of the four variables. Datafiles like this are called record-oriented files,
and PV-WAVE offers several different ways to read them, as shown below.

Example 1 — Column-oriented FORTRAN Write

A FORTRAN program that writes the data and the PV-WAVE program that reads
the data are shown below:

FORTRAN Write

This FORTRAN program writes the data by creating an array with as many col-
umns as there are variables and as many rows as there are elements.

DIMENSION ALT(100), PRES(100), TEMP(100),
C VELO(100)

168

PV-WAVE Programmer’s Guide

OPEN (UNIT=1, STATUS='NEW’, FILE='aptv.dat’)
Other commands go here.

WRITE (1,’ (4(1x, G15.5))")
C (ALT(I), PRES(I), TEMP(I), VELO(I), I = 1,100)
END

PV-WAVE Read (Method 1)

Thedataisread into an array, the array istransposed storing each variable asarow,
and each row is extracted and stored in a one-dimensional variable.

OPENR, 1, ‘aptv.dat’
; Open file for input.

A = FLTARR(4,100)
; Define variable to hold 100 observations of data, 4 values per
; observation.

READF, 1, A
; Read the data.

A = TRANSPOSE (A)
; Transpose array so that columns become rows.

alt = A(*,0) & pres = A(*,1) &

temp = A(*,2) & velo = A(*,3)
; Extract the altitude, pressure, temperature, and velocity data from
; variable A.

CLOSE, 1
; Close the file.

PV-WAVE Read (Method 2)

In this method, the dataisread by calling DC_READ_FIXED, one of the DC rou-
tines for smplified 1/O:

status = DC_READ FIXED(’aptv.dat’, alt, $
pres, temp, velo, /Column, Format="%$f")
; DC_READ_FIXED transfers the values in “aptv.dat” to the variables
; alt, pres, temp, and velo. One value from each record is transferred
; to each variable. DC_READ_FIXED creates the variables as
; floating-point vectors, with a length that matches the number of
; values transferred into the variables. DC_READ_FIXED handles
; the opening and closing of the file.

The variables could now be easily placed into atable structure with the following
command:

169

aptv = BUILD TABLE(’'alt, pres, temp, velo’)

; Create a table structure, with each column of information being an
; individual tag of the table.

For moreinformation about what can be donewith dataonceit isplacedinto atable
structure, refer to an earlier example on page 165, or refer to the PV-WAVE User's
Guide.

Notice that the variables were not predefined with the FLTARR function, as they
were with Method 1. Because the variables were not predefined,
DC_READ_FIXED createsthem all as one-dimensiona floating-point arrays
dimensioned to match the number of recordsin the file. For example, suppose that
each column of datain aptv . dat contained 280 values. All four variables (alt,
pres, temp, and velo) would be created and dimensioned as 280 element
vectors.

Example 2 — Row-oriented FORTRAN Write

The same data values may be written without the implied DO list, writing all ele-
ments for each variable contiguously and simplifying the FORTRAN write
program:

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),
C VELO(100)
OPEN (UNIT=1, STATUS='NEW’, FILE='aptv.dat’)

Other commands go here.

WRITE (1,’ (4(1x,G15.5))’) ALT, PRES, TEMP,
C VELO
END

PV-WAVE Read (Method 1)
Read the data as an uninterrupted stream of values. In other words, read the file as
though it contains row-oriented data.

alt = FLTARR(100)
; Create a floating-point array to hold the data.
pres = alt & temp = alt & velo = alt
; Create more floating-point arrays, all the same size as alt.

OPENR, 1, ’'aptv.dat’
; Open file for input.

170

PV-WAVE Programmer’s Guide

READF, 1, alt, pres, temp, velo
; Read the data.

CLOSE, 1
; Close the file.

PV-WAVE Read (M ethod 2)

DC_READ_FIXED can be used to read row-oriented data; in fact, this happens by
default when the Column keyword is omitted from the function call. However,
when you are reading row-oriented data, the import variables must be pre-dimen-
sioned so that DC_READ_FIXED knows how many valuesto store in each of the
variablesincluded in the variable list:

alt = FLTARR(100)
; Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt

; Create more floating-point arrays, all the same size as alt.
status = DC_READ FIXED(’aptv.dat’, alt, $

pres, temp, velo, Format="%f")

; DC_READ_FIXED handles the opening and closing of the file. It

; reads values from aptv.dat and stores them in the variables alt, pres,
; temp, and velo. By default, the data is read as row-oriented data.

; The returned value status can be checked to see if the process

; completed successfully.

Theformat string shown in this example (Method 2) may be used only if all of the
variablesinthe variablelist are typed as floating-point, because the same C format
string is used over and over to read all the datavalues. For moreinformation on for-
mat reversion, (the process of re-using format strings when reading or writing
data), refer to Format Reversion on page 157.

NOTE If thevariablelist contained other datatypes besides floating-point, the for-
mat string would have to be more specific, such asthe one used in the next example.
Another dternativeistouse DC_READ_FREE (instead of DC_READ_FIXED) to
read the file, and then you aren’t required to supply any format string.

Example 3 — Using a FORTRAN Format String to Read Multiple Array
Elements

Assume that the data used is the same as that of the previous examples, but afifth
variable, the name of an observer (which isastring), has been added to the variable
list. The FORTRAN output routine and PV-WAVE input routine are shown below:

171

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),
C VELO(100)

CHARACTER*10 OBS(100)

OPEN (UNIT = 1, STATUS = 'NEW’, FILE =
C 'aptvo.dat’)

Other commands go here.

WRITE (1,’(4(1X,G15.5), 2X, A)’) (ALT(I),
C PRES(I), TEMP(I), VELO(I), OBS(I), I = 1,100)
END

PV-WAVE Read (Method 1)

This method involves defining the arrays, defining ascalar variable to contain each
valueinonerecord, then writing aloop to read each lineinto the scalars, and finally
storing the scalar valuesinto each array:

OPENR, 1, ’'aptvo.dat’
; Access file. This example reads files containing from 0 to 100 records.

alt = FLTARR(100)
; Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt
; Create more floating-point arrays, all the same size as alt.

obs = STRARR(100)
; Define string array.

obss = ' 7

; Define scalar string.
I =0

; Initialize counter.

WHILE NOT EOF (1) DO BEGIN
; Beginning of read loop.
READF, 1, alts, press, $
temps, velos, obss, $
Format=" (4 (1X, G15.5), 2X, Al0)"

; Read scalars; the last one is a string variable, and by default,
; the first four are floating-point variables.

alt(I) = alts & pres(I) = press
temp (I) = temps & velo(I) = velos
obs (I) = obss

; Store in each vector.

172

PV-WAVE Programmer’s Guide

IF I LE 99 THEN I = I+1 ELSE CLOSE,1 & S
STOP, "Too many records."

; Increment counter and check for too many records.

ENDWHILE
CLOSE, 1
; Close the file.

If desired, after thefile has been read and the number of observationsisknown, the
arrays may betruncated to the correct length using a series of statements similar to:

alt = alt(0:I-1)

The above represents aworst case example. Reading is greatly simplified by writ-
ing data of the same type contiguously and by knowing the size of thefile. Another
alternative is to use Method 2, shown below.

TIP Onefrequently used techniqueisto include the number of observationsin the
first record so that when reading the data the size is known.

PV-WAVE Read (M ethod 2)

TheDC _READ_FIXED functionisideal for situations such asthisone, wherethe
columns are treated as different data types or the number of lines or recordsin the
fileis not known.

obs = STRARR(100)
; Define string array; let other variables use default floating-point data
; type.
status = DC_READ FIXED(’aptvo.dat’, $
alt, pres, temp, velo, obs, /Column, $
Format=" (4 (1X, G15.5), 2X, Al0)", $
Resize=[1, 2, 3, 4, 5])
; DC_READ_FREE handles the opening and closing of the file. It
; reads values from aptvo.dat and stores them in the variables alt,
; pres, temp, velo, and obs. The data is being read as column
; oriented data.
; Because the Resize keyword was included with the function call, all
; five variables are resizable and are redimensioned to match the
; number of values actually transferred from the file. The returned
; value status can be checked to see if the process completed successfully.

Using the STRING Function to Format Data

The STRING functionisvery similar to the PRINT and PRINTF procedures. You
can eventhink of it asaversion of PRINT that placesits ASCII output into astring

173

variableinstead of afile. If the output isasingleline, theresult isascalar string. If
the output has multiple lines, the result is a string array, with each element of the
array containing asingle line of the output.

Example 1 — STRING Function without Format Keyword

Three variations using the STRING function are shown below:

abc = STRING([65B,66B,67B])
abc = STRING([byte(lAl)lbyte('B'),byte(lCl)])
abc = STRING('A’+'B'+'C")

In al three cases, abe hasthe same value, the string scalar 'ABC'.

Example 2 — STRING Function with Format Keyword

The following statements:

A = STRING (Format=’ ("The values are:", ' + $
*, (I))’, INDGEN(5))

; Create a string array named A.

INFO, A
; Display information about A.

FOR I = 0, 5 DO PRINT, A(I)
; Print the result.
produce the following output:

A STRING = Array(6)
The values are:

B W N o

For additional details about the STRING function, see its description in the PV-
WAV E Reference.

Input and Output of Binary Data

Binary /O involvesthetransfer of data between afile and memory without conver-
sion to and from a character representation. Binary 1/0 is used when efficiency is
important and portability is not an issue; it is faster and requires less space than
human-readable 1/0.

174

PV-WAVE Programmer’s Guide

NOTE Binary I/0O isamost always used for the transfer of image data, such as
TIFF images, or 8- and 24-bit images.

PV-WAV E provides many procedures and functions for performing binary 1/0;
they arelisted in Binary I/O Routines on page 147. All of these routines are
described in this section except ASSOC and GET_KBRD; these important func-
tions are discussed in Associated Variable Input and Output on page 194 and
Getting Input from the Keyboard on page 203.

Input and Output of Image Data

Images are frequently stored using either 8-bit or 24-bit binary data. 8-bit datais
capable of displaying 28 different colors, while 24-bit datais capable of displaying
224 different colors.

Windows USERS Windows NT does not support the display of 24-bit color.

Imagesaretreated in the same manner asany variable. Images may beeither square
or rectangular. Thereisno restriction placed on the size of images; the limiting fac-
tors are the maximum amount of virtual memory available to you by the operating
system and the processing time required.

8-bit and 24-bit Image Data
Image datais usually stored in either an 8-bit or 24-bit format:

» 8-bit Format — Imagesin 256 shades of gray or 256 discrete colors (some-
times known as “ pseudo-color”).

e 24-bit Format — 3-color RGB (8 bits Red/8 hits Green/8 bits Blue) images.

8-bit images must be stored in a 2-dimensional variable, and 24-bit images must be
stored in a3-dimensional variable. For more information about how the RGB infor-
mation in 24-bit image datais stored, refer to Image Interleaving on page 178.

NOTE Your workstation or device must support 24-bit color mode if you intend
to view 24-bit images with PV-WAVE.

Image Data Input

Image data can be imported using either the READU or the ASSOC commands.
However, one of the easiest ways to import image datais to use either the

175

DC_READ_8 BIT or DC_READ 24 BIT functions. For example, if thefile
hero. img contains a 786432 byte 24-bit image-interleaved image, the function
cal:

status = DC_READ 24 BIT(’'hero.img’, hero, Org=1l)

readsthefile hero. img and creates a 512-by-512-by-3 image-interleaved byte
array named hero.

When you do not pre-dimension the variable, PV-WAVE creates either atwo- or
three-dimensional byte variable, depending on whether you are using
DC_READ_8 BIT or DC_READ_24 BIT. It aso checks the total number of
bytesin the file and automatically dimensions the import variable such that it
matches the organization of thefile.

To seeacompletelist of theimage sizesthat PV-WAV E checksfor asit readsimage
data, refer to the function descriptionsfor DC_READ_8 BIT and
DC_READ_24 BIT; you can find these descriptions in the PV-WAV E Reference.

NOTE If you don’t want PV-WAV E guessing the dimensions of the variable, you
need to explicitly dimension it.

For 8-bit image data, dimension the variable asw-by-h, wherew and h arethewidth
and height of theimage in pixels. For 24-bit image data, theimage variable should
be dimensioned in the following manner:

» Pixe Interleaved — Dimension the import variable as 3-by-w-by-h, wherew
and h are the width and height of the image in pixels.

* Image Interleaved — Dimension the import variable as w-by-h-by-3, where
w and h are the width and height of the image in pixels.

For acomparison of pixel interleaving and image interleaving, refer to Image Inter-
leaving on page 178.

TIP One popular way of importing binary image data is with the ASSOC
command. The advantages of this method are described further in Advantages of
Associated File Variables on page 195.

Image Data Output

Image data can be exported using either the WRITEU or the ASSOC commands.
However, one of the easiest ways to output image datais to use either the

DC WRITE 8 BIT or DC_WRITE_24 BIT functions. For example, if

fft flow isa600-by-800 byte array containing image data, the function call:

176

PV-WAVE Programmer’s Guide

status = DC_WRITE_8 BIT('fft flowl.img’, fft flow)

createsthefile £t flowl.img and usesit to store the image data contained in
thevariable fft flow.

The dimensionality of the output image variable should be the same as discussed
in the previous section for image data input.

TIP One popular way of exporting binary image data is with the ASSOC
command. The advantages of this method are described further in Advantages of
Associated File Variables on page 195.

TIFF Image Data

The TIFF (Tag Image File Format) is a standard format for encoding image data.
Visua Numerics' TIFF 1/0 follows the guidelines set forth in a Technical
Memorandum, Tag Image File Format Specification, Revision 5.0 (FINAL),
published jointly by Aldus™ Corporation and Microsoft® Corporation.

The two functions provided specifically for transferring TIFF images are:

DC_READ _TIFF
DC_WRITE_TIFF

These functions are easy to use. For example, if the variable maverick isa512-
by-512 byte array, the function call:
status = DC_WRITE TIFF('mav.tif’, maverick, $

Class='Bilevel’, Compress='Pack’)

createsthefilemav. tif and usesit to store the image data contained in the vari-
ablemaverick. The created TIFF file is compressed and conforms to the TIFF
Bilevel classification.

For additional details about the DC_READ_TIFF and DC_WRITE_TIFF func-
tions, see their descriptionsin the PV-WAV E Reference.

Compressed TIFF Files

TIFF files can be compressed if you are interested in saving disk space. Com-
pressed TIFF fileswill take dightly longer to open than uncompressed TIFF files,
but are a smart choice if you are willing to trade off adlightly slower accesstime
for reduced file size.

Only TIFF class Bilevel (Class ' B') images can be compressed.

177

TIFF Confor mance L evels

When using DC_READ_TIFF and DC_ WRITE_TIFF, you are able to select the
class (level of TIFF conformance) that you wish to follow. The four conformance
levelsare:

» Bilevel — All pixelsare either black or white; no shades of gray are supported.

» Grayscale— Each pixel isdescribed by eight bits (abyte). With eight bits, 28
shades of gray can be represented.

e Palette Color — Each pixel is described by eight bits (a byte), so 28 discrete
colors can berepresented. During output, you must supply acol ortablethat can
be stored with the image; you do this using the Pal ette keyword.

* RGB Full Color — Each pixel isdescribed by 24 bits (1 bytered, 1 bytegreen,
and 1 byte blue). With 24 bits, 224 full RGB colors can be represented.

If Palette Color is selected, you must supply (using the Palette keyword) a 3-by-
256 array of integers that describes the colortable to be used by the TIFF image.

If RGB Full Color is selected, the export variable must be a w-by-h-by-3 byte
image interleaved array. (The letters w and h denote the width and height of the
image, respectively.) Pixel interleaved 24-bit datacannot be exportedtoaTIFFfile.
The details of pixel interleaving and image interleaving are described in the next
section.

Image Interleaving

Interleaving isthe method used to organize the bytes of red, green, and blue image
datain a 24-bit image. In other words, each of the basic colors requires 1 byte (8
bits) of storage for each pixel on the screen; the question is whether to store the
color dataas RGB triplets, or to group all thered bytestogether, all the green bytes
together, and all the blue bytes together. The two options are shown below:

Pixel Interleaving Image Interleaving
RGBRGBRGBRGB RRRRRRRRRRRR
RGBRGBRGBRGB GGGGGGGGGGGG
RGBRGBRGBRGB BBBBBBBBBBBB

For more information about how the image variable should be dimensioned to
match the various interleaving methods, refer to Image Data Input on page 175.

178

PV-WAVE Programmer’s Guide

READU and WRITEU

READU and WRITEU provide basic binary (unformatted) input and output capa-
bilities WRITEU writes the contents of its variable list directly to thefile, and
READU reads exactly the number of bytes required by the size of its parameters.
Both procedures transfer binary data directly, with no interpretation or formatting.

The general form for using either READU or WRITEU is:

READU, unit, var,...,var
WRITEU, unit, var,...,var ,

where var; represents one or more variables (or expressions in the case of output).

Transferring Data with READU and WRITEU

Example 1 — C Program Writes, PV-WAVE Reads

Thefollowing C program produces afile containing employee records. Each record
stores the first name of the employee, the number of years they have been
employed, and their salary history for the last 12 months.

C Program Write

#include <stdio.h>

main ()
static struct rec {
char name [16]; /* Employee's name */
int years; /* Years with company*/

float salaryl[12]; /* Salary for last */
/* 12 months */

} employees[] = {

{"Bullwinkle", 10,
{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0, 5000.0, 3000.0,
1000.12, 3500.0, 6000.0, 900.0} },

{"Boris", 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0, 200.0, 100.0,
100.0, 50.0, 60.0, 0.25} },

{"Natasha", 10,
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36, 2600.0, 2000.0,
1500.0, 2000.0, 1000.0, 400.0} },

{"Rocky", 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37, 5000.0, 3000.0,

179

1000.01, 3500.0, 6000.0, 900.12} }
bi
FILE *outfile;
outfile = fopen("bullwinkle.dat", "w");
(void) fwrite(employees, sizeof (employees), 1, outfile);

(void) fclose(outfile) ;

}

Running this program creates thefile bul lwinkle.dat containing the
employee records.

PV-WAVE Read

The following PV-WAV E statements can be used to read the datain
bullwinkle.dat:

strlé = STRING(REPLICATE (32b,16))

; Create a string with 16 characters so that the proper number

; of characters will be input from the file. REPLICATE is used to

; create a byte array of 16 elements, each containing the ASCII

; code for a space (32). STRING turns this byte array into a string containing 16 blanks.

A = REPLICATE ({employees, name:strl6, $
years:0L, salary:fltarr(12)}, 4)
; Create a structure of four employee records to receive the
; input data.

OPENR, 1, ’‘bullwinkle.dat’
; Open the file for input.

READU, 1, A
; Read the data.

CLOSE, 1
; Close the file.

For other examples of how to read bul lwinkle.dat with PV-WAVE, refer to
Reading, Sorting, and Printing Tables of Formatted Data on page 163.

Example 2 — PV-WAVE Writes, C Program Reads

PV-WAVE Write

The following PV-WAVE program creates a binary data file containing a 5-by-5
array of floating-point values:

OPENW, 1, ’'float.dat’
; Open a file for output.

180

PV-WAVE Programmer’s Guide

WRITEU, 1, FINDGEN(5, 5)
; Write a 5-by-5 array with each element set equal to its one-dimensional index.

CLOSE, 1
; Close the file.

C Program Read
Thefile f1loat . dat can beread and printed by the following C program:

#include <stdio.h>
main ()
{
float datal[5] [5];
FILE *infile;

int 1, j;
infile = fopen("float.dat", "xr");
(void) fread(data, sizeof (data), 1, infile);

(void) fclose(infile) ;

for (i = 0; 1 < 5; i++)
{
for (3 = 0; j < 5; j++) printf("%8.1f",
datal[i] [31);
printf ("\n") ;
}
}
Running this program results in the following outpuit:
0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0

Binary Transfer of String Variables

The only basic data type that does not have a fixed size is the string data type. A
string variable has a dynamic length that is dependent only on the length of the
string currently assigned to it. Thus, although it is always possible to know the
length of the other types, string variables are aspecia case. PV-WAVE usesthefol-
lowing rules to determine the number of charactersto transfer:

* Input — Input enough bytesto fill the currently defined length of the string
variable.

181

e Output — Output the number of bytes contained in the string. This number is
the same number that would be returned by the STRLEN function. In other
words, the output string contains only the charactersin the string and does not
include aterminating null byte.

These rulesimply that when reading into astring variable from afile, you must usu-
aly know the length of the original string so asto be able to initialize the
destination string to the correct length. The following example demonstrates the
problem and shows how to use the STRLEN function to programmatically initial-
ize the string length.

Examples of Binary String Data Transfer

For example, the following statements:
OPENW, 1, ‘temp.txt’

; Open a file.
WRITEU, 1, ’'Hello World’

; Write an 11-character string.
POINT LUN, 1, O

; Rewind the file.
A = 7 /

; Prepare a 9-character string.
READU, 1, A

; Read the string in again.

PRINT, A
; Show what was input.

CLOSE, 1

produces the following output because the receiving variable A was not long
enough:

Hello Wor

The only solution to this problem is to know the length of the string being input.
One way to do thisisto store the length of the string(s) in thefile at the time the
fileis created. The following statements demonstrate a technique for doing this:

hello = "Hello World’
; Define a string variable that contains the desired string.

len = 0
len = STRLEN (hello)

; Initialize an integer variable, and then use it to store the length of
; the string variable.

182 PV-WAVE Programmer’s Guide

OPENW, 1, ’temp.txt’
; Open a file.

WRITEU, 1, len
; Write the string length to the file.

WRITEU, 1, hello
; Now write the string to the file.

Now that the string length (an integer), followed by the string, have been stored in
thefile, prepare to read the string back into PV-WAVE:

len input = 0
READU, 1, len input

; Initialize an integer variable, and then use it to read the string length.
A = STRING (REPLICATE (32b, len_ input))

; Create a string of the desired length, initialized with blanks. The

; result of the call to REPLICATE is a byte array with the necessary

; number of elements, each element initialized to 32, which is the

; ASCII code for a blank. When this byte array is passed to STRING,

; it is converted to a scalar string containing this number of blanks.
READU, 1, A

; Read the string.

PRINT, A
; Show what was input.

CLOSE, 1

produces the following output:

Hello World

This exampl e takes advantage of the special way inwhichtheBY TE and STRING
functions convert between byte arrays and strings. See the descriptions of the
BYTE and STRING functions for additional details. These descriptions are al pha-
betically arranged in the PV-WAVE Reference.

Reading UNIX FORTRAN-Generated Binary Data

Although the UNIX operating system considers all files to be an uninterpreted
stream of bytes, FORTRAN considersall 1/0to bedonein termsof logical records.
In order to reconcile the FORTRAN need for logical records with the UNIX oper-
ating system, UNIX FORTRAN programs add a longword count before and after
each logical record of data. These longwords contain an integer count giving the
number of bytesin that record.

183

The use of the F77_Unformatted keyword with the OPENR statement informs PV-
WAV E that the file contains binary data produced by aUNIX FORTRAN program.
When afileis opened with thiskeyword, PV-WAV E interpretsthe longword counts
properly, and is able to read and write files that are compatible with FORTRAN.

Example — UNIX FORTRAN Program Writes, PV-WAVE Reads

Thefollowing UNIX FORTRAN program producesafile containing a5-by-5 array
of floating-point values, with each element set to its one-dimensional subscript. It
isthusaFORTRAN implementation of the FINDGEN function for the special case
of a5-by-5 array.

FORTRAN Write

INTEGER I, J
REAL DATA(5, 5)
OPEN (1, STATUS = "new", FILE = "mydata",
FORM = "unformatted")
DO 100 J =1, 5
DO 100 I =1, 5
DATA(I,J) = ((J-1) * 5) + (I-1)
100 CONTINUE
WRITE (1) DATA
END

Running this program creates afile mydata that contains the array of numbers.

PV-WAVE Read (Method 1)

The following PV-WAVE statements can be used to read thisfile and print its
contents:

OPENR, 1, ’'mydata’, /F77_Unformatted
; Open the file. The F77_Unformatted keyword lets PV-WAVE know
; that the file contains binary data produced by a UNIX FORTRAN
; program.
A = FLTARR(5, 5, /Nozero)
; Create an array to hold the data. The command executes faster
; because the Nozero keyword disables the automatic zeroing of
; each value that normally occurs.
READU, 1, A
; Read the data in a single input operation.

PRINT, A
; Print the result.

184

PV-WAVE Programmer’s Guide

CLOSE, 1
; Close the file.

Executing these PV-WAV E statements results in the following output:

0.0000 1.0000 2.0000 3.0000 4.
5.0000 6.0000 7.0000 8.0000 9.
10.0000 11.0000 12.0000 13.0000 14.
15.0000 16.0000 17.0000 18.0000 19.
20.0000 21.0000 22.0000 23.0000 24.

PV-WAVE Read (Method 2)

0000
0000
0000
0000
0000

Because binary data produced by UNIX FORTRAN programs are interspersed
with these“extra’ longword record markers, it isimportant that the PV-WAVE pro-
gram read the data in the same way that the FORTRAN program wrote it. For
example, consider the following attempt to read the above data file one row at a

time:

OPENR, 1, ’'mydata’, /F77_Unformatted

; Open the file. The F77_Unformatted keyword lets PV-WAVE know

; that the file contains binary data produced by a UNIX FORTRAN

; program.
A = FLTARR(5, /Nozero)
; Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN
; One row at a time.
READU, 1, A

; Read a row of data.
PRINT, A
; Print the row.

ENDFOR

CLOSE, 1
; Close the file.

Executing these PV-WAV E statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000
$End of file encountered. Unit: 1.
File: mydata
%$Execution halted at SMAINS (READU) .

185

This program read the single logical record written by the FORTRAN program as
if it were written in five separate records. Consequently, it reached the end of the
file after reading the first five values of the first record.

For information about using similar commands to read a segmented record file cre-
ated on an OpenVMS system, refer to the example in the next section.

Reading OpenVMS FORTRAN-Generated Binary Data

By default, OpenVMS FORTRAN programs create data files using segmented
records, a scheme used by FORTRAN to write data records with lengths that
exceed the actual record lengths allowed by OpenVMS.

In segmented record files, a single segmented record is written as one or more
actual OpenVM S records. Each of the actual records has a two-byte control field
prepended that allows FORTRAN to reconstruct the original record.

Example — OpenVMS FORTRAN Program Writes, PV-WAVE Reads

OpenVM SFORTRAN Write

Thefollowing OpenVMS FORTRAN program produces afile containing a 5-by-5
array of floating-point values, with each element set to its one-dimensional sub-
script. It isthusa FORTRAN implementation of the PV-WAVE FINDGEN
function for the special case of a5-by-5 array:

INTEGER I, J
REAL DATA (5, 5)
OPEN (1, STATUS = "new", FILE = "mydata",
FORM = "unformatted")
DO 100 J =1, 5
DO 100 I =1, 5
DATA(I,J) = ((J-1) * 5) + (I-1)

100 CONTINUE

WRITE (1) DATA
END

Running this program creates afile mydata that containsthe array of numbers.

PV-WAVE Read (Method 1)

PV-WAVE is able to read and write segmented record files if the OPEN statement
used to access the file includes the Segmented keyword. The following PV-WAVE
statements can be used to read this file and print its contents to the screen:

186

PV-WAVE Programmer’s Guide

OPENR, 1, ’'data.dat’, /Segmented
; Open the file. The Segmented keyword lets PV-WAVE know that
; the file contains OpenVMS FORTRAN segmented records.

A = FLTARR(5, 5, /Nozero)
; Create an array to hold the data. The command executes faster
; because the Nozero keyword disables the automatic zeroing of
; each value that normally occurs.

READU, 1, A
; Read the data in a single input operation.

PRINT, A
; Print the result.

CLOSE, 1
; Close the file.

Executing these PV-WAV E statements results in the following output:
0.0000 1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000 9.0000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000

20.0000 21.0000 22.0000 23.0000 24.0000

PV-WAVE Read (Method 2)

Aswithall record-oriented I/O, it isimportant that the PV-WAV E program read the
data in the same way that the OpenVMS FORTRAN program wrote it. For exam-
ple, consider the following attempt to read the above data file one row at atime:

OPENR, 1, ’'mydata’, /Segmented
; Open the file. The Segmented keyword lets PV-WAVE know that
; the file contains OpenVMS FORTRAN segmented records.

A = FLTARR(5, /Nozero)
; Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN
; One row at a time.
READU, 1, A

; Read a row of data.
PRINT, A
; Print the row.

ENDFOR
CLOSE, 1
; Close the file.

187

Executing these PV-WAV E statements produces the output:
0.00000 1.00000 2.00000 3.00000 4.00000

$End of file encountered. Unit: 1.
File: mydata
$Execution halted at SMAINS (READU) .

This program read the single logical record written by the FORTRAN program as
if it were written in five separate records. Consequently, it reached the end of the
file after reading the first five values of the first record.

Reading and Writing Long Integers Under Digital UNIX

Internal C long integers are 8 bytes on Digital UNIX, versus 4 bytes on the other
supported UNIX platforms. To accommodate thisdifference, thelong variabletype
in PV-WAVE on Digital UNIX hasincreased precision, allowing you to calculate
expressions up to 9223372036854775807 without overflow.

Please note that binary dumps of long values or structureswith long valueswill not
be retrievable directly from other supported UNIX machines and vice versa.

For example, if you use WRITEU to write out a structure, along, or a series of
longs, to afilefrom Digital UNIX, and then try to use READU to read those values
with PV-WAV E on a Sun platform, you will not retrieve those values, since the Sun
will read in 4 bytes instead of the full 8 bytes.

If you need to be ableto read that type of file on Digital UNIX and other platforms,
you can find an example of how to manipulate the bytes in a structure in the fol -
lowing file, near line 80.

(UNIX) SWAVE DIR/1lib/std/polycontour.pro

You may experience this problem especially for files containing headers, like Sun
raster files, where the header describes the content of the file.

External Data Representation (XDR) Files

Normally, binary datais not portable between different machine architectures
because of differencesin the way different machines represent binary data. It is,
however, possible to produce binary files that are portable, by specifying the Xdr
keyword with the OPEN procedures. XDR represents a compromise between the
extremes of ASCII and binary 1/0.

XDR (eXternal Data Representation, developed by Sun Microsystems, Inc.) isa
scheme under which all binary datais written using a standard “ canonical” repre-

188

PV-WAVE Programmer’s Guide

sentation. PV-WAV E understands this standard representation and hasthe ability to
convert between it and the internal representation of the machine upon which it
runs.

XDR converts between the internal and standard external binary representations
for data, instead of simply using the machine’sinternal representation. Thus, it is
much more portable than pure binary data, although it is still limited to those
machines that support XDR.

NOTE XDRisnot asefficient as pure binary 1/O because it doesinvolve the over-
head of converting between the external and internal binary representations.
Nevertheless, it is still much more efficient than ASCII 1/O because conversion to
and from ASCI|I charactersis much moreinvolved than converting between binary
representations.

Opening XDR Files

Since XDR adds extra “ bookkeeping” information to data stored in the file, and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using the Xdr

keyword.

To use the XDR format, you must specify the Xdr keyword when opening thefile.
For example:
OPENW, /Xdr, 1, 'data.dat’

NOTE OPENW and OPENU normally open files for both input and output. How-
ever, XDR files can only be open in one direction at atime. Thus, using these
procedureswith the Xdr keyword resultsin afile open for output only, and the only
I/O datatransfer routines that can be used is WRITEU. OPENR worksin the usual

way.

Transferring Data To and From XDR Files

The primary differences in the way PV-WAVE 1/O procedures work with XDR
files, as opposed to other datafiles, are listed below:

» Theonly I/O datatransfer routinesthat can be used with afile opened for XDR
are READU and WRITEU.

» Thelength of stringsis saved and restored along with the string. This means
that you do not haveto initialize astring of the correct length before reading a

189

string from the XDR file. (Thisis necessary with normal binary 1/0, and is
described in Binary Transfer of Sring Variables on page 181.)

» For the sake of efficiency, byte datais transferred as a single unit. Therefore,
byte variables must be initialized to alength that matches the datato be input.
Otherwise, an error messageis displayed. See the following example for more
details.

Example — Reading Byte Data from an XDR File

For example, given the statements:

OPENW, /Xdr, 1, ’'data.dat’
; Open a file for XDR output.

WRITEU, 1, BINDGEN(10)
; Write a 10-element byte array.

CLOSE, 1
; Close the file ...

OPENR, /Xdr, 1, ’'data.dat’
; ... and re-open it for input.

the following statements:

b = 0B
; Define b as a byte scalar.

READU, 1, b

; Try to read the first byte only.
CLOSE, 1

; Close the file.

will result in the error:

$End of file encountered. Unit: 1.
File: data.dat
%$Execution halted at SMAINS (READU) .

Instead, it is necessary to read the entire byte array back in one operation using
statements such as:

b = BYTARR(10)
; Define b as a byte array.

READU, 1, b

; Read the whole array back at once.
CLOSE, 1

; Close the file.

190 PV-WAVE Programmer’s Guide

NOTE Thisrestriction (in other words, the necessity of transferring byte dataasa
single unit) does not apply to the other data types.

Example — Reading C-generated XDR Data with PV-WAVE

C Program Write

The following C program produces a file containing different types of data using
XDR. Theusual error checking is omitted for the sake of brevity.

#include <stdio.h>

#include <rpc/rpc.h>

[xdr wave complex() and xdr wave string() included here]

/* For more information about xdr wave complex() and
xdr_wave_string(), refer to a later section that follows this
example.*/

main ()
{
static struct { /* output data */

unsigned char c;
short s;
long 1;
float f;
double 4d;
struct complex { float r, i } cmp;
char *str;

} data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int ¢ len = sizeof (unsigned char) ;
/* Length of a character */

char *c_data = (char *) &data.c;

/* Address of byte field */

FILE *outfile;

/* stdio stream pointer */

XDR xdrs;

/* XDR handle */

/* Open stdio stream and XDR handle */
outfile = fopen("data.dat", "w");

xdrstdio create (&xdrs, outfile, XDR_ENCODE) ;

191

/* Output the data */

(void) xdr bytes(&xdrs, &c_data, &c_len, c_len);
(void) xdr short (&xdrs, (char *) &data.s);

(void) xdr long(&xdrs, (char *) &data.l);

(void) =xdr float (&xdrs, (char *) &data.f);

(void) xdr double (&xdrs, (char *) &data.d);

(void) xdr wave complex(&xdrs, (char *) &data.cmp);
(void) xdr wave string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */

xdr destroy (&xdrs) ;

(void) fclose(outfile);

}
Running this program creates the file data . dat containing the XDR data.

PV-WAVE Read

The following PV-WAVE statements can be used to read thisfile and print its con-
tents to the screen:
data = {s, c:0B, s:0, 1:0L, £:0.0, d:0.0D, S
cmp:COMPLEX (0) , str:’ '}
; Create structure containing correct types.
OPENR, /Xdr, 1, ’'data.dat’
; Open the file for input.
READU, 1, data
; Read the data.
CLOSE, 1
; Close the file.
PRINT, data
; Show the results.

Executing these PV-WAV E statements produces the output:
{1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
If you are a Sun workstation user, consult the Network Programming manual.

192 PV-WAVE Programmer’s Guide

XDR Conventions for Programmers

PV-WAV E uses certain conventions for reading and writing XDR files. If you use
XDR only to exchange datain and out of PV-WAVE, you don’t need to be con-
cerned about these conventions because PV-WAVE takes care of it for you.

However, if you want to create PV-WAV E compatible XDR files from other lan-
guages, you need to know the actual XDR routines used by PV-WAVE for various
datatypes. These routine names are summarized in the following table;

XDR Routines Used by PV-WAVE

Data Type XDR Routine

BYTE xdr_bytes()

INT xdr_short()

LONG xdr_long()

FLOAT xdr_float()

DOUBLE xdr_double()
COMPLEX xdr_wave complex() *
STRING xdr_wave_string() *

Theasterisk (*) indicates compound routines.

XDR Routines for Transferring Complex and String Data

The routines used for types complex and string are not primitive XDR routines.
Their definitions are shown in the following C code:
bool t xdr wave complex(xdrs, p)

XDR *xdrs;
struct complex { float r, i } *p;

return (xdr float (xdrs, (char *) &p->r)&&
xdr float (xdrs, (char *) &p->1));

}

bool t xdr wave string(xdrs, p)
XDR *xdrs;

*k

char pi

int input = (xdrs->x op == XDR_DECODE) ;
short length;
/* If writing, obtain the length */

193

if (!input) length = strlen(*p);
/* Transfer the string length */
if (!xdr short(xdrs, (char *) &length)) return(FALSE);
/* If reading, obtain room for the string */
if (input)
{

*p = malloc((unsigned) (length + 1)) ;
p[length] = ’\0’;/ Null termination */

}

/* If nonzero, return string length */
return (length ? xdr string(xdrs, p, length) : TRUE);

Associated Variable Input and Output

Binary datastored infiles often consists of arepetitive seriesof arraysor structures.
A common exampleisaseriesof imagesor aseriesof arrays. PV-WAV E associated
file variables offer a convenient and efficient way to access data that comprises a
sequence of identical arrays or structures.

An associated variable is avariable that mapsthe definition of an array or structure
variable onto the contents of afile. Thefileistreated as an array of these repeating
units of data. Thefirst array or structure in thefile hasan index of 0, the second has
index 1, and so on. The genera form for using ASSOC is:

ASSOC(unit, array_definition [, offset])

For examples showing how to use the offset parameter, refer to alater section,
Using the Offset Parameter on page 198.

Associated variables do not use memory like a normal variable. Instead, when an
associated variable is subscripted with the index of the desired array or structure
within thefile, PV-WAV E performsthe I/O operation required to access that entire
block of data.

OpenVMS USERS OpenVMS fixed-length record files must be accessed by
ASSOC either on record boundaries or an integer multiple of the number of data
elements on arecord boundary.

194

PV-WAVE Programmer’s Guide

Advantages of Associated File Variables

Associated file variables offer the following advantages over READU and
WRITEU for binary 1/0. For these reasons, associated variables are the most effi-
cient form of 1/0.

» 1/O occurs whenever an associated file variable is subscripted. Thus, it is pos-
sible to perform 1/0O within an expression, without a separate |/O statement.

» Thesizeof the dataset islimited primarily by the maximum size of thefile
containing the data, instead of the maximum memory available. Data sets too
large for memory can be easily accommodated.

* You do not have to declare the maximum number of arrays or structures con-
tained in thefile.

» Associated variables simplify access to the data. Direct access to any element
inthefileisrapid and simple — there is no need to calculate offsetsinto the
file and/or position the file pointer prior to performing the 1/O operation.

Working with Associated File Variables

Assumethat afilenamed today . dat exists, and that thisfile contains aseries of
10-by-20 arrays of floating-point data. The following two statements open thefile
and create an associated file variable mapped to the file:

OPENU, 1, ’'today.dat’
; Open the file.

A = ASSOC(1, FLTARR(10, 20, /Nozero))
; Define an associated file variable. Using the Nozero keyword with
; FLTARR increases efficiency since ASSOC ignores the value of the
; resultant array, anyway.

NOTE The order of these two statements is not important — it would be equally
valid to call ASSOC first and then open thefile. Thisis because the association is
between the variable and the logicadl file unit, not thefile itself.

You may opt to close the file, open a new file using the same LUN, and then use
the associated variable without first executing a new ASSOC. Naturally, an error
occursif thefile is not open when thefile variable is subscripted in an expression,
or if thefileis open for the wrong type of access (for example, trying to assign to
an associated file variable with afile opened with OPENR for read-only access).

Asaresult of executing the two statements above, the variable 2 is now an associ-
ated file variable. Executing the statement:

195

INFO, A
produces the following response:
A FLOAT = File<today.dat> Array (10, 20)

The associated variable A maps the definition of a 10-by-20 floating-point array
onto the contents of the file today . dat. Thus, the response from the INFO pro-
cedure shows it to be atwo-dimensional floating-point array.

NOTE Only theform of the array isused by ASSOC. The value of the expression
isignored.

The ASSOC command doesn’t require that you use a particular combination of
dimensionsto index into afile, although you may have reasonsto prefer one com-
bination of dimensionsover another. For example, assume anumber of 128-by-128
byte images are contained in afile. The command:

row = ASSOC(1l, BYTARR(128))

maps the file into rows of 128 bytes each. Thus, row (3) isthe fourth row of the
firstimage, and row (128) isthefirst row of the second image. On the other
hand, the command:

image = ASSOC(1l, BYTARR(128,128))

maps the file into entire images. Now, image (4) isall 16384 values of thefifth
image.

How Data is Transferred into Associated Variables

Once avariable has been associated with afile, dataisread from the file whenever
the associated variable appears in an expression with a subscript. The position of
the array or structure read from the file is given by the value of the subscript. The
following statements give some examples of using file variables:

Z = A(0)
; Copy the contents of the first array into the normal variable Z. Z is
; now a 10-by-20 floating-point array.
FOR I = 1,9 DO Z = Z + A(I)
; Compute the sum of the first 10 arrays (Z was initialized in the previous statement
; to the value of the first array. This statement adds the following nine to it.).
PLOT, A(3)
; Read the fourth array and plot it.

PLOT, A(5) - A(4)
; Subtract array 4 from array 5, and plot the result. The result of the

196

PV-WAVE Programmer’s Guide

; subtraction is not saved after the plot is displayed.

An associated file variable only performs 1/0O to the file when it is subscripted.
Thus, the following two statements do not cause I/0O to happen:
B =A

; This assignment does not transfer data from the file to variable B

; because A is not subscripted. Instead, B becomes an associated file
; variable with the same dimensions, and to the same LUN, as A.

B = 23
; This assignment does not result in the value 23 being transferred to
; the file because variable B (which became an associated file var
; able in the previous statement) is not subscripted. Instead, B

; becomes a scalar integer variable containing the value 23. It is no
; longer an associated file variable.

Subscripting Associated File Variables During Input

When the associated file variable isdefined to be an array, it is possible to subscript

into the array being accessed during input operations. For example, for thevariable
A defined above:

Z = A(0,0,1)
; Assigns the value of the first floating-point element of the second
; array within the file to the variable Z. The rightmost subscript is
; taken as the index into the file causing PV-WAVE to read the entire
; second array into memory. This resulting array expression is then
; further subscripted by the remaining subscripts.

NOTE Although this ability can be convenient, it can also be very slow because
every accessto an individual array element causes the entire array to be read from
disk. Unlessonly one element of the array isdesired, it is much faster to assign the
contents of the array to another variable by subscripting the file variable with asin-
gle subscript, and then access the individual array elements from the variable.

Efficiency in Accessing Arrays

To increase the efficiency of reading arrays, make their length an integer multiple
of the physical block size of the disk holding the file. Common values are 512,
1024, and 2048 bytes. For example, on adisk with 512-byte blocks, one benchmark
program required approximately one-eighth of the time required to read a 512-by-
512 byte image that started and ended on a block boundary, as compared to asim-
ilar program that read an image that was not stored on even block boundaries.

197

Using the Offset Parameter

The offset parameter to ASSOC specifies the position in the file at which the first
array starts. It is useful when afile contains a header followed by data records.

Specifying Offsets Under UNIX and Windows

The offset is given in bytes. For example, if afile usesthe first 1024 bytes of the
fileto contain header information, followed by 512-by-512 byte images, the
statement:

image = ASSOC(1, BYTARR(512, 512), 1024)
skips the header by providing a 1024 byte offset before any image datais read.

Specifying Offsets Under OpenVMS

Under OpenVMS, stream filesand RM S block modefiles havetheir offset givenin
bytes, and record-oriented files have it specified in records. Thus, the example
above would have worked for OpenVMSif thefilewasastream or block modefile.
Assume however, that the file has 512-byte fixed-length records. In this case, skip-
ping the first 1024 bytesis equivalent to skipping the first 2 records:

image = ASSOC(1l, BYTARR(512, 512), 2)

For more information about OpenVM Sfiles, refer to OpenVMS-Specific
Information on page 204; that section contains an overview of how OpenVMS
handlesfiles.

Writing Associated Variable Data

When a subscripted associated variable appears on the left side of an assignment
statement, the expression on the right side iswritten into thefile at the given array
position. For example:

A(5) = FLTARR(10,20)

; Zeroes sixth record. By default, every value in a newly created

; floating-point array is set equal to zero, unless the Nozero keyword is supplied.
A(5) = ARR

; Writes ARR into the sixth record after any necessary type

; conversions.
A(J) = (A(J) + A(J+1))/2

; Averages records J and J+1 and writes the result into record J.

NOTE When writing data, only a single subscript (specifying the index of the
affected array or structure in thefile) is allowed. Thus, it is not possible to index

198

PV-WAVE Programmer’s Guide

individual elements of associated arrays during output, although it is allowed dur-
ing input. To update individual elements of an array within afile, assign the
contents of that array to anormal array variable, modify the copy, and write the
array back by assigning it to the subscripted associated variable.

Binary Data from UNIX FORTRAN Programs

Binary datafiles generated by FORTRAN programs under UNIX contain an extra
longword before and after each logical record in thefile. ASSOC does not interpret
these extra bytes, but considers them to be part of the data. Therefore, do not use
ASSOC to read such files; use READU and WRITEU instead. You can find an
example of using PV-WAVE to read datagenerated by FORTRAN programs under
UNIX in Reading UNIX FORTRAN-Generated Binary Data on page 183.

Miscellaneous File Management Tasks

This section describes a variety of utility commands that have been provided to
simplify your interaction with datafiles. It also describes the FSTAT command,
which is avaluable source of information about open files.

Locating Files

The FINDFILE function returnsan array of strings containing the namesof all files
that match its parameter list. The parameter list may contain any wildcard charac-
ters understood by your system. For example, to determine the number of
procedure files that exist in the current directory:

PRINT, ’'# PV-WAVE.pro files:’, $
N_ELEMENTS (FINDFILE (’*.pro’))

Flushing File Units

To increase efficiency, PV-WAVE buffersits /O in memory. This meansthat when
datais output, thereisabrief interval of time during which dataisin memory, but
has not actually been placed into the file. Normally, this behavior is transparent to
the PV-WAVE user (except for the improved performance).

The FLUSH routine exists for those rare occasions where a program needs to be
certain that the data has actually been written to the fileimmediately. For example,
to flush file unit 1:

FLUSH, 1

199

Positioning File Pointers

Each open file unit has afile pointer associated with it. Thisfile pointer indicates
the position in the file at which the next 1/0O operation will take place.

ThePOINT_LUN procedure allowsthefile pointer to be positioned arbitrarily. The
file position is specified as the number of bytes from the start of the file. The first
position in thefileis position 0 (zero).

The following statement rewinds file unit 1 to its beginning:

POINT LUN, 1, O

while the following sequence of statements will position it at the end of thefile:

tmp = FSTAT (1)
POINT LUN, 1, tmp.size

UNIX USERS Moving thefile pointer to a position beyond the current end-of -file
causes a UNIX fileto grow by that amount. (Thisisthe standard UNIX practice.)

Testing for End-of-File

The EOF function is used to test afile unit to seeif it is currently positioned at the
end of thefile. EOF returnstrue (1) if the end-of-file condition istrue, and false (0)
otherwise. For example, to read the contents of afile and print it on the screen:

OPENR, 1, ’'demo.doc’
; Open file demo.doc for reading.

line = "’
; Create a variable of type string.

WHILE (not EOF (1)) DO BEGIN READF, 1, line & $
PRINT, line & END

; Read and print each line, until the end of the file is encountered.

CLOSE, 1
; Done with the file.

Getting Information About Files

Using the INFO Procedure

Information about currently open file unitsis available by using the Files keyword
with the INFO procedure. If no parameters are provided, information about all cur-

200

PV-WAVE Programmer’s Guide

rently open user file units (units 1-128) is given. For example, to get information
about the three special units (-2, —1, and 0), the command:

INFO, /Files, -2, -1, 0

causes the following to be displayed on the screen if you are running PV-WAVE in
aUNIX environment:

Unit Attributes Name

-2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdouts>
0 Read, Tty, Reserved <stdin>

or causes the following to be displayed on the screen if you are running under
Windows:

Unit Attributes Name

-2 Write, Truncate, Tty, Reserved <stderrs
-1 Write, Truncate, Tty, Reserved <stdouts>
0 Read, Tty, Reserved <stdin>

For more information about the INFO command, refer to Chapter 12, Getting Ses-
sion Information.

Use the Information from FSTAT

FSTAT isastructure that contains details about all currently allocated LUNS. You
can use the FSTAT function to get more detailed information, including informa-
tion that can be used from within a PV-WAV E program. It returns an expression of
type structure with a name of FSTAT containing information about the file. For
example, to get detailed information about the standard input, the command:

INFO, /Structures, FSTAT(0)
causes the following to be displayed on the screen:

** Structure FSTAT, 10 tags, 32 length:

UNIT LONG 0
NAME STRING '<stdin>’
OPEN BYTE 1

ISATTY BYTE 1

READ BYTE 1

WRITE BYTE 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 35862
SIZE LONG 0

201

REC_LEN LONG 0

Since PV-WAVE allows keywordsto be abbreviated to the shortest non-ambiguous
number of characters,

INFO, /St, FSTAT(0)

will also work (and save some typing). The fields of the FSTAT structure are
defined as part of its description in the PV-WAV E Reference.

Sample Usage — FSTAT Function

The following function can be used to read single-precision floating point data
from afileinto avector when the number of elementsin thefileisnot known. This
function uses FSTAT to get the size of thefile in bytes and then divides by 4 (the
size of asingle-precision floating-point value) to determine the number of values:

FUNCTION read data, file
; Read_data reads all the floating-point values from file and returns
; the result as a floating-point vector.

OPENR, /Get Lun, unit, file
; Get a unique file unit and open the data file.

status = FSTAT (unit)
; Retrieve the file status.

data = FLTARR(status.size / 4.0)

; Make an array to hold the input data. The size tag of status gives
; the number of bytes in the file and single-precision floating-point
; values are four bytes each.

READU, unit, data
; Read the data.

FREE LUN, unit
; Deallocate the file unit and close the file.

RETURN, data
; Return the data.

END
Assuming that afile named herc . dat exists and contains 10 floating-point val-
ues, the following statements:

a = read _data(’herc.dat’)
; Read floating-point values from herc.dat.

INFO, a
; Show the result.

202

PV-WAVE Programmer’s Guide

will produce the following output:

A FLOAT = Array(10)

Getting Input from the Keyboard

The GET_KBRD function returns the next character available from the standard
input (file unit 0) as a single character string. It takes a single parameter named
Wait. If Wait is zero, GET_KBRD returns the null string if there are no characters
in the terminal typeahead buffer. If Wait is nonzero, the function waits for a char-
acter to be typed before returning.

Sample Usage — GET_KBRD Function

A procedurethat updatesthe screen and exitswhen <Return> istyped might appear
as.

PRO UPDATE,
; Procedure definition.

WHILE 1 DO BEGIN
; Loop forever, updating the screen as needed.
CASE GET KBRD(0) OF
; Read character, no wait.
.... ; Process letter A.
.... ; Process letter B.
c. ; Process other alternatives.
STRING ("15B) : RETURN
; Exit if <Return> is detected (ASCII code = 15 octal).
ELSE:
; Ignore all other characters.
ENDCASE
ENDWHILE
END

UNIX-Specific Information

UNIX offersonly asingle type of file. All files are considered to be an uninter-
rupted stream of bytes, and there is no such thing as record structure at the
operating system level. (By convention, records of text are simply terminated by
the linefeed character, which isreferred to as“newling”.) It is possible to move the
current file pointer to any arbitrary position in the file and to begin reading or writ-

203

ing data at that point. This simplicity and generality forms a system in which any
type of file can be manipulated easily, using a small set of file operations.

Reading FORTRAN-Generated Binary Data

Although the UNIX operating system views all files as an uninterrupted stream of
bytes, FORTRAN considersall 1/0 to be donein terms of logical records. In order
to reconcile FORTRAN's need for logical records with UNIX files, UNIX FOR-
TRAN programsadd alongword count before and after each logical record of data.
These longwords contain an integer count giving the number of bytes in that
record.

The use of the F77_ Unformatted keyword with the OPENR statement informs PV-
WAV E that the file contains binary data produced by aUNIX FORTRAN program.
When afileisopened with thiskeyword, PV-WAV E interpretsthe longword counts
properly, and isableto read and writefilesthat are compatiblewith FORTRAN. To
see an example showing the use of the F77_ Unformatted keyword with the
OPENR statement, refer to Reading UNIX FORTRAN-Generated Binary Data on
page 183.

OpenVMS-Specific Information

OpenVMS /O isarelatively complex topic, involving alarge number of formats

and options. OpenV M Sfilesarerecord oriented, and it isnecessary to takethisinto
account when writing applications, especialy those that will run under other oper-
ating systems. This section discusses the various characteristics that an OpenVM S
user must consider when transferring datain and out of PV-WAVE.

Organization of the File

An OpenVM S file can be organized in the following ways:
v sequentia

v relative

v indexed

The organization controls the way in which datais placed in the file, and deter-
mines the options for random access. PV-WAVE is able to read datafrom all three
types, and is able to create sequential or indexed files.

204

PV-WAVE Programmer’s Guide

Inaddition, it is possibleto bypass the organization and access afilein block mode;
thisis equivalent to interpreting the file asif it were simply a stream of uninter-
rupted bytes. Thisis very similar to stream files, although considerably more
efficient (because most OpenVM S file processing is bypassed).

CAUTION With some file organizations, OpenVMS intermingles housekeeping
information with data. When accessing such afile in block mode, it is easy to cor-
rupt thisinformation and render thefile unusableinits usual mode. However, block
mode will always work, and thus, avoiding such file corruption becomes your
responsibility.

Access Mode

The access mode controls how the datain afile is accessed. OpenVMS supports
the following types of access:

v sequential access

v random access by key value (indexed files)
v relative record number (relative files)

v relativefile address (all file organizations)

Random access for sequential filesis allowed by file address using the
POINT_LUN procedure. PV-WAV E does not support access by relative record
number — files are accessed sequentially or viakey value.

Record Format

All OpenVM Sfilesarerecord oriented; for an overview of how PV-WAV E handles
record-oriented datafiles, refer to an earlier section, Record-Oriented I/O in Open-
VMSBinary Files on page 143.

OpenVMS supports the following types of record formats:
v fixed-length records

v variable-length records

v variable-length with fixed-length control field (VFC)
v stream format

Of these, the fixed-length and variable-length record formats are the most useful
and are fully supported by PV-WAVE.

205

It is possible to read the data portion of a VFC file, but not the control field. All
access to stream mode files under PV-WAVE is done viathe Standard C Library.

TIP OpenVMS stream files are record oriented (and therefore, fail to provide
much of the flexibility of UNIX stream files) although the OpenVMS standard C
library (upon which PV-WAV E isimplemented) doesagood job of concealing this
limitation. Our experience indicatesthat 1/0 using OpenVM S stream modefilesis
dramatically slower than the other options, and should be avoided when possible.
For binary data, using block mode can provide the flexibility you need while main-
taining an efficient rate of data transfer.

Record Attributes

When arecord isoutput to the screen or printer, OpenV M S usesits carriage control
attributes to determine how to output each line:

» Explicit carriage control — Specifiesthat OpenVM S should do nothing, and
you (the user) will provide the appropriate carriage control (if any) in the data.

» Carriage Return carriage control — Specifies that each line should be pre-
ceded by aline feed and followed by a <Return>.

* FORTRAN carriage control — Indicates that the first byte of each record
contains aFORTRAN carriage control character. The possible values of this
byte are listed in the following table.

OpenVMS FORTRAN Carriage Control
Byte Value ASCII Character Meaning

0 (null) No carriage control — output data directly.

32 (space) Single-space. A linefeed precedes the out-
put data, and a <Return> follows.

48 0 Double-space. Two linefeeds precede the
output data, and a <Return> follows.

49 1 Page gject. A formfeed precedes the data,
and a <Return> follows.

40 + Overprint. A <Return> follows the data,
causing the next output lineto overwrite the
current one.

206

PV-WAVE Programmer’s Guide

OpenVMS FORTRAN Carriage Control (Continued)
Byte Value ASCII Character Meaning

36 $ Prompt. A linefeed precedes the data, but
no <Return> follows.

Other Same as ASCI| space character. Single-
space carriage control.

NOTE The default for PV-WAVE is Carriage Return carriage control.

File Attributes

There are many file attributes that can be adjusted to suit various requirements.
These attributes allow specifying such things asthe default name, the initial size of
new files, the amount by which files are extended, whether thefileis printed or sent
to abatch queue when closed, and file sharing between processes.

For moreinformation about OpenV M Sfile attributes, refer to Record Management
Services (RMS), File System, Volume 6B.

Creating Indexed Files

Although PV-WAV E can read and write indexed files, it cannot create them. Soyou
must use the OpenVM S CREATE/FDL command to create thefile. FDL standsfor
File Definition Language, and isthe standard method for specifying OpenVM Sfile
attributes. The options for creating indexed files are too numerous to cover in this
document, but the OpenVMS File Definition Language Facility Manual describes
FDL in detail.

TIP Itisoften useful to start with the FDL description for an existing file and then
modify it to suit your new application. The command:

$ ANALYZE/RMS FILE/FDL file.dat

will produce afilenamed £ile. £d1 containing the FDL description for
file.dat.

Thefollowing isaFDL description for an indexed file named wages . dat with
two keys. Thefirst key isa 32 character string containing an employee name. The
second key is a4 byte integer containing the current salary for that employee:

FILE

207

NAME wages.dat
ORGANIZATION indexed

RECORD
SIZE 36

KEY 0O
NAME "Name"
SEGO_LENGTH 32
SEGO_POSITION O
TYPE string

KEY 1
CHANGES yes
NAME "Salary"
SEGO_LENGTH 4
SEGO_POSITION 32
TYPE bin4

Assume that this description residesin afile named wages . £d1. The following
statement can be used to create wages . dat:

SPAWN, 'CREATE/FDL=wages.fdl’

Oncethefileexists, it can be opened within PV-WAV E using the KEY ED keyword
with the OPENR or OPENU procedures.

Accessing Magnetic Tape

Under OpenVMS, PV-WAVE offers procedures to directly access magnetic tapes.
Datais transferred between the tape and PV-WAVE arrays without using RMS.
Optionally, tapesfrom IBM mainframe compatible systems may beread or written
with odd/even byte reversal.

The routines used for directly accessing magnetic tape are shown in the following
table:

Routines for Directly Accessing Magnetic Tape

Procedure Description

REWIND Rewind atape unit.

SKIPF Skip records or files.

TAPRD Read from tape.

TAPWRT Write to tape.

WEOF Write an end-of-file mark on tape.

208

PV-WAVE Programmer’s Guide

To use the magnetic tape procedures you must define alogical name“MTn” to be
equivalent to the actual name of the tape drive you wish to use. Thisdefinition must
be done before you start PV-WAVE. You must also have the tape mounted as afor-
eign volume.

Example 1 — Mounting a Tape Drive

For example, if you wish to access the tape drive MUAO : as tape unit number 5,
issue the following OpenVM S commands before running PV-WAVE:

$ MOUNT/FOREIGN MUAO:

S DEFINE MT5 MUAO:

Or, you can combine the two commands:

$ MOUNT MUAO:/FOR MT5

Thiscommand servesto both mount the tape and to associate thelogical nameMT5
withit, thusmaking it unit 5 from within PV-WAVE. The MOUNT command must

be issued to OpenVM S before entering PV-WAVE. Then, within PV-WAVE, refer
to the tape as unit number 5. The unit number n, should be in the range {0...9}.

NOTE These unit numbers are not the same as the LUNSs (logical unit numbers)
used by the other |/O routines. The unit numbers used by the magnetic tape routines
are completely unrelated, and come from the last |etter of the MTn logical name
used to refer toit.

Example 2 — Skipping Forward on the Tape

Thefollowing statements skip forward 30 records on the tape mounted on thedrive
with the logical name MT2, and print amessage if an end-of-fileis encountered.

SKIPF, 2, 30, 1
; Skip forward over 30 records on unit 2.

IF !ERR NE 30 THEN PRINT, ’'End of file found.’

; Print a message if the requested number of records were not
; skipped.

Example 3 — Skipping Backward on the Tape

The following statements skip two records backwards on the tape mounted on the
drive with the logical name MT0, and then position the tape immediately after the
second record mark encountered in reverse:

SKIPF, 0, -2
; Go backwards two records.

209

IF !ERR EQ -2 THEN SKIPF, 0, 1
; Reposition tape if two records were actually skipped.

Example 4 — Reading Blocks of Image Data

The following code segment reads a 512-by-512 byte image from the tape which
isassigned thelogical nameMT5. It isassumed that the datais stored in 2048 byte
tape blocks:

A = BYTARR(512, 512)

; Define image array.

B = BYTARR (512, 4)
; Define an array to hold one tape block worth of data.

FOR I=0, 511, 4 DO BEGIN
; Loop to read data.
TAPRD, B, 5
; Read next record.
A(0,I) =B
; Insert four rows starting at ith row.

ENDFOR

Windows-Specific Information

Exchanging Image Data Using the Clipboard

Under Windows, the Clipboard provides a convenient mechanism for transferring
image data to and from PV-WAVE. You can copy datato and from the Clipboard
using either 1) command line functions, or 2) functions on the graphics window
Control menu.

Any graphics application that accepts Device Independent Bitmap (DIB) or
enhanced-format metafile (EMF) graphics can be exchanged with PV-WAVE
through the Clipboard. For example, you can copy graphics from a graphics win-
dow into a Microsoft Paintbrush window using the copy and paste functions
provided by these two applications.

Depending on the options you have selected, the graphics that are copied to and
from the Clipboard are either in bitmap (DIB) or metafile (EMF) format. By
default, bitmap graphics are displayed in graphics windows; however, providing
the /Meta keyword with either the DEVICE or WINDOW procedure creates a

210

PV-WAVE Programmer’s Guide

metafile. The following table highlights some of the differences between DIB and
EMF graphics:

Format Advantages Disadvantages
Bitmap (DIB) Fast display of com- Graphics cannot be resized interactively.
plex graphics Greater storage requirements.
images.
Metafile Allows graphicsto Slower display time for complex graph-
(EMF) beresized interac- ics.
tively.
Smaller storage
regquirements

Command Line Clipboard Functions

Either of these commands can be entered at the WAVE > prompt in the Console
window:

* WCOPY — Copies the contents of a graphics window to the Clipboard. The
following example copies the contents of window number 1 to the Clipboard:

status=WCOPY (1)

* WPASTE — Pastesthe contents of the Clipboard into a specified graphicswin-
dow. The following example pastes the contents of the Clipboard into the
graphics window with index number 1.

status=WPASTE (1)

For detailed information on these functions, seetheir descriptionsin the PV-WAV E
Reference.

Clipboard Functions on the Graphics Window Control Menu

Either of these options can be selected from the Control menu of any graphics
window:

» Copy to Clipboard — Copies the contents of a graphics window to the
Clipboard.

» Pastefrom Clipboar d — Pastes the contents of the Clipboard into a specified
graphics window.
Input and Output of DIB and Metafile Images

Several commands are provided for the transfer of Device Independent Bitmap
(DIB) and enhanced-format metafile (EMF) images. These commandsfall intotwo

211

general categories: 1) commandsthat transfer data between variables and files, and
2) commands that transfer data between graphics windows and files.

Commands that Transfer Data Between Variables and Files

The following functions allow you to import and export DIB data between vari-
ables and files. For more information on these functions, see their descriptionsin
the PV-WAVE Reference.

e DC _READ _DIB — Readsdatafrom aDIB format fileinto a variable.
« DC WRITE_DIB — Writesimage data from a variableto a DIB format file.

Commands that Transfer Data Between Files and Windows

The following functions allow you to import and export DIB and EMF data
between datafiles and graphics windows. For moreinformation on thesefunctions,
see their descriptions in the PV-WAV E Reference.

« WREAD DIB — Loads aDIB from afile into a graphics window.

« WWRITE_DIB — Savesthe contents of agraphicswindow to afile using the
DIB format.

« WREAD_META — Loads an EMF image from afile into agraphics window.
(EMF graphics cannot be pasted into 16-bit applications.)

* WWRITE_META — Saves the contents of a graphics window to afile using
the EMF format. (EMF graphics cannot be pasted into 16-bit applications.)

The graphics window Control menu contains two functions that let you interac-
tively import and export DIB and EMF data:

» Export Graphics— Writesthe contents of the graphicswindow to afile. Your
choice of output format depends on how the window was created. If the win-
dow was created with a metafile option (either by specifying the Meta or
Redraw keyword), then the exported file can either beaDIB or an EMF format
file. Thefilename extension, . bmp for DIB format and . emf for EMF format,
determinesthe type of output file. If the window was created without ametafile
option, then the only choiceisto export DIB format data.

* Import Graphics— Reads the contents of afile into a PV-WAVE graphics
window. Thefile's contents must be in either DIB or EMF format.

By default, the Import Graphics dialog box looks for fileswith a . bmp or
.emf extension. If the graphics window was created with the /Meta or
/Redraw option enabled, then . emf files are expected. Otherwise, . bmp files
are expected. For information on the /Meta and /Redraw options, see the dis-

212

PV-WAVE Programmer’s Guide

cussions of the DEVICE and WINDOW procedures in the PV-WAV E
Reference.

Transferring Data from PV-WAVE to Microsoft® Excel

This section describes a method for exporting data from PV-WAVE into a
Microsoft Excel spreadsheet. You can apply this method with any application that
allows you to import comma-separated value (CSV) data.

First, have PV-WAVE write the data to afile; the output must be in CSV format.
You can do thiswith the DC_WRITE_FREE function.

data = INDGEN (10, 10)
; Create some example data, such as a 10-by-10 array of integers.

status = DC_WRITE FREE(’data.csv’, data, /Column)

ThisDC_WRITE_FREE commandwritesafilecalleddata . csv, which contains
CSV datathat can be read directly into a Microsoft Excel spreadsheet.

Now you can import the file into Excel asa CSV format file.

TIP Itisaso possibleto run Excel directly from PV-WAVE using the SPAWN pro-
cedure. SPAWN lets you execute externa programs from within PV-WAVE. For
detailed information on SPAWN, see the PV-WAVE Reference. The following
SPAWN command tells Excel to start and load the CSV datafile that was created
using PV-WAVE:

WAVE> SPAWN, ’C:\excel.exe C:\data.csv’, /Nowait

Theinput file to Excel must bein CSV format and must have an . csv extension.

For moreinformation on DC_WRITE_FREE, seeits description in the PV-WAVE
Reference. For information on how to transfer data from Microsoft Excel to PV-
WAVE, see Transferring Data from Microsoft® Excel to PV-WAVE on page 213.

Transferring Data from Microsoft® Excel to PV-WAVE

This section describes a method for reading comma-separated value (CSV) data
from aMicrosoft Excel spreadsheet into PV-WAV E. Oncethe dataisimported into
PV-WAVE, you can use graphics functions such as PLOT and OPLOT to visualize
it. This method of transferring data from another application to PV-WAVE will
work with any application as long as the application can export CSV data.

First, save the datafrom your Excel spreadsheet using the Save Fileas Type: CSV
option on the Save Asdialog box. Thisoption savesthedatain atext file containing

213

values separated by commas. Blank cells are writtenas*®, ,” (a pair of commas)
which PV-WAVE interprets as zeros.

For example, if your spreadsheet contains the following array of cells:

QL Q@ Q@8 Q4
50 25 200
40 100 50

200 50 50 100

when it is saved as CSV data, the resulting file looks like this:

Q1, Q2, Q3, Q4
50,, 25, 200

40, 100, 50,,
200, 50, 50, 100

NOTE The blank cellsin the spreadsheet are saved as “, ,” (apair of commas).
Theseblank valuesareinterpreted as zeroswhen they areimported into PV-WAVE.

Now, you can read this CSV datafileinto PV-WAVE. First, create arrays to hold
the text of the column headings, then create an array to hold the data:

headings = STRARR(4)
sales = INTARR (4, 3)

Next, usethe DC_READ_FREE function to read the datainto the arrays head -
ings and sales. For detailed information on the DC_READ_FREE function,
see its description in the PV-WAVE Reference.

status = DC_READ FREE (’'regionl.csv’, headings, sales)

; The first parameter is the name of the data file to read. The next two
; parameters are the names of the variables into which the data is read.

Enter the following commands to check that the data was read correctly:
PRINT, headings
Q1 Q2 Q3 Q4

PRINT, sales
50, 0, 25, 200
40, 100, 50, O
200, 50, 50, 100

Notice that the empty cells have been replaced by zeros.

214

PV-WAVE Programmer’s Guide

For information on how to transfer data from PV-WAVE to Microsoft Excel, see
Transferring Data from PV-WAVE to Microsoft® Excel on page 213.

215

216 PV-WAVE Programmer’s Guide

Writing Procedures and Functions

A procedure or function is a self-contained module that performs awell-defined
task. Procedures and functions break large tasks into manageable smaller tasks.
Writing modular programs simplifies debugging and maintenance and minimizes
the amount of new code required for each application.

New procedures and functions may be written in PV-WAVE and called in the same
manner as the system-defined procedures or functions (i.e., from the keyboard or
from other programs). When a procedure or function isfinished, it executes a
RETURN statement which returns control to its caller.

Thefollowing directory contains procedures and functions that can be accessed by
al PV-WAVE users:

(UNIX) <wavedirs/lib/user

(OpenVMS) <wavedirs>: [WAVE.LIB.USER]
(Windows) <wavedir>\lib\user

Where <wavedir> isthe main PV=-WAVE directory.

UNIX and OpenVMS USERS This subdirectory isautomatically placed inthe
environment variable or logical WAVE PATH by the PV-WAVE initialization
routine, and is also automatically placed in the system variable ! Path. Theuser
subdirectory is placed at the end of the search path and is thus searched last.

For more information on the search path, see Modifying Your Environment on page
B-1.

PV-WAV E automatically compiles and executes a user-written function or proce-
dure when it isfirst referenced if:

217

» Thesource code of the routineisin the current working directory or in adirec-
tory in the search path defined by the system variable ! Path.

and

« Thename of thefile containing the routineisthe same as the routine name suf-
fixed by .pro.

NOTE User-written functions must be compiled (e.g., with .RUN) before they are
referenced, unless they meet the above conditions for automatic compilation. This
restriction is necessary in order to distinguish between function calls and sub-
scripted variable references.

A procedureis called by a procedure call statement, while afunction is called via
afunction reference. A function always returns an explicit result. For example, if
ABC isaprocedure and XYz is afunction:
ABC, A, 12

; Calls procedure ABC with two parameters.
A = XYZ(C/D)

; Calls function XYZ with one parameter. The result of XYZ is stored
; in variable A.

Procedure and Function Parameters

The variables and expressions passed to the function or procedure from its caller
are parameters. Actual parameters are those appearing in the procedure call state-
ment or the function reference. In the above examples, the actual parametersin the
procedure call arethe variable A and the constant 12, while the actual parameter in
the function call is the value of the expression (C/D).

The procedure and function definition statements notify the compiler that a user-
written program module follows. The syntax of these definition statementsis:

PRO Procedure_name, py, P, --., Pn

FUNCTION Function_name, py, P, ..., Pn

Formal parameters are the variables declared in the procedure or function defini-
tion. The same procedure or function may be called using different actual
parameters from a number of placesin other program units.

218 PV-WAVE Programmer’s Guide

Correspondence Between Formal and Actual Parameters

Correspondence between the caller’s actual parameters and the called procedure's
formal parametersis established by position or by keyword.

A keyword parameter, which may be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign that identifies which
parameter is being passed. When calling a procedure with a keyword parameter,
you can abbreviate the keyword to its shortest unambiguous abbreviation. Keyword
parameters may also be specified by the caller with the syntax /Keyword, whichis
equivalent to setting the keyword parameter to 1 (e.g., Keyword = 1).

A positional parameter isaparameter without akeyword. Just asits nameimplies,
the position of positional parameters establishes the correspondence. The nth for-
mal positional parameter is matched with the nth actual positional parameter.

NOTE Do not use reserved words for keywords. If you use areserved word as a
keyword, a syntax error will result. For alist of the reserved wordsin PV-WAVE,
see Names of Variables on page 26.

Example of Using Positional and Keyword Parameters
A procedure is defined with a keyword parameter named Test:

PRO XYZ, A, B, Test =T
The caller can supply avalue for the format parameter T with the calls:

XY7Z, Test = A
; Supplies only the value of T. A and B are undefined inside the
; procedure.
XYZ, Te = A, Q, R
; The value of A is copied to formal parameter T (note the
; abbreviation for Test), Q to A, and R to B.
XYZ, Q

; Variable Q is copied to formal parameter A. B and T are undefined
; inside the procedure.

Copying Actual Parameters into Formal Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed. On

exit, viaaRETURN statement, the formal parameters are copied back to the actual
parametersif they were not expressions or constants. Parameters may be inputsto

219

the program unit; or they may be outputsin which the values are set or changed by
the program unit; or they may be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of thecall.
In functions, the parameter of the RETURN statement is the result of the function.

OpenVMS USERS Under OpenVMS, PV-WAV E procedures and functions
must be defined with at least one formal parameter. Function calls must also have
at least one actual parameter while procedure call statements may have zero or
more actual parameters.

Number of Parameters Required in Call

A procedure or afunction may be called with less arguments than were defined in
the procedure or function. For example, if a procedure is defined with ten parame-
ters, the user (or another procedure) may call the procedure with zero to ten
parameters.

Parametersthat are not used in the actual argument list are set to be undefined upon
procedure or function entry. |f values are stored by the called procedureinto param-
eters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list may be
found by using the system function N_PARAMS. Usethe N_ELEMENTS func-
tion to determineif avariableis defined or not. The functions KEYWORD_SET
and PARAM_PRESENT can be used to determine if parameters are used or not in
afunction or procedure call.

Example of a Function

An example of afunction to compute the digital gradient of an image is shown
below. Thedigital gradient approxi matesthetwo-dimensional gradient of animage
and emphasizes the edges. This simple function consists of threelines, correspond-
ing to the three required components of procedures and functions: 1) the procedure
or function declaration, 2) the body of the procedure or function, and 3) the termi-
nating END statement.

FUNCTION GRAD, IMAGE
; Defines a function called GRAD.

RETURN, ABS(IMAGE - SHIFT(IMAGE, 1, 0))+ $
ABS (IMAGE - SHIFT (IMAGE, 0, 1))

; Evaluates and returns the result. Result = abs (dz/dx) + abs (dz/dy) which is
; the sum of the absolute values of the derivative in the x and y directions.

220

PV-WAVE Programmer’s Guide

END
; End of function.

The function has one parameter called IMAGE. There are no local variables.
(Local variables are variables within a module that are not parameters and are not
contained in Common Blocks.)

The result of the function is the value of the expression appearing after the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Some examples might be:

A = GRAD(B)
; Store gradient of B in A.

TVSCL, GRAD (ABC + DEF)
; Display gradient of image sum.

Example Using Keyword Parameters

A short example of afunction that exchanges two columns of a 4-by-4 homoge-
neous coordinate transformation matrix is shown. The function has one positional
parameter, the coordinate transformation matrix, T. The caller can specify one of
the keywords XYexch, XZexch, or YZexch, to interchange the XY, XZ, or YZ axes
of the matrix. The result of the function is the new coordinate transformation
matrix:
FUNCTION SWAP, T, XYEXCH = XY, $

XZEXCH = XZ, YZEXCH = YZ

; Function to swap columns of T. If XYEXCH is specified swap
; columns 0 and 1, XZEXCH swaps 0 and 2, and YZEXCH
; swaps 1 and 2.

IF KEYWORD SET(XY) THEN S = [0, 1]
; Swap columns 0 and 1?

ELSE IF KEYWORD SET(XZ) THEN S = [0, 2]
; XZ set?

ELSE IF KEYWORD SET(YZ) THEN S = [1, 2]
1 YZ set?

ELSE RETURN, T
; Nothing is set, just return.

R=T
; Copy matrix for result.

R(S(1), 0) = T(S(0), *)

R(S(0), 0) = T(S(1), *)

; Exchange two columns using matrix insertion operators and
; subscript ranges.

221

RETURN, R
; Return result.

END
Typical callsto SWAP are:
Q = SWAP(!P.T, /XYexch)

Q = SWAP (INVERT(Z), YZexch = 1)

(
Q = SWAP(Q, /XYexch)
(
Q = SWAP(

Z, XYexch = I EQ 0, YZexch = I EQ 2)

Thelast exampl e sets one of the three keywords, according to the value of the vari-
ableI.

Thisfunction example uses the system function KEYWORD_SET to determine if
akeyword parameter has been passed and it isnon-zero. Thisissimilar to using the
condition

IF N _ELEMENTS(P) NE O THEN IF P THEN

to test if keywords that have a true/fal se value are both present and true.

TIP Usethe PARAM_PRESENT function in conjunction with KEYWORD_SET
to test if akeyword was actually used in afunction or procedure call. For informa:
tion on PARAM_PRESENT, see the PV-WAV E Reference.

Compiling Procedures and Functions

There are three ways procedures and functions can be compiled:
* Using .RUN with afilename

* Compiling automatically

* Compiling with interactive mode

Using .RUN with a Filename

Procedures and functions can be compiled using the executive command .RUN.
The format of this command is:

.RUN filel, file2, ...

From oneto ten files, each containing one or more program units, may be compiled
with the .RUN command. Consult Executive Commands in the PV-WAV E Refer-
ence for more information on the .RUN command.

222

PV-WAVE Programmer’s Guide

Compiling Automatically

Generally, however, you create a procedure or function file with a filename that
matchesthe actual procedure or function name. Then you do not heed to use .RUN
to compilethe procedure or functionfileif thisfileiscontained in the current work-
ing directory, PV-WAVE library directory, or in the ! Path directory. The procedure
or function automatically compiles when first called. For example, afunction
named CUBE which calculatesthe cube of anumber hasthefile name cube . pro.
Thefile looks like this:

FUNCTION CUBE, NUMBER
RETURN, NUMBER * 3
END

When the function isinitially used within a PV-WAVE session the file is automat-
icaly compiled. A compiled module message displays on the screen. For example,
using the function for the first time at the WAVE > prompt resultsin:

WAVE> z = cube(4) & print, =z
% Compiled module: CUBE
64

If you change the sourcefile of aroutinethat is currently compiled in memory, then
you have to explicitly recompileit with .RUN or .RNEW.

Compiling with Interactive Mode

You can enter the procedure or function text directly at the keyboard (interactively)
by simply entering .RUN in response to the WAVE > prompt. Rather than executing
statements immediately after they are entered, PV-WAV E compiles the program
unit as awhole. See Creating and Running a Function or Procedure on page 5.

Procedure and function definition statements may not be entered in the single state-
ment mode but must be prefaced by either .RUN or .RNEW when being created
interactively.

The first non-empty line the compiler reads determines the type of the program
unit: procedure, function, or main program. If thefirst non-empty lineis not a pro-
cedure or function definition, the program unit is assumed to be a main program.

The name of the procedure or function is given by the identifier following the key-
word Pro or Function. If aprogram unit with the same name is already compiled,
it is replaced by the newer program unit.

223

Note Regarding Functions

User-defined functions must be compiled using the .RUN command before thefirst
reference to the function is made. There are two exceptions:

» Asdiscussed previously in Compiling Automatically on page 223, if the file-
name is the same as the function name and is located in the current working
directory or in the !Path directory, the file automatically compiles.

» Thefileislocated in the PV-WAVE library directory.

Otherwise the function must be compiled using .RUN because the compiler is
unable to distinguish between a reference to a subscripted variable and acall to a
presently undefined user function with the same name. For example, in the
statement:

A = XYZ(5)
itisimpossibleto tell if XYZ isan array or afunction by context alone.

Always compilethelowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures. PV-WAV E searchesthe current
directory and then those in the directory path (! Path) for function definitions when
encountering references that may either be afunction call or a sub- scripted vari-

able, thereby avoiding this restriction in the case of library functions.

System Limits and the Compiler

When a program is compiled (using .RUN, for example) output is directed to two
areas: the code area and the data area. The code area holds internal instruction
codes and the data area holds symbols for variables, common blocks, and key-
words. If these areas becomefull, the compileishalted, and you will see one of the
following messages:

Program code area full.

Program data area full.

Methods of handling these errors are discussed in the following sections.

Program Code Area Full

This message indicates that the code area (a block of memory that is allocated for
use by the compiler to store instruction codes) has been exceeded. Asaresult, the
compile cannot be completed. The method used to correct this condition depends
on the type of program you are compiling:

224

PV-WAVE Programmer’s Guide

If You are Compiling a Procedure or Function

There are two solutions:
» Break the procedure or function into smaller procedures or functions, or

» Usethe.SIZE executive command to increasethe original size of the code area.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

Compiling Main Programs

If you use .RUN or .RNEW to compile afile that contains statements that are not

insideafunction or procedure, and you receivethe Program code area full

message, you have these options:

* Usethe.SIZE executive command to increase the original size of the code area.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

» Place the statements that will be executed at the SMAINS$ level — those that
are not contained in aprocedure or function — into afile that does not contain
any procedure or function definitions, then execute the program as acommand
file using the @ command. For example:

@filename

The @ command compiles and executesthe commandsinthefileoneat atime,
which does not require much code area space.

Program Data Area Full

This message indicates that the data area (a block of memory that is allocated for
use by the compiler to store symbolic names of variables and common blocks) has
been exceeded. Asaresult, the compile cannot be completed. The method used to
correct this condition depends on the type of program you are compiling:

If You are Compiling a Procedure or Function
There are three solutions:
» Break the procedure or function onto smaller procedures or functions.

» Usethe.SIZE executive command to increase the original size of the dataarea.
The .SIZE command is described in Executive Commands in the PV-WAVE
Reference.

225

» Usethe .LOCALS executive command to increase the original size of the data
area. The LOCALS command is described in Executive Commandsin the PV-
WAVE Reference.

If You are Using the EXECUTE Function in a Program

The EXECUTE function uses a string containing a PV-WAV E command as its
argument. The command passed to EXECUTE is not compiled until EXECUTE
itself is executed. At that time, you may seethe Program data area full
messageif thedataareaisalready full and EXECUTE triesto create anew variable
or common block.

If this occurs, you have the following options:

* |If theprogram isamain program, then use .SIZE or .LOCALSto increase the
Size of the data area.

» If the programisafunction or procedure, then it is necessary to use the
..LOCALS compiler directive in the function or procedure. The ..LOCALS
compiler directive creates additional data area space at runtime.

NOTE Ingenera, if you use EXECUTE to create variables or common blocksin
afunction or procedure, thenit islikely that you will need to use ..LOCALS. This
is because the dataareais compressed immediately after compilation to accommo-
date only the symbolsthat are known at compiletime. Thus, if EXECUTE isused
to create variables or common blocks, there may not be space for any new symbols
to be created. The ..LOCALS command is discussed in the next section.

Using the ..LOCALS Compiler Directive

The syntax of the ..LOCALS compiler directiveis:

..LOCALSIlocal_vars common_symbols

This command is useful when you want to place the EXECUTE function inside a
procedure or function. EXECUTE takes astring parameter containing a PV-WAV E
command. Thiscommand argument is compiled and executed at runtime, allowing
the possibility for command options to be specified by the user. Because the data
areais compressed after compilation, there may not be enough room for additional
local variablesand common block symbols created by EXECUTE. The..LOCALS
command provides a method of allocating extra space for these additional items.

226

PV-WAVE Programmer’s Guide

The..LOCALS compiler directiveissimilar tothe . LOCALS executive command,
except:

» .LOCALSisonly used inside procedures and functions.

» Itsarguments specify the number of additional local variables and common
block symbolsthat will be needed at “interpreter” time (when the already-com-
piled instructions are interpreted).

* Itisused in conjunction with the EXECUTE function, which can create new
local variables and common block symbols at runtime.

Example 1

Inthisexample, ..LOCALS s not needed. This simple procedure does not use the
EXECUTE function to create new variables or common blocks.

PRO myprol, a
COMMON c, cl, c2
a=10

END

Example 2

In this example, anew common block (d) and a new variable (x) are created with
two callsto the EXECUTE function. The ..LOCALS directive creates additional
space for one variable (x) and two common block symbols (d1 and d2).

PRO mypro2, a
..LOCALS 1 2
COMMON ¢, cl, c2
j=EXECUTE (' COMMON d, di, d2’)
a=10
b=20
j=EXECUTE ('x=30")

END

Example 3

The following procedure can create up to 20 new local variables, as specified by
the user at runtime. This example is more realistic than the previous one, because
here you do not know how many new variableswill be needed until runtime. Inthis
case, however, if i isgreater than 20, the data area may fill up.

PRO mypro3, i

227

. .LOCALS 20
for j=1, i DO BEGIN
k=EXECUTE (’var’+STRTRIM(STRING (j),2)+'=0")
ENDFOR
END

This procedure createsi local variables:

VAR1=0
VAR2=0
VAR3=0
VARi=0

Parameter Passing Mechanism

Parameters are passed to system and user-written procedures and functions by
value or by reference. It isimportant that you recognize the distinction between
these two methods.

» Expressions, constants, system variables, and subscripted variable references
are passed by value.

» Variables are passed by reference.

Parameters passed by value may only be inputs to program units; results may not

be passed back to the caller via these parameters. Parameters passed by reference
may convey information in either or both directions. For example consider thistriv-
ial procedure:

PRO ADD, A, B
A=A+B
RETURN

END

Thisprocedure addsits second parameter to thefirst, returning theresult inthefirst.
Thecal:

ADD, A, 4

adds 4 to A and store the result in variable A. The first parameter is passed by ref-
erence and the second parameter, a constant is passed by value. The call:

ADD, 4, A

does nothing because a value may not be stored in the constant “4” which was
passed by value. No error message is issued.

Similarly, if ARR isan array, the call:

228

PV-WAVE Programmer’s Guide

ADD, ARR(5), 4

does not achieve the desired effect (adding 4 to element ARR (5)) because sub-
scripted variables are passed by value. A possible aternativeis:

TEMP = ARR(5)
ADD, TEMP, 4
ARR(5) = TEMP

Procedure or Function Calling Mechanism

When a user-written procedure or function is called, the following actions take
place:

» All of the actual argumentsin the user procedure call list are evaluated and
saved in atemporary location.

* Theactual parametersthat were saved are substituted for theformal parameters
given in the definition of the called procedure. All other variableslocal to the
called procedure are set to undefined.

» Theprocedureis executed until aRETURN or RETALL statement is encoun-
tered. The result of a user-written function is passed back to the caller by
specifying it as the parameter of a RETURN statement. RETURN statements
in procedures may not have parameters.

» Alllocal variablesin the procedure (i.e., those variabl es that are neither param-
eters nor common variables) are deleted.

* The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are del eted.

» Control resumesin the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion is supported with both procedures and functions.

Example Using Variables in Common Blocks

Hereis an example of a procedure that reads and plots the next vector from afile.
This exampleillustrates how to use common variables to store val ues between
calls, aslocal parameters are destroyed on exit. It assumes that the file containing

229

the dataisopen onlogical unit 1 and that thefile containsanumber of 512-element
floating-point vectors.

PRO NXT, Recno

; Read and plot the next record from file 1. If Recno is specified, set
; the current record to its value and plot it.

COMMON Nxt Com, Lastrec

END

; Save previous record number.
IF N_PARAMS(0) GE 1 THEN Lastrec = Recno
; Set record number if parameter is present.

IF N_ELEMENTS (Lastrec) LE 0 THEN $
Lastrec = 0

; Define Lastrec if this is first call.
AA = ASSOC(1l, FLTARR(512))

; Define file structure.
PLOT, AA(Lastrec)

; Read record and plot it.
Lastrec = Lastrec + 1

; Increment record for next time.
RETURN

; All finished.

Once you have opened thefile, typing NXT will read and plot the next record. Typ-
ing NXT, n will read and plot record number n.

Error Handling in Procedures

Whenever an error occurs during the execution of a user-written procedure, a
description of the error is printed and execution of the procedure halts. You can
change the environment that isrestored after an error occurswith the ON_ERROR
procedure. The four possible actions are:

0 — Stop at the statement in the procedure that caused the error, the default
action.

1 — Return al the way back to the main program level.

2 — Return to the caller of the program unit which established the
ON_ERROR condition.

3 — Return to the program unit which established the ON_ERROR condition.

230

PV-WAVE Programmer’s Guide

If ON_ERROR isnot called by a parent of the procedure in which an error occurs,
the procedure is not exited, and the current variables are those of the halted proce-
dure, not of the caler. To return to the calling unit, or to the single statement mode
if the procedure was called from the single statement mode, you should enter a
RETURN or RETALL statement from the terminal.

Calling ON_ERROR from the main level or from aprocedure sets the default error
action for all modules called from that level. For example, if you alwayswish to
return to the main level after an error, simply issue the statement:

ON_ERROR, 1
from the main level, or from your startup procedure.

Many library proceduresissue an ON_ERROR, 2 call toreturnto their caler if an
€rror occurs.

Error Signaling

Use the MESSAGE procedure in user-written procedures and functions to issue
errors. For detailed information on this procedure, see Error Sgnaling on page
241.

“Disappearing Variables”

PV-WAV E novices are frequently dismayed to find that all their variables have
seemingly disappeared after an error occurs inside a procedure or function. The
misunderstood subtlety isthat after the error occurs PV-WAV E's context isinside
the called procedure, not in the main level. Typing RETURN or RETALL will
make the lost variables reappear.

RETALL isbest suited for use when an error is detected in a procedure and you
want to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURNSs until the main program level is reached.

The Users’ Library

In order to support and encourage devel opment and sharing of PV-WAV E programs
in scientific and technical disciplines, Visual Numerics has established the Users’
Library. The purpose of the library isto help users solve common problems and
avoid duplicating the efforts of others. Users are encouraged to submit PV-WAVE
procedures and functions they believe are particularly valuable or are of general
interest to Visual Numerics for incorporation into the library. Coordinate submis-

231

sionsthrough the Visual Numerics' Customer Support Group or through your local
Technical Support Engineer. Thelibrary is updated periodically and distributed
free of chargeto all PV-WAVE sites.

TheUsers Library islocated in:

(UNIX) <wavedirs>/lib/user
(OpenVMS) <wavedirs: [WAVE.LIB.USER]
(Windows) <wavedir>\lib\user

Where <wavedirs> isthe main PV=WAVE directory.

Procedures and functions in this subdirectory are automatically compiled when
they are referenced from within PV-WAVE.

OpenVMS USERS |If you are running PV-WAV E under OpenVMS, you must
load any new or modified Users' Library routinesinto the PV-WAVE text library.
Text libraries are explained previoudly in this chapter.

NOTE PV-WAVE searchesfor Users Library procedures and functions along the
path specified by the ! Path system variable. In most casesthis meansthefirst direc-
tory searched is the current directory. If a procedure or function with the same
name asaUsers Library routine isfound in the current directory (or in any direc-
tory searched beforethe Users' Library directory), it iscompiled and used in place
of the Users' Library routine. Thisis different from the way system routines are
caled and used.

Submitting Programs to the Users’ Library

The major requirement for a procedure or function to be submitted is that a stan-
dardized template be included in the program source. The purpose of the template
isto describe the program in enough detail that others may use the program with
little difficulty. An empty templateis stored in thefile template, located in the
1ib subdirectory of the main PV-WAVE directory.

Try to write routinesin as general a manner as possible. For example, dedicated
logical units should never be used. Instead, the GET_LUN and FREE_LUN proce-
dures should be used to allocate and deallocate logical units. Routines should be
able to handle as many different types and structures of data as possible — this
includes performing parameter checking to ensure the parameters are the correct
type. It isagood ideato use the ON_ERROR procedure to return to the caller in
the event of an error. The code itself should also be liberally commented.

232

PV-WAVE Programmer’s Guide

Procedures and functions conforming to the above requirements will be included
in periodic PV-WAVE releases.

Support for Users’ Library Routines

Visua Numerics provides minimal testing and no documentation of the procedures
and functions submitted to the Users' Library. Thelibrary isprovided asaservice,
and users are advised to use caution when incorporating these routines into their
own programs. The Users’ Library routines do not enjoy the same level of support
or confidence Visual Numericsreservesfor system procedures and functionsin the
Standard Library (std).

OpenVMS Procedure Libraries

The information in this section applies to PV-WAVE running under OpenVMS
only.

When a procedure or function call to an unknown module is encountered, PV-
WAV E searches known text libraries for the module. If a module with the same
name as the procedure or function is found in alibrary, the module is extracted
from the library and compiled. Program execution resumes with execution of the
newly compiled procedure. If the module is not found, an error results and execu-
tion stops.

Libraries are searched for functionsif the first reference to the function is made
with a parameter list and the name has not been defined as avariable. If avariable
has the same name as a function defined in one of the libraries, and the first refer-
enceismadewith asubscript list (indistinguishable from aparameter list), then the
name will be set to function type and the variable will be inaccessiblein all pro-
gram units.

Thelogical names WAVESLIBRARY and WAVESLIBRARY nareused by PV-
WAV E to find the actual text libraries. Up to ten librariesmay be active at onetime.
Thelibrary search method issimilar to that used by the VAX Linker program when
searching for user libraries.

Libraries are searched in the following order:

Q Processlogical name table:
WAVESLIBRARY
WAVESLIBRARY 1
WAVESLIBRARY 2

233

WAVESLIBRARY 9

Q Group logical name table:
WAVESLIBRARY
WAVESLIBRARY 1

WAVESLIBRARY 9

Q System logical name table:
WAVESLIBRARY
WAVESLIBRARY 1

WAVESLIBRARY 9

An attempt is made to translate each logical name into an actual device and file-
name. If the attempt fails, indicating that the logical name has not been assigned,
searching isterminated in the current logical name table and is started at the next
level. Libraries are searched in the above order when locating procedures and func-
tions. For example, if aprocedureis defined in both system and process-level
libraries, it will be taken from the library defined in the process logical name table
because it is searched first.

Assign the logical name WAVESLIBRARY to the actual filename of your PV-
WAVE library. For example, if the primary library is

$DISKO: [SMITH] WAVE . TLB and the secondary library is

$DISK1: [JONES] WAVE . TLB, the following logical assignments should be
made before running PV-WAVE:

DEFINE WAVESLIBRARY $DISKO: [SMITH]WAVE.TLB
DEFINE WAVESLIBRARY 1 $DISK1: [JONES]WAVE.TLB

Thelibrary in [SMITH] will be searched first, then thelibrary in [JONES], fol-
lowed by any libraries in the group or system logical hame tables.

The above assignments may be made in the login command file, system start-up
command file, or manually by directly entering DCL commands.

Creating OpenVMS Procedure Libraries

The information in this section applies to PV-WAVE running under OpenVMS
only.

PV-WAV E procedure libraries are simply standard OpenVMStext libraries. A text
library isafile containing anumber of text modules and anindex. Text librariesare
built and maintained with the VAX Librarian Utility.

234

PV-WAVE Programmer’s Guide

Modules, each containing a single procedure or function, may be inserted,
replaced, deleted, and extracted using the Librarian Utility. Each module must be
named with the name of the program unit it contains and may contain only one pro-
gram unit. If necessary, use the /Module switch to explicitly specify the name.

To create a procedure library, use atext editor to create one or more files each con-
taining a PV-WAVE procedure or function. Once the PV-WAV E code has been
debugged, use the Librarian to create atext library from your procedure files. For
example, the OpenVM S command:

LIBRARY /CREATE /INSERT /TEXT WAVE abc.pro, def.pro

invokes the library utility to create a new text library which will be named
WAVE . TLB, and to insert thefilesabc . pro and def . pro. Thetwo modulesin
the library are named ABC and DEF, as the module name defaults to the file name.

To extract the module ABC from the library file abc . pro use:

LIBRARY /EXTRACT = ABC /TEXT /OUT = abc.pro WAVE

The file may be edited and then replaced in the library with the command:
LIBRARY /REPLACE /TEXT WAVE abc.pro

Usethe /Module quadlifier to specify the module name if the procedure or func-
tion does not have the same name as its filename.

For example, to insert afunction called POLY_FIT, contained in afile called
polyfit intothelibrary, use the following library command:

LIBRARY /TEXT WAVE polyfit.pro /Module = POLY FIT

Consult the VAX-11 Utilities Reference Manual for more information concerning
the Librarian.

235

236 PV-WAVE Programmer’s Guide

Programming with PV-WAVE

The routines discussed in this chapter are characterized by the fact that they are
useful primarily (though not exclusively) in PV-WAV E procedures and functions.
They arerarely used during interactive use. They provide information about vari-
ables and expressions, give the programmer control over how errors are handled,
and perform other useful operations.

Routines may be loosely categorized into the following groups:

» Error handling routines such as ON_ERROR, ON_IOERROR, FINITE, and
CHECK_MATH.

» Informational routineswhich return information about variables, expressions,
parameters, etc. Theseroutinesare N_ELEMENTS, SIZE, N_ PARAMS,
PARAM_PRESENT, and KEYWORD_SET. In addition, TAG_NAMES and
N_TAGS supply information about structure variables.

* Program control routines such as EXIT, EXECUTE, STOP, and WAIT.

Description of Error Handling Routines

PV-WAV E divides execution errors into three categories: input/output, math, and
al others. ON_ERROR gives control over how regular errors are handled. The
ON_IOERROR procedure allows you to change the default way in which I/O
errors are handled. FINITE, and CHECK _MATH give control over math errors.

237

Default Error Handling Mechanism

In the default case, whenever an error is detected by PV-WAV E during the execu-
tion of a program, program execution stops and an error message is printed. The
variable context isthat of the program unit, (procedure, function, or main pro-
gram), in which the error occurred.

Asexplained in Error Handling in Procedures on page 230, hovices are frequently
dismayed to find that all their variables have seemingly disappeared after an error
occursinside a procedure or function. The misunderstood subtlety isthat after the
error occurs, the context is that of the called procedure or function, not the main
level. All variablesin procedures and functions, with the exception of parameters
and common variables, are local in scope.

Sometimesit is possible to recover from an error by manually entering statements
to correct the problem. Possibilitiesinclude setting the values of variables, closing
files, etc., and then entering the .CON executive command, which will resume exe-
cution at the beginning of the statement that caused the error.

Asan example, if an error stop occurs because an undefined variableisreferenced,
simply define the variable from the keyboard and then continue execution with
.CON.

Controlling Errors

The two procedures ON_ERROR and ON_ERROR_GOTO determine the action
to be taken when an error is detected inside a procedure or function. This section
provides a brief introduction to these procedures. For more details on these proce-
dures, see their descriptions in the PV-WAV E Reference.

The ON_ERROR procedure specifies an action to take after an error occursinside
aprocedure or function. The following table lists the basic options for error recov-
ery. These options specify an action and cause program execution to stop.

Options for Error Recovery

Value Action

0 Stop immediately in the context of the procedure or function that
caused the error. Thisis the default action.

1 Return to the main program level and stop.

2 Return to the caller of the program unit that called
ON_ERROR and stop.

3 Return to the program unit that called ON_ERROR and stop.

238

PV-WAVE Programmer’s Guide

Additional options, specified in conjunction with the Continue keyword, specify an
action to take and allow the program to continue executing after the action. These
options are listed in the following table:

Options for Error Recovery and Program Continuation

Value Action

0 Continue in the procedure that caused the error.

1 Return to SMAINS and continue.

2 Return to the caller that established the ON_ERROR condition and
continue.

3 Return to the program unit that established the ON_ERROR condi-

tion and continue.

Oneuseful optionisto use ON_ERROR to cause control to bereturned to the caller
of aprocedure in the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. It isa good ideato

include this statement in library procedures, and any routines that will be used by
others, but only after debugging is completed. Debugging aroutine after using the
ON_ERROR procedureis made more difficult because theroutineis exited as soon
asan error occurs. Therefore, it should be added oncethe codeis completely tested.

The ON_ERROR_GOTO procedure transfers program control to a specified state-
ment label after an error occurs. A label, as explained in Statement Labels on page
48, is an identifier followed by a colon. A label may exist on aline by itself.

For example:

PRO Procl

ON_ERROR_GOTO, Procl Failed

; If error occurs here, go to the statement label Proc1_Failed.
Procl_Failed:
PRINT, !Err, !Err String

END

239

Error Handling in WAVE Widgets Applications

WAV E Widgets procedures normally try to continue executing after an error has
occurred. WAV E Widgets procedures report the error and traceback information,
and return a value indicating afailure has occurred. Usually, the value OL is
returned as the widget ID. It is the programmer’s responsibility to check returned
values and take appropriate action.

WAV E Widgets callbacks, event and input handlers, timers, and work procedures
by default return from the given procedure first and then continue execution after
an error. When an error is detected, execution is continued at the statement speci-
fied by the input parameter of the last ON_ERROR call or by the
ON_ERROR_GOTO statement in the given callback, handler, timer, or work pro-
cedure routine.

It isthe programmer’s responsibility to set ON_ERROR or ON_ERROR_GOTO
appropriately. To override the default error handling behavior of callbacks, han-
dlers, timers, or work procedures, set:

ON_ERROR, Continue=0

NOTE If a WAVE Widgets application stops during execution, you can use the
RETALL procedure to stop al the currently running WAV E Widgets applications
and return to the main program level.

Controlling Input and Output Errors

The default action for handling input/output errorsisto treat them exactly like reg-
ular errorsand follow the error handling strategy set by ON_ERROR. You can alter
the default handling of 1/0 errors using the ON_IOERROR procedure to specify
the label of a statement to which execution should jump if an I/O error occurs.
When PV-WAVE detects an 1/O error and an error handling statement has been
established, control passes directly to the given statement without stopping pro-
gram execution. In this case, no error messages are printed.

When writing procedures and functions that are to be used by others, it is good
practiceto anticipate and gracefully handle errors caused by the user. For example,
the following procedure segment, which opens afile specified by the user, handles
the case of anon-existent file or read error:

FUNCTION READ DATA, file name
; Define a function to read and return a 100-element floating-point array.
ON_IOERROR bad
; Declare error label.

240

PV-WAVE Programmer’s Guide

OPENR, UNIT, file name, /Get Lun
; Use the Get_Lun keyword to allocate a logical file unit.
A = FLTARR(100)
; Define data array.
READU, UNIT, A
; Read it.
GOTO, DONE
; Clean up and return.
bad: PRINT, !Err string
; Exception label. Print the error message.
DONE :
Free Lun, UNIT
; Close and free the 1/O unit.
RETURN, A
; Return the result. This will be undefined if an error occurred.
END

Theimportant thingsto note arethat the Free Lun procedureisawayscalled, even
intheevent of an error, and that this procedure alwaysreturnstoitscaller. It returns
an undefined value if an error occurred, causing its caller to encounter the error.

Error Signaling

Use the MESSAGE procedure in user-written procedures and functions to issue
errors. It hasthe form:

MESSAGE, text
wheretext is a scalar string describing the error.

MESSAGE issues error and informational messages using the same mechanism
employed by built-in routines. By default, the message isissued as an error, the
message is output, and PV-WAV E takes the action specified by the ON_ERROR
procedure. Asaside effect of issuing the error, the system variables ! Err and ! Error
are set and the text of the error message is placed in the system variable
IErr_String.

As an example, assume the statement:
MESSAGE, ’'Unexpected value encountered.’
is executed in a procedure named CALC. The result would be the following:

)

% CALC: Unexpected value encountered.

241

MESSAGE accepts several keywords which modify its behavior. See the descrip-
tion of MESSAGE in the PV-WAVE Reference for additional details.

Another use for MESSAGE involves resignaling trapped errors. For example the
following code uses ON_IOERROR to read from afile until an error (presumably
end of file) occurs. It then closes the file and reissues the error:

OPENR, UNIT, ‘data.dat’, /Get Lun
; Open the data file.

ON_IOERROR, eod
; Arrange for jump to label eod when an I/O error occurs.

TOP: READF, UNIT, LINE
; Read every line of the file.

GOTO, TOP
; Go read the next line.

eod: ON_IOERROR, NULL
; An error has occurred. Cancel the 1/O error trap.

Free Lun, UNIT
; Close the file.

MESSAGE, !Err string, /Noname, /Ioerror

; Reissue the error. |Err_string contains the appropriate text. The

; keyword causes it to be issued as an I/O error. Use of Noname

; prevents MESSAGE from tacking the name of the current routine
; to the beginning of the message string, since !Err_String already
; contains it.

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caler(s). The INFO procedure returns, in astring array, the contents of the proce-
dure stack, when the Calls keyword parameter is specified. Thefirst element of the
resulting array contains the module name, source file name and line number of the
current level. The second element contains the same information for the caller of
the current level, and so on back to the level of the main program.

For example, the following code fragment prints the name of itscaller, followed by
the source file name and line number of the call:
INFO, CALLS = a
PRINT, ’‘Called from: r, al(l)
; Print 2nd element.

Resulting in a message of the following form:

242

PV-WAVE Programmer’s Guide

Called from: DIST <wave/lib/dist.pro (27)>

For this example, the commands were entered on a UNIX system; on a Windows
or OpenVMS system the pathname will appear differently.

Programs can readily parse the traceback information to extract the sourcefile
name and line number.

Detection of Math Errors

On Windows Systems

PV-WAV E detects the following six mathematical errors conditions:
* Integer divide by zero.

e Integer overflow.

» Floating-point divide by zero.

* Foating-point underflow.

* Foating-point overflow.

» Foating-point operand error. (Anillegal operand was encountered, such asa
negative operand to the SQRT or ALOG functions; or an attempt to convert to
integer a number whose absolute value is greater than 231-1.)

When an error isdetected, PV-WAV E prints an error message indi cating the source
of the statement that caused the error and continues program execution. Up to eight
messages are printed before program execution stops.

On UNIX and OpenVMS Systems

The detection of math errors, such asdivision by 0, overflow, and attempting to take
the logarithm of a negative number, is hardware dependent. Some machines, such
asthe VAX/OpenVMS, trap on al math errors, while others never trap.

On machines that handle fl oating-point exceptions and integer math errors prop-
erly, PV-WAV E prints an error message indicating the source statement that caused
the error and continues program execution. Up to eight error messages are printed.

243

Checking the Accumulated Math Error Status

PV-WAV E maintains an accumulated math error status. This status, whichisimple-
mented as alongword, contains abit for each type of math error that is detected by
the hardware. PV-WAV E checks and clears thisindicator each time the interactive
prompt isissued, and if it is non-zero, prints an error message. A typical message
is.

% Program caused arithmetic error: Floating divide by 0

This means that afloating division by 0 occurred since the last interactive prompt.

The CHECK _MATH function, described bel ow, allows you to check and clear this
accumulated math error status when desired. It is used to control how PV-WAVE
treats fl oating-point exceptions on machines that don’t properly support them. It
can also disable printing of math error messages.

Special Values for Undefined Results

Under Windows, and on any machine which implements the | EEE standard for
binary floating-point arithmetic, such as the Sun, there are two special values for
undefined results, NaN (Not A Number), and Infinity. Infinity results when aresult
islarger than the largest representation. NaN is the result of an undefined compu-
tation such as zero divided by zero, taking the square-root of a negative number, or
thelogarithm of anon-pasitive number. These special operands propagate through-
out the evaluation process. The result of any term involving these operandsis one
of these two special values.

Check the Validity of Operands

Use the FINITE function to explicitly check the validity of floating-point or dou-
ble-precision operands. thisworks under Windows and on machines which use the
| EEE floating-point standard. For example, to check theresult of the EXP function
for validity:
a = EXP (EXpression)

; Perform exponentiation.
IF NOT FINITE(a) THEN PRINT, $

"overflow occurred’

; Print error message, or if a is an array do the following:

IF FINITE(a) NE N_ELEMENTS (a) THEN €fror

244

PV-WAVE Programmer’s Guide

Check for Overflow in Integer Conversions

When converting from floating to byte, short integer or longword types, if overflow
isimportant, you must explicitly check to be sure the operands are in range. Con-
versions to the above types from floating-point, double-precision, complex, and
string types do not check for overflow; they ssmply convert the operand to long-
word integer and extract the low 8, 16, or 32 hits.

UNIX USERS When run on a Sun workstation, the program:

A

a = 2.0 31 + 2

PRINT, LONG(a), LONG(-a), FIX(a), FIX(-a), $
BYTE (a), BYTE(-a)

which creates afl oating-point number two larger than thelargest positivelongword
integer, will print the following incorrect results:

2147483647 -2147483648 -1 0 255 0

% Program caused arithmetic error: Floating illegal operand

CAUTION No error message will appear if you attempt to convert a floating num-
ber whose absol ute val ue is between 2% and 2311 to short integer even though the
result isincorrect. Similarly, converting anumber in the range of 256 to 23—1 from
floating, complex or double to byte type produces an incorrect result but no error
message. Furthermore, integer overflow isusually not detected. If integer overflow
isaproblem, your programs must guard explicitly against it.

Trap Math Errors with the CHECK_MATH Function

As mentioned previously, the CHECK _MATH function lets you test the accumu-
lated math error status. It is also used to enable or disable traps. Each call to this
function returns and clears the value of this status.

NOTE CHECK_MATH does not properly maintain an accumulated error status
on machines that do not implement the | EEE standard for floating-point math.

It isgood programming practice to bracket segments of code which might produce
an arithmetic error with callsto CHECK_MATH to properly handleill-conditioned
results.

Itscdl is;

245

result = CHECK_MATH([print_flag, message inhibit])

If an error condition has been detected, and the first optional parameter is present
and non-zero, an error message is printed and program execution continues. Oth-
erwise, the routine runs silently.

If the second optional parameter, message_inhibit, is present and non-zero, error
messages are disabled for subsequent math errors. The accumul ated math error sta-
tusis maintained, even when error messages are disabled. When the program
completes and exits back to the PV-WAV E prompt, accumulated math error mes-
sages which have been suppressed are printed. To suppress this final message, call
CHECK_MATH to clear the accumul ated error status before returning to the inter-
active mode.

The error statusis encoded as an integer, where each binary bit represents an error,
as shown in the following table:

NOTE Not all machines detect al errors.

Error Status Code Values
Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH.

1 Integer divide by zero.

2 Integer overflow.

16 Floating-point divide by zero.

32 Floating-point underflow.

64 F oating-point overflow.

128 Floating-point operand error. An illegal operand was encountered,

such as a negative operand to the SQRT or ALOG functions; or an
attem%tlto convert to integer a number whose absolute value is greater
than 231-1.

Enable and Disable Math Traps
To enable trapping:

]
[y

junk = CHECK MATH (TRAP
To disable trapping:

junk = CHECK MATH(TRAP = 0)

246

PV-WAVE Programmer’s Guide

Examples Using the CHECK_MATH Function

For example, assumethat thereisacritical section of codethat islikely to produce
an error. The following code shows how to check for errors, and if one is detected
to repesat the code with different parameters:

junk = CHECK MATH(1,1)
; Clear error status from previous operations and print error
; messages if an error exists. Also, disable automatic printing of
; subsequent math errors.

again ...
; Critical section goes here.

IF CHECK MATH(0,0) NE 0 THEN BEGIN
; Did an arithmetic error occur? Also, re-enable the printing of subsequent math errors.

PRINT, ’‘Math error occurred in critical ’ + ’‘section’

READ, ’'Enter new values: ',
; Input new parameters from user.

GOTO, again
; And retry.

ENDIF

Hardware-dependent Math Error Handling

Error Handling on a Sun-4 (SPARC) Running SunOS Ver-
sion 4

Improper floating-point operations are trapped if traps are enabled. By default,
traps are enabled. The result of an improper operation contains garbage, not an
|EEE special value as would be expected if traps are enabled. When traps are dis-
abled, viaCHECK_MATH, the correct special values result, but no error message
results until the next interactive prompt is issued.

Only integer divide by 0 is detected. Integer overflow is not detected.

Digital Workstation Error Handling

Integer divide by 0 is aways trapped. Integer overflows produce no indication of
error, and O results.

247

Floating-point traps may be enabled (the default) or disabled. The result of an
improper floating-point operation that occurs when traps are enabled is garbage. If
traps are not enabled, the correct | EEE special value results.

VAX/OpenVMS Error Handling

The VAX does not implement the | EEE floating point standard. The special values
NaN and Infinity cannot occur. The FINITE function always returns avalue of 1.

Most floating point functions check for and report overflow or illegal operands.
Traps may be disabled, in which case math error messages are not immediately
printed. Integer overflow is not detected, while integer division by O is.

Error Handling for Silicon Graphics Workstations Running
IRIX 5.3

Some PV-WAV E routines may cause “Floating I1legal Operand” arithmetic errors.
These errors are caused by a sensitivity to NaN comparisons. These messages do
not halt PV-WAV E execution; the return values are correct. To disable this error
trapping and reduce the number of “Floating Illegal Operand” messagesto afina
summary message, use the following PV-WAV E command:

WAVE> junk = CHECK MATH (Trap=0)

Checking for Parameters

Theinformational routines, N_ELEMENTS, SIZE, N_PARAMS,
PARAM_PRESENT, and KEYWORD_SET, are useful in procedures and func-
tionsto check if argumentsare supplied. Procedures should bewritten to check that
all required arguments are supplied, and to supply reasonable default values for
missing optional parameters.

Checking for Parameters

PARAM_PRESENT testsif a parameter was actually present in the call to apro-
cedure or function. It returns anonzero value (TRUE) if the specified parameter
was present in the call to the current procedure or function. If the specified param-
eter is not present, this function returns zero, or FALSE.

PARAM_PRESENT isauseful compliment to the functions KEYWORD_SET
and N_ELEMENTS, described later in this section. PARAM_PRESENT can be

248

PV-WAVE Programmer’s Guide

used to distinguish between the different cases in which those two routines return
FALSE. Examples of this use are shown in the following sections.

Checking for Keywords

The KEYWORD_SET functionreturnsal (TRUE), if its parameter is defined and
non-zero. The function returns 0 (FALSE) in the following cases:

1) When the keyword was set to zero.
2) When the keyword was not used in the call.

For example, assumethat aprocedureiswritten which performsacomputation and
returns the result. If the keyword Plot is present and non-zero the procedure also
plotsits result:

PRO XYZ, result, Plot=Plot
; Procedure definition. Compute result.

IF KEYWORD SET (Plot) THEN PLOT, result
; Plot result if keyword parameter is set.
END

A call to this procedure that produces aplot is:
xyz, r, /Plot

The PARAM_PRESENT function lets you distinguish between the two FALSE
cases of KEYWORD_SET. It returns TRUE when the keyword is set to 0 and
FAL SE when the keyword was not used.

Checking for Number of Positional Parameters

The N_PARAMS function returns the number of positional parameters (not key-
word parameters) present in a procedure or function call. A frequent useisto call
N_PARAMSto determineif all arguments are present, and if not to supply default
values for missing parameters. For example:

PRO XPRINT, XX, Yy
; Print values of xx and yy. If xx is omitted, print values of yy versus
; element number.
CASE N_PARAMS () OF
; Check number of arguments.
1: BEGIN
; Single argument case.
Y = XX
; First argument is y values.

249

x = INDGEN (N _ELEMENTS (y))
; Create vector of subscript indices.
END
2: BEGIN & v = yy & X = XX & END
; Two argument case. Copy parameters to local arguments.
ELSE: BEGIN
; Wrong number of arguments.
PRINT, ’XPRINT - Wrong number of ' + $
"arguments’
; Print message.

RETURN
; Give up and return.
END
ENDCASE

; Remainder of procedure.
END

Checking for Number of Elements

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element, even if they are scalar
structures. The number of elementsin arrays or vectorsis equal to the product of
the dimensions. The N_ELEMENTS function returns zero if its parameter isan
undefined variable. The result is aways alongword scalar.

For example, the following expression is equal to the mean of a numeric vector or
array:

result = TOTAL(arr) / N_ELEMENTS (arr)

The N_ELEMENTS function provides a convenient method of determining if a
variable is defined, asillustrated in the following statement. The following state-
ment sets the variable abce to zero if it is undefined, otherwise the variable is not
changed.

IF N _ELEMENTS (abc) EQ 0 THEN abc = 0
N_ELEMENTS isfrequently used to check for omitted positional and keyword
arguments. N_PARAMS can’t be used to check for the number of keyword param-

eters because it returns only the number of positional parameters. An example of
using N_ELEMENTS to check for a keyword parameter is.

PRO zoom, image, Factor=Factor
; Display an image with a given zoom factor. If Factor is omitted use 4.

250

PV-WAVE Programmer’s Guide

IF N_ELEMENTS (Factor) EQ 0 THEN Factor = 4
; Supply default for missing keyword.

If N_ELEMENTS s used to check for the number of keyword parameters, it
returns 0 in the following cases:

1) When the keyword or parameter was present but is an undefined
variable.

2) When the keyword or parameter was not present in the call.

ThePARAM_PRESENT function letsyou distingui sh between the two caseswhen
N_ELEMENTS returns zero (0). PARAM_PRESENT returns TRUE when the
keyword was present by is an undefined variable. It returns FAL SE when the key-
word was not present in the call.

Checking for Size and Type of Parameters

The SIZE function returns a vector that contains information indicating the size
and type of the parameter. The returned vector isaways of longword type. Thefirst
element is equal to the number of dimensions of the parameter, and is0 if the
parameter is a scalar. The following elements contain the size of each dimension.
After the dimension sizes, the last two elementsindicate the type of the parameter
and the total number of elements respectively. The typeisencoded as shown in the
following table:

TypeCode DataType

Byte

Integer

Longword integer
Floating-point
Double-precision floating
Complex floating

String

0 N o o b~ WN P

Structure

251

Example of Checking for Size and Type of Parameters

Assume A isan integer array with dimensions of (3, 4, 5). After executing, the
Statement:

B = SIZE(A)

assigns to the variable B a six-element vector containing:

by 3 Three dimensions
b, 3 First dimension

b, 4 Second dimension
b, 5 Third dimension
b, 2 Integer type

bs 60 Number of elements = 3*4*5

A code segment that checksthat avariable, A, istwo-dimensional, and extractsthe
dimensionsis:
s = SIZE(A)

; Get size vector.

IF s(0) NE 2 THEN BEGIN
; Two-dimensional?
PRINT, ‘Variable A is not two-dimensional’
; Print error message.
RETURN
; And exit.
ENDIF
nx = s(l) & ny = s(2)
; Get number of columns and rows.

Using Program Control Routines

The program control procedures arelargely self-explanatory, with the exception of
the EXECUTE function. The EXIT procedure exits the PV-WAV E session. STOP
terminates execution of aprogram or batch file, and printsthe values of its optional
parameters. WAIT, asits name implies, pauses execution for a given amount of
time, specified in seconds.

252

PV-WAVE Programmer’s Guide

Executing One or More Statements

The EXECUTE function compiles and executes one or more PV-WAV E statements
contained in its string parameter during run-time.

Theresult of the EXECUTE functionistrue (1), if the string was successfully com-
piled and executed. If an error occurred during either phase the result is false (0).
If an error occurs, an error message is printed.

Usethe & character to separate multiple statementsin the string. GOTO statements
and labels are not allowed.

Example of Executing Multiple Statements in a Single
Command

This example, taken from the Standard Library routine SVDFIT, calls afunction
whose name is passed to SVDFIT as astring in a keyword parameter. If the key-
word parameter is omitted, the function POLY is called:

FUNCTION SVDFIT, ..., Funct = Funct
; Function declaration.

IF N_ELEMENTS (Funct) EQ 0 THEN Funct = ’POLY’
; Use default name, POLY, for function if not specified.
z = EXECUTE('a = ' + Funct + ' (x, m)')
; Make a string of the form "a = funct(x,m)", and execute it.

253

254 PV-WAVE Programmer’s Guide

Tips for Efficient Programming

Techniques for writing efficient programs in PV-WAVE are identical to thosein
other computer languages, with the addition of the following simple guidelines:

* Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

* Use PV-WAVE system functions and procedures wherever possible.
» Access array datain machine-address order.

Attention must be also be given to algorithm complexity and efficiency, asthisis
usually the greatest determinant of resources used.

NOTE Inthischapter, we givetheresult of timing various examples. Such timings
are influenced by many factors and may not be the same for your machine. How-
ever, al timings were made on the same machine under the same conditions.
Therefore, the exact times may differ, but the timings given for the various exam-
ples can be used to evaluate the relative efficiency of the examples given.

Increasing Program Speed

The order in which an expression is evaluated can have alarge effect on program
speed. Consider the following statement, where A isan array:
B =A* 16. / MAX(A)

; Scale A from 0 to 16.

255

This statement first multiplies every element in 2 by 16, and then divides each ele-
ment by the value of the maximum element. The number of operationsrequiredis
twice the number of elementsin A. This statement took 24 secondsto execute on a
512-by-512 single-precision floating-point array. A much faster way of computing
the sameresult is:

B =A* (16. / MAX(A))
; Scale A from 0 to 16 using only one array operation.
or:

B = 16. / MAX(A) * A
; Operators of equal priority are evaluated from left to right. Only one
; array operation is required.

The faster method only performs one operation for each elementin A, plus one sca-
lar division. It took 14 secondsto execute on the same fl oating-point array as above.

Avoid IF Statements for Faster Operation

It paysto attempt to code as much as possible of each program in array expressions,
avoiding scalars, loops, and IF statements. Some examples of slow and fast ways
to achieve the same results are:

Example

Add all positive elements of B to A:
FOR I = 0, (N - 1) DO IF B(I) GT 0 THEN

A(I) = A(I) + B(I)

; Slow way uses a loop.

A=A+ (BGT 0) * B

; Fast way: Mask out negative elements using array operations.
A=A+ (B >0)

; Faster way: Add B > 0.

Often an | F statement appearsin the middle of aloop, with each element of an array
in the conditional. By using logical array expressions, the loop may sometimes be
eliminated.

Example

Set each element of C to the square-root of A if A (I) ispositive, otherwise, set
C(I) tominusthe square-root of A (I):

256

PV-WAVE Programmer’s Guide

FOR I = 0, (N - 1) DO IF A(I) LE 0 THEN

C(I) -SQRT(-A(I)) ELSE
C(I) = SQRT(A(I))
; Slow way uses an IF statement.
C = ((AGT 0) * 2 - 1) * SQRT(ABS(A))
; Fast way.

For a 10,000-element floating-point vector, the statement using the I F took 8.5 sec-
onds to execute, while the version using the array operation took only 0.7 seconds.

Theexpression (2 GT 0) hasthevalueof 1if A (1) ispositiveandisOif A(T)
isnot. (A GT 0) * 2 - lisequato+1lifA (1) ispositiveor minuslif
A (I) isnegative, accomplishing the desired result without resorting to loops or | F
statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result:

NEGS = WHERE (A LT 0)
; Get subscripts of negative elements.
C = SQRT(ABS(A))
; Take root of absolute value.
C(NEGS) = -C(NEGS)
; Fix up negative elements.
This version took 0.8 seconds to process the same 10,000-el ement floating-point
array.

Use Array Operations Whenever Possible

Whenever possible, vector and array data should always be processed with array
operations instead of scalar operationsin aloop. For example, consider the prob-
lem of inverting a512-by-512 image. This problem arises because about half of the
available image display devices consider the origin to be the lower-left corner of
the screen, while the other half use the upper-left corner.

NOTE Thisexampleisfor demonstration only. The system variable ! Order should
be used to control the origin of image devices. The Order keyword to the TV pro-
cedure serves the same purpose.

A programmer without experience in using PV-WAV E might be tempted to write
the following nested loop structure to solve this problem:

257

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN
TEMP = IMAGE (I, J)
; Temporarily save pixel image.

IMAGE (I, J) = IMAGE(I, 511 - J)
; Exchange pixel in same column from corresponding row at
; bottom.
IMAGE (I, 511 - J) = TEMP
ENDFOR

Executing this code required 143 seconds.

A more efficient approach to this problem capitalizes on PV-WAV E’s ability to pro-
cess arrays as a single entity.

FOR J = 0, 255 DO BEGIN
SW = 511 - J
; Index of corresponding row at bottom.
TEMP = IMAGE(*, J)
; Temporarily save current row.

IMAGE (0, J) = IMAGE(*, SW)
; Exchange row with corresponding row at bottom.
IMAGE (0, SW) = TEMP
ENDFOR

Executing this revised code required 11 seconds, which is 13 times faster.

At the cost of using twice as much memory, things can be simplified even further:

IMAGE2 = BYTARR (512, 512)
; Get a second array to hold inverted copy.

FOR J = 0, 511 DO IMAGE2(0, J) = $
IMAGE (*, 511 - J)
; Copy the rows from the bottom up.

Thisversion also ran in 11 seconds.
Finally, using the built-in ROTATE function:

IMAGE = ROTATE (IMAGE, 7)

; Inverting the image is equivalent to transposing it and rotating it
; 270° clockwise.

This simple statement took 0.6 seconds to execute.

258 PV-WAVE Programmer’s Guide

Use System Routines for Common Operations

PV-WAV E supplies anumber of built-in functions and procedures to perform com-
mon operations. These system-supplied routines have been carefully optimized
and are almost always much faster than writing an equivalent operation with loops
and subscripting.

Example

A common operation isto find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluatesthis sum at least ten timesfaster
than directly coding the sum:

SUM = 0. & FOR I = J, K DO SUM = SUM + ARRAY (I)
; Slow way: Initialize SUM and sum each element.

SUM = TOTAL (ARRAY(J : K))
; Efficient, simple way.

Using a 10,000-el ement floating-point vector and summing al of its elementstook
4 seconds with the first statement and .09 seconds with the second.

Similar savings result when finding the minimum and maximum elementsin an
array (MIN and MAX functions), sorting (SORT function), finding zero or non-
zero elements (WHERE function), etc.

Use Constants of the Correct Type

Asexplained in Chapter 2, Constants and Variables, the syntax of a constant deter-
minesitstype. Efficiency isadversely affected when the type of aconstant must be
converted during expression evaluation. Consider the following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from
short integer type to floating-point type each time the expression is evaluated.

Thetype of aconstant also has an important effect in array expressions. Care must
be taken to write constants of the correct type. In particul ar, when you are perform-
ing arithmetic on byte arrays and want to obtain byte results, be sure to use byte
constants (e.g., nB). For example, if 2 isabytearray, theresult of the expression
+ 5Bisabytearray, whilea + 5 yieldsa 16-bitinteger array.

259

Remove Invariant Expressions from Loops

Expressions whose values do not change in aloop should be moved outside the
loop. In the following loop:

FOR I = 0, N - 1 DO ARR(I, 2 * J - 1) = ...

theexpression(2 * J - 1)isinvariant and should be evaluated only once before
the loop is entered:

TEMP = 2 * J - 1
FOR I = 0, N - 1 DO ARR(I, TEMP) = ...

Access Large Arrays by Memory Order

When an array’s size is larger than or near the working set size, it should always,
if possible, be accessed in memory-address order.

To illustrate some side-effects of the virtual memory environment, consider the
process of transposing alarge array. Assume the array isa512-by-512 byte image
and there is a 100-kilobyte working set. The array requires 512 x 512 or approxi-
mately 250 kilobytes. Clearly, lessthan half of theimage may bein memory at any
one instant.

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing thefirst 512 bytes of the image, will beread into
memory, if necessary, and written to the first column.

Because arrays are stored in row order (the first subscript varies the fastest), one
column of the image spans arange of addresses almost equal to the size of the
entireimage. In order to write the first column, 250,000 bytes of data must be read
into physical memory, updated, and written back to the disk. This process must be
repeated for each column, requiring the entire array be read and written almost 512
times!

The time required to transpose the array using the above naive method will be on
the order of minutes. The TRANSPOSE function transposes large arrays by divid-
ing them into subarrays smaller than the working set size and will transpose a 512-
by-512 image in less than 10 seconds.

Example

Consider the operation of the statement:

FOR X = 0, 511 DO FOR Y = 0, 511
DO ARR(X, Y) = ...

260

PV-WAVE Programmer’s Guide

This statement will require an extremely large amount of time to execute because
the entire array must be transferred between memory and the disk 512 times. The
proper form of the statement is to process the points in address order:

FOR Y = 0, 511 DO FOR X = 0, 511
DO ARR(X, Y) = ...

Thetime savings are at least afactor of 50 for this example.

Be Aware of Virtual Memory

The PV-WAV E programmer and user must be aware of the characteristics of virtual
memory computer systemsto avoid penalty. Virtual memory allows the computer
to execute programs that require more memory than is actualy present in the
machine by keeping those portions of programs and datathat are not being used on
the disk. Although this processis transparent to the user, it can greatly affect the
efficiency of the program.

Arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only asmall portion of that data actually residesin
physical memory at any given moment—the remainder is stored on disk. The por-
tion of data and program codein real physical memory is commonly called the
working set.

When an attempt is made to access a datum in virtual memory that does not cur-
rently reside in physical memory, the operating system suspends PV-WAVE,
arranges for the page of memory containing the datum to be moved into physical
memory, and then allows PV-WAVE to continue. This process involves deciding
wherein memory the datum should go, writing the current contents of the selected
memory page out to the disk, and reading the page containing the datum into the
selected memory page. A page fault is said to occur each time this process takes
place. Because the time required to read from or write to the disk is very largein
relation to the physical memory access time, page faults become an important
consideration.

When using PV-WAV E with large arraysit isimportant to have a generous amount
of physical memory and alarge swapping area. If you suspect that these parameters
are causing problems, consult your system manager.

261

Running Out of Virtual Memory?

Whenever you define avariable or perform an operation, PV-WAV E asks the oper-
ating system for some virtual memory in which to store the data or operation.
(Internally, PV-WAVE calls the C function ma1loc to alocate the additional
memory.) With each additional definition or operation, the amount of memory alo-
cated to the PV-WAV E process grows. If you typically processlarge arrays of data
and use the vendor-supplied default system parameters, sooner or later the follow-
ing error will occur:

% Unable to allocate memory

This error message means that PV-WAV E was unabl e to obtain from the operating
system enough virtual memory to hold all of your data. In general, this situation
arises because of the way in which all C applications interact with the operating
system. That is, allocated memory that isfreed (viaacall to the C routine £ree)
results in afragmented or discontinuous pool of memory within the application.

You have two basic options to resolve this error:

» First, you can try deleting all unneeded variables, functions, procedures, and
structures. This option may be effective in many cases; however, it will not be
effectivein all cases. Because of the memory fragmentation described previ-
oudly, it is not always possible to free sufficient space for alarge variable or
routine by deleting other smaller variables or routines. PV-WAVE requires a
chunk of contiguous memory large enough to hold any given array or routine.

» |If thefirst option does not work, you will have to exit PV-WAVE. Before exit-
ing, use the SAVE procedure to save only the variables and routines that you
need. When you restore the session with the RESTORE procedure, the saved
variables and routines will be stored in memory in aless fragmented manner,
which may create sufficient space for you to continue your work. If PV-WAVE
still cannot allocate enough memory for your data, you can try exiting without
first saving the session.

To delete structures, procedures, and functions, usethe DEL STRUCT, DELPROC,
and DELFUNC procedures. Use the DELVAR procedure to delete variables. For
information on these procedures, see the PV-WAV E Reference. Another method of
freeing memory isto assign the value of alarge array variable to a scalar value.

TIP The INFO, /Memory procedurewill tell you how much virtual memory
you have allocated. For example, a’512-by-512 complex floating array requires
8*5122 or about 2 megabytes of virtual memory because each complex element
requires 8 bytes.

262

PV-WAVE Programmer’s Guide

NOTE Again, with the deletion and reassignment of large variables (as well as
structure definitions, compiled procedures, and functions), the memory availableto
PV-WAV E processes will become fragmented. Eventually, you will not be able to
obtain sufficient memory for agiven large variable. At thispoint, you can try delet-
ing unneeded variables, procedures, functions, and structures. If that does not solve
the problem, you must exit from PV-WAVE to clear out the memory.

Controlling Virtual Memory System Parameters under UNIX

The size of the swapping area(s) determines how much virtual memory your pro-
cessis alowed. To increase the amount of available virtual memory, you must
either increase the size of the swap device (sometimes called the swap partition),
or usethe swapon (8) command to add additional swap areas. Increasing thesize
of aswap partition is atime consuming task which should be planned carefully. It
reguires saving the contents of the disk, reformatting the disk with the new file par-
tition sizes, and restoring the original contents. Consult the documentation that
came with your system for details. Some systems (SunOS) allow you to swap to a
normal file by usingthemkfile (8) command in conjunction with swapon.
Thisisaconsiderably easier solution.

Controlling Virtual Memory System Parameters under
OpenVMS

VMS, asit comes from Digital, is not tuned for image processing. To get the best
performance from PV-WAVE, you should increase the OpenVM S SYSGEN param-
eters, filesizes, and AUTHOR I ZE quotaswhich restrict the virtual memory system.
This discussion is on the most elementary level and the appropriate OpenVMS
manual s should be consulted for more detail.

Thefirst step isto determine how much virtual memory you require.

For example, if you do complex FFTson 512-by-512 images, each complex image
reguires 2 megabytes. Suppose that during atypical session you need to have four
images stored in variables, and require enough memory for two images to hold
temporary results, resulting in atotal of six images or 12 megabytes. Rounding up
to 16 megabytes gives areasonable goal. The following parameters and quotas
should be changed to increase the amount of virtual memory available:

263

SYSGEN Parameters

e WSMAX — Setsthe maximum number of pages of any working set on asystem-
widebasis. Theworking set isthat portion of virtual memory used by aprocess
that is actually in physical memory. Although thisis an over-simplification,
small working set sizes cause page faulting. Page faults waste time and poten-
tially require disk accesses. Increasing the working set to asize of three times
the size of the largest array to be processed, or at least 2000 blocks, can cause
dramatic speed improvements. Many MicroVAX systems have from 8 to 16
megabytes of physical memory. Subtracting approximately 2 megabytes for
OpenVMS leavesthe rest available to be divided up among the user processes.
Onmany MicroVAX systems, thereare only oneor two users, so largeworking
sets of from 3 to 7 megabytes (6000 to 14000 pages) may be used.

* VIRTUALPAGECNT — This parameter sets the maximum number of virtual
pages (512 bytes/page) that can be used by any one process.

To changethevalues of SYSGEN parameters, Digital recommendsthat you run the
AUTOGEN command procedure after adding linesto set the new values of changed
parametersto the end of the file SYS$SSYSTEM : MODPARAMS . DAT.

System Files

The sizes of the system page and swap files (SYSSSYSTEM: PAGEFILE.SYS
and SWAPFILE.SYS) must be large enough to contain the virtual memory used
by al active processes. In any event, you cannot have more virtual memory than
will fit in the page file.

You can increase the size of these files or create secondary system files on adisk
other than the system disk.

If you get the error message:
Page file fragmented - continuing

on the system console your page fileistoo small.

To increase the size of these files, use the command procedure

SYSSUPDATE : SWAPFILES. Usethe SYSGEN INSTALL command to activate
system files created on disks other than the system disk. AUTOGEN may also be
used to change thefile sizes.

Quotas

The following quotas, al of which may be changed on a per user or system basis
using the AUTHORI ZE utility, affect virtual page limits and working set sizes:

264

PV-WAVE Programmer’s Guide

* PGFLQUO — The page file quotafor each user expressed in blocks. If you
increase the size of the pagefile, be sureto increase the pagefile quotasfor the
users requiring more virtual memory. Be sure that the pagefile sizeis at |east
as large as the sum of the quotas of each active user.

* WSQUO — Theworking set quota for each user. This quota may be used to
allow some users a larger working set than others. WSQUO must not be larger
than wsSMAX.

Minimize the Virtual Memory Used

If virtual memory is aproblem, try to tailor your programming to minimize the
number of images held in variables.

Keep in mind that PV-WAV E creates temporary arrays to evaluate expressions
involving arrays. For example, when evaluating the statement:

A= (B+C * (E+ F)

PV-WAVE first evaluates the expression B + C, and creates atemporary array if
either B or C are arrays. In the same manner, another temporary array is created if
either E or F are arrays. Finally, the result is computed, the previous contents of A
are deleted and the temporary area holding the result is saved as variable A. Note
that during the evaluation of this statement enough virtual memory to hold two
array’sworth of datais required in addition to normal variable storage.

Itisagood ideato delete the allocation of a variable that contains an image and
that appears on the left side of an assignment statement. For example, in the
program:
FOR I = ... DO BEGIN

; Loop to process an image.

; Processing steps.
A =0
: Delete old allocation for A.
a = Image Expression
; Compute image expression and store.
ENDFOR
the purpose of the statement 2 = 0 isto free the old memory alocation for the
variable A before computing the image expression in the next statement. Because
the old value of A isgoing to be wiped out in the next statement, it makes senseto
free 2’smemory allocation before executing the next statement. For moreinforma-

tion on the effects of freeing memory by deleting or reassigning large array
variables, see Running Out of Virtual Memory? on page 262.

265

Array Operations are Rewarded

PV-WAV E programs are compiled into alow-level abstract machine code, whichis
interpretively executed. The dynamic nature of variablesin PV-WAVE and the rel-
ative complexity of the operators precludes the use of directly executable code.

Statements are only compiled once, regardless of the frequency of their execution.

The PV-WAVE interpreter emul ates asimple stack machine with approximately 50
operation codes. When performing an operation, theinterpreter must determinethe
type and structure of each operand, and branch to the appropriate routine. Thetime
required to properly dispatch each operation may be longer than the time required
for the operation itself.

Array-array and array-scalar operations are implemented by generating and exe-
cuting optimized machine code in atemporary buffer. The characteristics of the
time required for array operationsis similar to that of vector computers and array
processors. Thereisaninitial set-up time, followed by rapid evaluation of the oper-
ation for each element. The time required per element is shorter in longer arrays
because the cost of thisinitial set-up period is spread over more elements.

The speed of PV-WAVE is comparableto that of optimized FORTRAN insofar as
array operations are considered. When data are treated as scalars, efficiency
degrades by afactor of 30 or more.

As an example, the processes of evaluating the square-root of a 10,000-element
floating-point vector and adding 2 to each element of a512-by-512 byteimage was
timed using scalar operations, array operations, and FORTRAN. The times for
these operations are shown in the following table:

Processing Times

Method Used Square-Root Time Addition Time
PV-WAVE with scalars and FOR statement 3.10 138
PV-WAVE with array operation 0.16 0.49
Sun FORTRAN (optimized) 0.11 0.80

Ascan be seen above, thereisalarge penalty for using scalar operationswhen array
operations are appropriate. Thereislittle difference in the times required by PV-
WAVE array operations and FORTRAN.

266 PV-WAVE Programmer’s Guide

Getting Session Information

Using the INFO Procedure

The INFO procedure provides you with information about many different aspects
of the current PV-WAVE session. Entering

INFO

with no parameters printsan overview of the current state, including the definitions
of al current variables. Calling INFO with one or more parameters displays the
definitions of the parameters. INFO also displays other information about the cur-
rent session if you call it with a keyword parameter indicating the topic. Only one
topic keyword can be specified at atime. The available topics are described in the
following sections.

Calling INFO with No Parameters

When INFO is called without any positional or keyword parameters, it providesan
overview of the current state. The information provided is:

» A traceback showing the current procedure and function nesting.

* Amount of code area, number of local variables, and number of parameters.
(When PV-WAVE reads a procedure or function for the first time, it compiles
it into executable code. Every routine has a code area where the executable
codeis placed and a data area where information about all locally available
variables (including common block variables) resides. The amount of room

267

used in each of these areas is reported to the current routine, along with the
number of local variables and parameters.)

* A one-line description of every current variable.
e A description of al currently accessible common blocks.
e The names of all saved procedures and functions.

As an example of atypical PV-WAVE session, the command

INFO

might result in output similar to:
% At SMAINS (0) .
Code area used: 0.00% (0 / 30000), Data area used: 4.88% (100 / 8000)
local variables (including 0 parameters: 4/250)
common symbols: 3/8
B BYTE = Array(256)
G BYTE = Array(256)
I BYTE = Array (512, 512)
R BYTE = Array(256)
X(CBLK) INT = 0
Y (CBLK) INT = 11
Z (CBLK) INT = 12
Common Blocks:
CBLK (3)

Saved Procedures:
COLOR_EDIT COLOR_EDIT BACK INTERP_COLORS READ SRF SHOW3

Saved Functions:
AVG BILINEAR CORRELATE CURVEFIT

This session summary provides the following information:

e Thecurrent routineis SMAINS, meaning that you are currently at the main pro-
gram level and that no called routine is executing.

» Thesecond and third linesindicate that the code areais empty (zero bytes used
out of 30,000 available) and approximately 95% of the data areais also free
(100 bytes used out of 8,000 available). The code areais empty because you
are currently at the SMAIN$ level and no $SMAIN$ program has been entered.

» Thefourth line shows how many local variables the current data area can
accommodate. It also indicatesthetotal number of local variablesincluding the
number of parameters. In this example, 4/250 means that there is space for a
total of 250 local variables and only four are currently being used.

268

PV-WAVE Programmer’s Guide

e Thesixth line shows how many common block symbols are being used and
how many there are space for.

» The next seven lines give one-line descriptions of al locally available vari-
ables. Thefirst four variables (B, G, I, and R) arelocal variables, while the
other three (X, Y, and z) are contained in the common block CBLK. Note that
the one-line descriptions of scalar variables gives their values, while the
descriptions of arrays shows their dimensions. Use the PRINT procedure to
look at the contents of arrays.

» Following the descriptions of variablesisthelist of available common blocks.
In this session, the only common block is named CBLK, and it contains three
variables.

» Thefina information printed is the names of all saved procedures and
functions.

Calling INFO with Positional Parameters

If you call INFO with parameters (but without any keyword parameters), it simply
provides a one-line description of each parameter. Hence, for the PV-WAVE ses-
sion described earlier, the command:

INFO, 12.0 * 23, R, I, Z, !D
gives the output:

<Expression> FLOAT = 276.000

R BYTE = Array(256)

I BYTE = Array (512, 512)

Z (CBLK) INT = 12

<Expression> STRUCT = -> !Device

As noted earlier, the one-line description of scalars prints their values, while for
arrays, you see their dimensions. For structure variables, the name of the structure
definition associated with the variable is printed, as shown in the last line of this
example. Use INFO with the Structures, Sysstruct, or Userstruct keywords to see
theform of astructure variable. These keywords are described later in this chapter.

Calling INFO with Keyword Parameters

INFO, /Device

The command:

269

INFO, /Device

givesinformation about the current graphics device. This information depends on
the abilities of the current device, but the name of the deviceisawaysgiven. Other
parametersto INFO areignored when Deviceis selected. Asan example of thetype
of information supplied, the commands:

SET_ PLOT, 'PS’
; Select PostScript output.

INFO, /Device
; Get device information.

yield:

Current graphics device: PS
File: <none>

Mode: Portrait, Non-Encapsulated
Offset (X, Y): (1.905,12.7) cm.
Size (X, Y): (17.78,12.7) cm.
Scale Factor: 1

Font Size: 12

Font: Helvetica

bits per image pixel: 4

INFO, /Files

The Files keyword provides information about file units. If no parameters are sup-
plied, information on all open file unitsis displayed. If parameters are provided,
they are assumed to be integer file unit numbers, and information on the specified
file unitsis given. For example, the command:

INFO, -2, -1, 0, /Files

givesinformation about the default file units. For example, under UNIX, the output
might ook like this:

Unit Attributes Name
—2 Write, Truncate, Tty, Reserved <stderr>
-1 Write, Truncate, Tty, Reserved <stdout>
0 Read, Tty, Reserved <stdin>

The attributes column tells about the characteristics of thefile. For instance, thefile
connected to logical fileunit -2 iscalled stderr, and isthe standard error file. It
isopened for write access (Write), isanew file (Truncate), isaterminal
(Tty), and cannot be closed viathe CLOSE command (Reserved).

270

PV-WAVE Programmer’s Guide

INFO, /Keys

The Keys keyword provides current function key definitions, as set with the
DEFINE_KEY procedure. For information on DEFINE_KEY, see the PV-WAVE
Reference.

If no parameters are supplied, information on all function keysis displayed. If
parameters are provided, they must be scalar strings containing the names of func-
tion keys, and information on the specified keysis given.

For example, you can define the <F12> key to execute the command
INFO, /Keys with the statement:

DEFINE KEY, /Terminate, ’'F12’, ’'INFO, /Keys’
the INFO, /Keys command produces output that includes the line:
F12 <\033[P> = INFO, /Keys <Terminate>

showing the new key definition.
Parameters to INFO are ignored when Keys is selected.

INFO, /Memory

PV-WAV E uses dynamic (heap) memory to store items such as programs and vari-
ables. The Memory keyword reports the amount of dynamic memory currently in

use by the PV-WAV E session, and the number of times dynamic memory has been
alocated and deallocated. A typical response to the

INFO, /Memory
command might look like:
heap memory in use: 14572, calls to MALLOC: 64, FREE: 3

Other parameters to INFO are ignored when Memory is selected.

INFO, /Recall_Commands

PV-WAVE saves the last 20 lines of input in a buffer. These lines can be recalled
for command line editing. The Recall_Commands keyword causes the INFO pro-
cedureto display the contents of this buffer. Other parametersto INFO are ignored
when Recall_Commands is sel ected.

UNIX and OpenVMS USERS For more information on reviewing and re-enter-
ing previously entered commands, see Getting Started: UNIX and OpenVMSin the
PV-WAVE User’'s Guide.

271

Windows USERS For more information on reviewing and re-entering previ-
ously entered commands, see Getting Started: Windows in the PV-WAVE User’s
Guide.

INFO, /Routines

The Routines keyword causes INFO to print alist of all compiled procedures and
functionswith their parameter names. Keyword parameters accepted by each mod-
ule are enclosed in quotation marks. Other parametersto INFO are ignored when
Routines is selected. For the typical session described earlier, the result of the
command

INFO, /Routines
would appear as.

Saved Procedures:

COLOR_EDIT "HLS" "HSV"

COLOR_EDIT BACK

INTERP_COLORS pts npts colors

READ_ SRF file image r g b

SHOW3 image "INTERP"
Saved Functions:

AVG array dimension

BILINEAR p ix jy

CORRELATE Xy

CURVEFIT X y w a sigmaa
INFO, /Structures

The Structures keyword provides information about structure variables. If no
parameters are provided, al currently defined structures are shown. If parameters
are provided, the structure of those variables are displayed. For example, the
command

INFO, /Structures, !D

shows the contents and structure of the system variable !D:

** Structure !Device, 14 tags, 60 length:

NAME STRING b:d
X_SIZE LONG 640
Y SIZE LONG 512
X_VSIZE LONG 640
Y_VSIZE LONG 512
X _CH SIZE LONG 6
Y CH SIZE LONG 9

272

PV-WAVE Programmer’s Guide

X PX CM FLOAT 40.0000

Y PX CM FLOAT 40.0000
N_COLORS LONG 256

TABLE SIZE LONG 256

FILL DIST LONG 1

WINDOW LONG -1

UNIT LONG 0

FLAGS LONG 444
ORIGIN LONG Array (2)
ZOOM LONG Array (2)

TIP Itisoften more convenient to use INFO, /Structures instead of PRINT
to look at the contents of a structure variable because it shows the names of the
fields aswell as the data. For instance, the command:

PRINT, !D
gives the output:

{x 640 512 640 512 6 9 40.0000 40.0000 256 256 1
-1 0 444 0 0 1 1}

which isless readable.
See also the Sysstruct and Userstruct keywords described later.

INFO, /System_Variables

The System Variableskeyword causes INFO to show all system variablesand their
values. Other parametersto INFO areignored when the System Variableskeyword
is selected. The command:

INFO, /System Variables

displays the current values of system variables.

INFO, /Sysstruct

The Sysstruct keyword displays only the system structures (structures that begin
with “!”). The output of thiscommand is a subset of the INFO, /Structures
command described previoudly.

INFO, /Traceback

The Traceback keyword displays the current nesting of procedures and functions.
Other parametersto INFO are ignored when Traceback is selected.

273

INFO, /Userstruct

The Userstruct keyword displays only the regular user-defined structures (struc-
tures that do not begin with “!™). The output of this command is a subset of the
INFO, /Structures command described previoudly.

274 PV-WAVE Programmer’s Guide

Using the PV-WAVE Debugger

The PV-WAV E Debugger is a devel opment environment for creating, testing, and
maintaining VDA applications written in PV-WAV E. With easy-to-use mouse and
menu driven functions, the Debugger helps you to become a more productive PV-
WAV E application devel oper. With the Debugger you can:

Edit source files using a built-in editor or an editor of your choice, such as
emacs or Vi.

Copy, cut, paste, select, and search for text.
Run an application, step through it line by line, skip lines, or stop execution.
Set breakpoints and examine variable contents during program execution.

List information about system variables, structure definitions, open files, and
compiled routines.

Print source code files.

This section is an introduction to the Debugger and provides enough information
to get you started loading and debugging your application programs. Additional
information on the functions discussed here, as well as other functions not
discussed in this section, is available through the Debugger’s context sensitive
online help system.

275

The Main PV-WAVE Debugger Window

Menubar
Status label

Status column

Source window

Button area

Output window

| |
- PY=HAVE Tebugger [

[Hle Edit Breakpoint Variable Info Options Helpt—— Main Help
menu
fimp_mnifdepot/devolfwavecl6/o00bivwaveflibistdfavy.pro
FUNCTION AVG, ARRAY, DIMENSION

—qr HaEl
H BYG

; PURPOSE:

i Calculate the awerage walue of an array, or calculate the average

5 value over one dimension of an array as a function of all the other
i dinensions

0ON_ERROE, 2
S = SIZE (ARRAY)
IF 5(0) EQ 0 THEN BEGIN
PRINT, ’*+** Variable must be an array, name= ARRAY, routine AVG.’
RETURN, ARRAT
ENDIF
IF N_PARAMS() EQ 1 THEN BEGIN
AVERAGE = TOTAL (ARRAY) / N_ELEMENTS (ARRAT)
END ELSE BEGIN
IF ((DIMENSION GE 0) AND (DIMENSION LT S(0)}) THEN BEGIN
BVERAGE = SUM(ARRAY, DIMENSION) / S(DIMENSION+1)

Run Step | Stepn Skip Continue Search Stop Exit

Saved Procedures:
SETDEMO SETDEMO_SUN4 SETRKEYS_SUN4 SETUP_FEYS
Saved Functions:

WAVE>
¥ tunpiled module: AVG.
WAVE:
WAVE>
WAVE>
WAVE>

Figure 13-1 The main window appears when you start the Debugger.

M enu bar — Contains menu functions that you can select during adebugging
session.

Statuslabel — Displaysthe currently loaded source file and, during program
execution, displays the execution line number and status.

Status column — Shows which lines have breakpoints set.

Source window — A full-featured editing window used to display and edit
sourcefiles.

Button area — Lets you control program execution.

Output window — The PV-WAVE command line: echoes PV-WAVE com-
mands being executed; displays error, informational, and user input messages,
lets you enter PV-WAV E commands.

276

PV-WAVE Programmer’s Guide

Using the Debugger’s Online Help System

Online help displays information about the Debugger’s menu items, dialog boxes,
and buttons. Start with the main Help menu; it provides information on the menus
in the Menu bar, the program execution buttons, and other topics. Each dialog box
contains aHelp button that you can click on to display context sensitive
information.

Starting the Debugger

To start the Debugger on UNIX, enter the following command at the operating
system prompt:

(UNIX) wavedbg

To start the Debugger on Windows, go to:
Start>Programs>PV-WAVE 7.x>PV-WAV E Debugger
where x isthe current revision level of PV-WAVE.

After afew moments, the Debugger main window appears. The Source window is
empty until you load an application or source file. In the Output window, you will
see the normal PV-WAVE startup messages.

Changing the Working Directory

By default, the Debugger recognizes the working directory as the directory from
which it was started. To changetheworking directory, usethe File=>Set Directory
function. This function brings up a File Selection dialog box in which you can
specify the new directory path.

Loading an Application at Startup

You can also open an application and one or more source files directly when you
start the Debugger by specifying the file name(s) as a parameter to the wavedbg
command. For example:

wavedbg appl sourcel source2 source3

where appl is the name of the main application file and sourcel, source2, and
source3 are source files for functions called by the application. The difference
between application and source filesis discussed further in Loading Filesinto the
Debugger on page 278.

When the Debugger window opens, the specified source file appearsin the Source
window and is automatically compiled. (Whenever a source file isloaded into the
Debugger, it is automatically compiled.)

277

Executing a Command File at Startup

To execute a PV-WAV E command file (batch file) when you start the Debugger,
specify the command file as a parameter to wavedbg. You must precede the
command filename with the @ symbol. For example:

wavedbg @comfile

The command file is automatically executed when the Debugger starts.

Saving Your Work and Stopping the Debugger

Before stopping the Debugger, save your work by selecting the File=>Save or
File=>Save As function. To stop the Debugger, select File=>Quiit.

The File=>Save As function lets you specify a name for the source file before
saving it. Use this for new, previously unnamed source files or for afile whose
name you want to change.

The File=>Save function simply saves the currently loaded source file using its
existing filename.

Loading Files into the Debugger

Your PV-WAVE application may consist entirely of one sourcefile, or it may
consist of multiplefiles. Inthe case of amultiplefile application, onefileisusualy
themain application file— the oneyou call initially to start the application and that
callsfunctionsin other files.

Loading a Single-File Application

If your application consists entirely of one file, then you can load it into the
Debugger using File=>Application. Enter the name of thefileinthe File Selection
dialog box, and it isloaded into the Source window and compiled. At this point,
you can run (by clicking the Run button) and debug the program.

TIP Most of themenu functionsin the Debugger have keyboard accel erators (short
cuts) associated with them. Whenever an accelerator exists for amenu item, itis
listed on the menu to theright of the menu item name. For example, the accel erator
for the File=>Application function (the Application function on the Filemenu) is
C-x C-a. Thismeansthat you can select this function by holding down the
<Control> key and pressing the <x> and then the <a> key.

278

PV-WAVE Programmer’s Guide

Loading a Multi-File Application

If you have an application that is broken into several sourcefiles (see Figure 13-2),
load the main application file using the File=>Application function. Thefileis
loaded into the Debugger Source window and compiled. At this point, you can run
(by clicking the Run button) and debug the program.

\TApplication File

Source File

Source File

Figure 13-2 An application that consists of a main application file and multiple separate
source files can be loaded into the Debugger.

While debugging the application, you may need to open one or more of the
application’s separate sourcefiles. To load one of thesefiles, usethe File=>Sour ce
function. The sourcefile that you specify isloaded into the Source window where
you can edit it.

TIP Another way to open source filesisto use the File=>Find Source function.
Type the name of afunction in the Find Source dialog box, and the Debugger
searchesfor the function’s sourcefilein the current directory and in the directories
specified in the ! Path system variable. If the function islocated, it isdisplayed in
the Source window. Another way to use this function is to hold down the <Shift>
and <Control> keys and double-click on the name of afunction in the Source
window.

If you click the Run button, the Debugger will always try to execute the main
application file— thefile you loaded with File=>Application, regardless of which
fileis currently loaded in the Source window. You do not have to explicitly reload
the main application file to execute it.

279

Running an Application

When you load a program into the debugger, it is compiled automatically, but not
executed. To execute the program (either the main program of a multifile
application or a single-file program), click the Run button.

To specify parameters and keywords for the application, enter them with the
File=>Parameter s function before clicking Run.

NOTE The Debugger does not have a function that is equivaent to the .RUN
command. A program is automatically compiled whenever it isloaded into the
debugger. To force a program to be recompiled, select the File=>Reload function.

Detecting Execution Errors

Execution error messages appear in the Output window. The line number of the
error is reported in the error message.

Use the function Edit=>Go To Lineto go directly to the line number of the error
in the Source window.

If theerror iseasily corrected, you can do so directly in the Source window. Simply
make the change, recompile the main program by selecting File=>Reload or
File=>Save, and then click Run. (See the next section Editing the Source File for
more information.)

If the error is not obvious, while execution is stopped you can set breakpoints and
examine variables to help track down the source of the error (see Setting
Breakpoints on page 281 and Examining Variables on page 283 for more
information).

Editing the Source File

You can edit source code directly in the Source window, or you can edit filesusing
the text editor of your choice, such as emacs or vi.

280

PV-WAVE Programmer’s Guide

Editing in the Source Window

You can choose either basic or emacs key bindings for the Source window. Key
bindings, or “mappings’, define the functions performed by keys on your
keyboard.

The basic key bindings are limited, but easy to learn. They are useful if you intend
to make simple changes in the Source window. The emacs bindings give you the
editing power of the standard emacs editor, which isfound on most UNIX systems.

To choose the type of key bindings used in the Source window, select
Options=>K ey Bindings and choose either Basic or Emacs.

For acomplete description of the basic and emacs key bindings, refer to onlinehelp
by selecting Help=>K ey Bindings.

NOTE After any text in the Source window, the word “ edited” appearsin the Sta-
tuslabel above the Source window. Thisis done simply to remind you that the file
has been modified.

Using a Separate Text Editor

If you do not want to use the Source window to edit sourcefiles, you can bring up
a separate text editor, such asvi or emacs.

First, choose the text editor you want to use by selecting Options=>Editor and
type the name of the text editor in the dialog box. Then, to run the editor, select
File=>Edit. The text editor you selected appears in a separate window, and the
currently loaded application or source file is automatically loaded into the editor.

TIP You can specify the default editor by setting the EDITOR environment
variable. For example:

setenv EDITOR emacs

After you exit the separate editor, you are returned to the Debugger. To load the
edited source file into the Debugger, select File=>Reload.

Setting Breakpoints

A breakpoint stops program execution at a preselected line number, allowing you
to check on the status of variables or other program elements. With the PV-WAVE

281

Debugger, it is easy to set breakpoints in your source code. Just click on the line
whereyou want to insert abreakpoint and sel ect Breakpoint=>Set Break fromthe
main menu. Then click OK in the Set Breakpoint dialog box. A small icon (Figure
13-3) appears in the Status column just to the left of the breakpoint line:

than DIMENSION (NI.HNJ,NE respectively).

NI = 1L ; Make sure that WNI is a long integer and result fr
IF DIMEWSION GT 0 THEWN FOR M = 1, DIMENSION DO NI = NI + S5(M
Breakpoint A K1 = S(DIMENSION+1)
Icon NE = 1L ; Make sure that NE is a long integer and result fo

IF DIMENWSION LT M_DIM-1 THEW FORE M = DIMENSIOM+Z, M _DIM DO H

Figure 13-3 The breakpoint icon indicates the lines for which breakpoints are set.

The next time you run the program (e.g., by clicking the Run button), it will halt at
the breakpoint line.

TIP Keyboard accelerators make setting and unsetting breakpoints easy. To set a
breakpoint, press the <Shift> key and double-click on aline of code. To clear a
breakpoint, press the <Control> key and double click on aline containing a
breakpoint.

Other functions on the Breakpoint menu include:

Show Break — Lists each line of source code containing a breakpoint in the
Output window.

Clear Break — Clears the breakpoint from a specified line.
Clear All — Clearsal breakpoints in the Source window.

TIP While execution is halted, use the functions on the Variable and | nfo menus
to examine the contents of variables, structures, and other program elements. (See
Examining Variables on page 283.) To continue execution, use one of the Button
area buttons. For example, use the Step button to execute one line at atime or the
Continue button to execute the rest of the program. These functions are discussed
further in the next section.

282 PV-WAVE Programmer’s Guide

Controlling Program Execution

Use the functions in the Button area to control program execution. Most of these
functions have underlying PV-WAV E commands that are straightforward to
understand. The following list gives a brief description of each button.

Run — Executes an application that has been loaded into the Debugger. First, the
Debugger triesto find a procedure or function to execute that has the same name as
the currently loaded application name. If noneisfound, the Debugger checksto see
if amain program is currently loaded in memory. If amain program existsin
memory, it is executed. If not, you are given a chance to enter the name of an
application to execute.

Step — Executes the currently loaded program one line at atime. When Step
encounters aline with a procedure or function call, it executes the procedure or
function, but does not enter it. That is, the source code for the called functionis not
displayed in the Source window. To enter procedures and functions, use Step In.

Step In — Executes the currently loaded program one line at atime. When Step In
encounters a line with a procedure or function call, it displays the procedure or
function’s source code in the Source window. At the end of the procedure or
function, the Debugger redisplays the calling routine.

Skip — Skipsthe next line in the program, then single-steps after that. This
command is useful for skipping over program statements that caused an error.

Continue — Continues the execution of a program that has stopped because of an
error, a Stop command, or other interruption, such as a breakpoint.

Search — Lets you search for atext string in the Source window or the Output
window.

Stop — Stops the execution of an application and returns from nested procedures
and functions until the main program level is reached.

Exit — Stops the execution of the current application and ends the PV-WAVE
session. To restart the PV-WAVE session, select File=>Restart. This command
does not exit the Debugger, it only exits the PV-WAVE session running in the
Debugger. To exit the Debugger, select File=>Quit.

Examining Variables

When you are debugging a program, it is often necessary to examine the contents
of variablesat various pointswhile the program isrunning. The Debugger provides

283

several methods you can use to examine variables. The methods include showing
asingle variable, monitoring avariable, and “listing” information about variables.

Showing a Single Variable

Whenever program execution is stopped (e.g., by a breakpoint, a Step command,
or an error), you can examine the contents of variables.

To examine the contents of a variable when program execution is stopped, double
click on the variable's name (in the Source window) and select Variable=>Show.
Alternatively, you can select Variable=>Show first, and then enter the name of a
variable in the dialog box.

All the elementsof structuresand up to 5000 array elementsaredisplayed. You can
control the array elements displayed by entering an array sub-expression in the
Variable=> Show dialog box.

Monitoring a Variable

Another way to examine variablesis with the Variable=>M onitor function. This
method uses awindow called the Monitor window in which the values of selected
variables are displayed. Whenever program execution stops (e.g., with a
breakpoint, or after a Step or Skip), these values are updated.

To monitor avariable, double click on the variable’'s name and select
Variable=>Monitor. Alternatively, you can select Variable=>M onitor first, and
then enter the name of avariable in the dialog box.

284

PV-WAVE Programmer’s Guide

='| Monitor Yariables |u |I:|

BRRAT :
1] 1 b K] 4 5 [T a
E] 10 11 1z 13 14 15 16 17
13 13 20 a1 a2z a3 24 a5 26
a7]] a0 a1 3z k] 34 35
36 37 kL] K] 40 41 42 43 44
45 46 47 43 49 50 51 52 53
54 55 =1 57 58 50 &0 61 [
63 [65 66 &7 1]] Ta T1
T2 T3 T4 75 76 T7 T4 [E] an
a1 az a3 a4 a5 a6 a7 as ag
an 91 9z 93 94 95 96 a7 EL]
EE]
AVERAGE : 495000

Print Save Find... Dismiss B

Figure 13-4 The Monitor window displays user variables.

The way in which variables in the Monitor window are displayed (i.e., using
highlighting and relief), depends on the status of the variable, as follows:

Variablesthat have changed sincethelast program interruption and are defined
within the current procedure are highlighted and shown with sunkenrelief (i.e.,
they appear pushed in).

Variables that are defined within the current procedure that have not changed
are shown with sunken relief.

Variables that are undefined in the current procedure are not highlighted.

All the elements of structures and up to 5000 array elements are displayed in the
Monitor window. You can control the array elements displayed by entering sub-
array expressionsin the Variable=>M onitor dialog box.

Listing Variables and Structures

Several additional functions on the Variable menu let you list al user-defined and
system variables, and structures. These functionswork exactly like the PV-WAVE

285

INFO command when called with its particular keywords. For example, the
Variables=>List Structures function works just like the PV-WAV E command:

INFO, /Structures

The output from these commands appears in the Output window. The INFO
command is discussed in the PV-WAVE Reference.

Obtaining Session Information
The functions on the Info menu let you display information on the current
Debugger session.

The functions on this menu work exactly like the PV-WAV E INFO command when
called with its particular keywords. For example, the I nfo=>Files function works
just like the PV-WAV E command:

INFO, /Files

The requested information appears in the Output window. The INFO command is
discussed in the PV-WAVE Reference.

Customizing the Debugger

Use the functions on the Options menu to customize appearance of the Debugger
window, how Debugger output is displayed, the editor you prefer to use, and key
bindings. You can control the amount of text that the “undo buffer” holds, which
affects how many commands can be “undone” and “redone” with the Edit=>Undo
and Edit=>Redo commands.

For detailed information on each of the functionson the Option menu, refer to their
description in the Debugger’s online help system.

286 PV-WAVE Programmer’s Guide

Creating an OPI Option

Introduction

This chapter is for developers who want to create optional modules that can be
loaded explicitly by any PV-WAVE user. These optional modules can bewrittenin
C or FORTRAN, and can contain new system functions or other primitives.

NOTE FORTRAN connectivity is not available for Windows.

The primary goals of the Option Programming Interface (OPI) are:

Release Independence Options can be released independently of PV-WAVE.

Extensibility New Options do not require changes to be made to the
PV-WAVE kernel.

Centralized Licensing Cdllsto the license manager are transparent to the
Option developer and are centralized.

Option Manageability =~ The user can easily configure an Option, load it,
unload it, and manage it.

Performance Performance of routines developed with OPl com-
pares well with that of regular PV-WAV E system rou-
tines.

Hardware Independence Options run on all supported platforms.

287

Managing Options

Thefollowing PV-WAV E routines are used to explicitly manage Options devel oped
with OPI.

« LOAD_OPTION — Explicitly loads a module created as an Option to PV-
WAVE.

+ UNLOAD_OPTION — Explicitly unloads an Option module.

« SHOW_OPTIONS — Liststhe loaded Options and their associated functions
and procedures.

Loading and Unloading an Option

Assume that you have created a simple Option module that contains the functions
« PLUS TWO

e PLUS THREE

and the procedures
« ADD_TWO
« ADD_THREE
« ADD_FOUR

The Optionis called SAMPLE, and thisisthe version 1.0 of SAMPLE.

In PV-WAVE, the functions and procedures of SAMPLE are not yet available,
because the Option has not yet been loaded. As expected, the SHOW_OPTIONS
procedure returns nothing:

WAVE> SHOW_OPTIONS, /Function, /Procedure

WAVE >

However, once you load the SAMPLE module, the functions are available. Here,
theLOAD_OPTION procedureisusedto explicitly load the Option SAMPLE, and

now the SHOW_OPTIONS procedurereturnsalist of thefunctionsand procedures
of SAMPLE:

WAVE> LOAD_OPTION, ’'SAMPLE’

WAVE> SHOW_OPTIONS, /Function, /Procedure

% Option: SAMPLE 1.000000

% Functions:

% PLUS_THREE

288

PV-WAVE Programmer’s Guide

% PLUS_TWO

% Procedures:

% ADD_FOUR

% ADD_THREE

% ADD_TWO

The functions and procedures of SAMPLE are ready for use at the command line:
WAVE> p = 10

WAVE> ADD_ THREE, p

WAVE> PRINT, p, PLUS THREE (p)

13 16

Now, the UNLOAD_OPTION procedureisused to unload SAMPLE. Whenthisis

done, the functions and procedures of SAMPLE are no longer available at the
command line;

WAVE> UNLOAD_ OPTION, ! SAMPLE’

WAVE> PRINT, PLUS_THREE(p)

% Variable is undefined: PLUS_THREE.

% Execution halted at SMAINS .

Asyou can see, the user has control over when the Option is loaded and unl oaded.

For detailed information on the routines LOAD_OPTION, UNLOAD_OPTION,
and SHOW_OPTIONS, see the PV-WAVE Reference.

The Developer Environment

The Directory Structure

The developer must be able to develop Options for UNIX, OpenVMS, Windows
NT, and other platforms that support explicit loading.

To facilitate this goal, we recommend that for each Option the devel oper set up a
directory structure containing some common files and some operating system spe-
cificfiles.

NOTE The Option directory structure must belocated inthe VNI _DIR directory.
Thisisthe main directory where all Visual Numerics products are installed.

The directory structure of an Option called SAMPLE is shown in Figure 14-1.

289

sample-1 0

src bin 1lib

bin.hps700 bin.sun4 bin.i386nt bin.xxxx

Figure 14-1 The Option directory structure for an Option called SAMPLE.

Makefiles

M akefiles can be set to be platform dependent, so that building the shared libraries
isdone according to the operating system specific flagsand includefiles. We advise
you to place them under the Option main directory, here sample-1_ 0.

The bin Directory

The name SAMPLE is used by the LOAD_OPTION command to choose the
appropriate shared library. The shared libraries are located in the bin directory:

sample-1 0/bin/bin.hps700
sample-1 0/bin/bin.sun4

sample-1 0\bin\bin.i386nt

The src Directory

Thedirectory sample-1 0/src contains the source code for the Option.

The lib Directory

If an Option requires PV-WAVE code (for example, for keyword processing), it
should be located in the 1ib subdirectory.

290

PV-WAVE Programmer’s Guide

Main Directory Requirements

NOTE You must place the Option directory in the main Visual Numerics direc-
tory. Thisisthe main directory where your Visual Numerics products are installed.

The main Option directory must be named according to the following naming con-
vention. The directory name is used to locate the Option.

<OptionName> -<Version> <Release>

<Option_Name> The name of the Option.
<\ersion> The major version number of the Option.

<Release> The minor version number of the Option.

For the example Option described in this chapter, the main directory nameis sam-
ple-1_0.

Required Files
Under the main Option directory, you must have the files:
bin/bin.<platform_name>

where the platform names are the same as the platform names used for the main
PV-WAVE executable.

For example, bin/bin.hps700 ofbin/bin.i386nt.

NOTE For OpenVMS platforms, the underscore (L) must be used instead of the
dot (.) in the platform subdirectory (for example [.bin.bin axpvms], or
[.bin.bin vaxvms]).

Assume that you are building an Option that will run under HP-UX and SunOS.
The required directory structure for the Option is shown in Figure 14-2.

291

sample-1 0

src bin lib

bin.hps700 bin.sun4
option routines.sl option routines.so
option_table.sl option table.so

Figure 14-2 The directory structure needed to run the Option, including the shared library
files.

The shared library files:

option routines.xx

option table.xx

are explicitly loaded when the LOAD_OPTION command is invoked.

* option table.xx— ContainsaPV-WAVE kernel table that describesthe
content of the Option: the number of functions, the number of procedures, the
feature and version for thelicense manager, the names of the functions, and the
names of the procedures.

In this particular example (the Option called SAMPLE), thefile
option_ table.xx returnsthefact that this Option hasthree functionsand
two procedures, named respectively:

PLUS TWO (function)
PLUS THREE (function)
PLUS FOUR (function)
ADD_TWO (procedure)
ADD_THREE (procedure)

292

PV-WAVE Programmer’s Guide

* option routines.xx— Containstheactua codefor thethesefunctions
and procedures. This code contains OPI wrapper callsthat implement the func-
tions and procedures of the module.

The filename extension for the shared library filesis operating system dependent.
The following table lists the filename extensions for the operating systems that
Visua Numerics supports:

Operating System Shared Library Filename Extension
HP-UX .sl

SunOS .s0

Solaris .80

SGl .80

Digital UNIX .80

AlX .s0

NT .dll

OpenVMS .exe

NOTE AIX requiresthat thefileoption table.o beplacedinthebin/
bin.rs6000/object directory.

Option Example

This section presents an example of an Option and describesthe flow of control and
data through the different components associated with the Option.

This example does not present all of the OPI features available to an Option devel-
oper. The exampleis based on the IMSL C/Stat/Library normality test
function as it might be implemented with OPI.

The user enters the following at the PV-WAVE command line;

x = SIN(DINDGEN(1000))

norm = IMSLS NORMALITY TEST(x, /Double)

IMSLS NORMALITY_TEST isaPV-WAVE Option function (contained in a
.pro file). The purpose of thisfunction isto prepare parametersfor the PV-WAV E

293

Option system functionsfor thisIMSL C/Stat/Library function. The Option system
functions are named:

OPT_FLOAT_IMSLS NORMALITY_TEST, and

OPT_DOUBLE_IMSLS NORMALITY_TEST

IMSLS NORMALITY_TEST checks the keyword parameters, makes sure the
positional parameters are the correct type and, in this case, cals:
value = OPT DOUBLE IMSLS NORMALITY TEST(x, $

n_observations)
Up until this point the data and control flows have been identical to past versions
of PV-WAVE. At this point the PV-WAVE kernel will convert thelist of PV-WAVE
variablespassed to OPT_DOUBLE_IMSLS NORMALITY_TEST toalist of PV-
WAVE variable handles (WVH).

Inside of OPT_DOUBLE_IMSLS NORMALITY_TEST, PV-WAVE variable
handles (WVH) and PV-WAVE structure definition handles (WSDH) are used by
the OPI C or FORTRAN functions to access PV-WAV E variables and PV-WAV E
structure definitions.

In the exampl e, the function definition for
OPT_DOUBLE_IMSLS NORMALITY_TEST isasfollows:

WVH opt double imsls normality test (int argc, WVH *argv) ;
When OPT_DOUBLE_IMSLS NORMALITY_TEST iscalledintheexamplethe
parameters will have the following values:
argc =2;
WVH *argv = {
<WVH for the WAVE variable "x">,

<WVH for the WAVE variable ”"n observations”>

The following assignment statements will get a C pointer to the data associated
with the first two PV-WAVE handles:

x = (double *) wvh dataptr(argv[0]);

n observations =
(int *) wvh dataptr(argv[1l]);

These pointers arethen passed tothe imsls d normality test functionin
the C/Stat library. The return value from this function is a scalar double. For the
purpose of the example the variable name of the return value will be result.

result = imsls d normality test(n observations, x);

294

PV-WAVE Programmer’s Guide

To return result to the PV-WAVE kernel the Option must create an unnamed PV-
WAVE variable, assign result to this variable, then return the unnamed variable's
WVH. The following functions accomplish this task:

status = wave get unWVH(return value) ;

status = wave_assign_num(return_value,
TYP_DOUBLE, 0, NULL, (char ¥)
result, FALSE) ;

return (return value) ;

At this point control returnsto the IMSLS NORMALITY_TEST PV-WAVE
Option function. The unnamed variable, with the WV H name return_value, has
been assigned to the PV-WAVE variable value.

IMSLS NORMALITY_TEST now returns value to the original assignment state-
ment, as entered at the PV-WAV E command line;

norm = IMSLS NORMALITY TEST (x, /Double)

Creating An Option

The Option developer must create two shared abjects. Thefirst isthe Option Table,
which contains information regarding the number of functions, the number of pro-
cedures, the names of the functions and the names of the procedures and thefeature
name and version. The second shared object contains the actual code for the rou-
tines described in the Option Table.

Option development consists of the following steps:

» Createanew Option directory structure. Thiscan be done using atemplate that
Visua Numerics has provided.

* Modify the template files for the new Option
» Develop the Option code

» Definethe Option table

* Build the new Option

e Test the new Option

Step 1: Create a New Option Directory Structure

To begin, copy the option-templates directory treein the main Visual
Numerics directory (the directory to which the VNI _DIR environment variable/

295

logical points). Give the new directory aname that follows the naming convention
outlined in the section Main Directory Requirements on page 291.

For example, to create the new Option directory treefor the SAMPLE Option, enter
the commands shown at the system prompt:

UNIX

% cd $VNI_DIR
% cp -r option-templates sample-1_0

OpenVMS

$ SET DEF VNI _DIR
$ CREATE/DIRECTORY [.SAMPLE-1 0]
$ COPY [.OPTION-TEMPLATES...]*.* [SAMPLE-1 0...]

Windows

> cd %VNI_DIRS

> xcopy option-templates sample-1 0

The new Option directory structure contains a number of files needed to build the
Option. Some of these files must be modified for the new Option. The procedure
for modifying the template filesis described in the next step. The following tables
list the files that were copied from the template directory tree:

UNIX Platform Files

Files Used for:

Makefile Controls the building of an Option.

buildmachine Defines a build machine for agiven UNIX
platform.

init.mkinc Common macros, variables for Makefile.

src/Makefile Controls the building of the sourcefiles.

src/option info.h The Option definition template.

src/option table.c The Option Table definition.

src/option routines.c The Option user routines template.

src/option rs6000.exp The exported symbols for the Option Table
(AIX only).

296 PV-WAVE Programmer’s Guide

Files

Used for:

src/option rs6000.1imp

src/depend.mkinc

src/flags.mkinc

src/axposf.mkecfg

src/hps700.mkcfg

src/rs6000.mkcfg

src/sgi.mkefg

src/solaris.mkcfg

src/sun4 .mkcfg

The imported symbols for the Option (AIX
only).

Dependencies target for make.

Defines cc, 14 flags based on platform.
Digital Alpha specific make flags.
HP-UX specific make flags.
RS6000/AIX specific make flags.
SGI/IRIX specific make flags.
SPARC/Solaris specific make flags.
SPARC/SunOS specific make flags.

bin/Makefile Controls the building of the Option shareable
libraries.

lib/Makefile Controls the compilation of the PV-WAVE
procedures.

OpenVMS Platform Files

Files Used for:

build.com

[
[

[.

.srclbuild.com

.srcloption_info.h

srcloption table.c

.srcloption routines.c

.srcltable transfer.mar

.srcloption transfer.mar

.bin]link.com

.bin]loption table.opt

Controls the building of an Option.
Controls the building of the sourcefiles.
The Option definition template.

The Option Table definition.

The Option user routines templ ate.

Transfer vectors for the Option Table
(VAX only).

Transfer vectors for the Option (VAX
only).

Controlsthe building of the Option share-
ablelibraries.

Linker option file for the Option Table
(VAX only).

297

Files Used for:

[.bin]option_table alpha.opt Linker option filefor the Option Table
(Digital Alphaonly).

[.bin]options.opt Linker option file for the Option (VAX
only).

[.bin]loptions_alpha.opt Linker option file for the Option (Digital
Alphaonly).

Windows Platform Files

Files Used for:

makefile.nt Controls the building of an Option.

src\makefile.nt Controls the building of the sourcefiles.

src\option info.h The Option definition template.

src\option table.c The Option Table definition.

src\option routines.c The Option user routines template.

src\option table.def The module definition file for the Option
Table.

src\option routines.def The module definition file for the Option.

Step 2: Modify the Template Files

Next you need to modify some of thefilesthat were copied from the template direc-
tory. In general, you will change generic names given in the template files to the
name of your Option. Thefollowing tableslist thefilesthat you need to modify and
tell you exactly what modifications to make to each file.

UNIX Platform Files to Modify

Files M odification

Makefile Change the ROOTNAME variable to the name
of your Option directory.

buildmachine Define a build machine for the supported
platform(s).

298

PV-WAVE Programmer’s Guide

Files M odification

init.mkinc Change the ROOTNAME variable to the name
of your Option directory.

src/Makefile Change the ROOTNAME variable to the name
of your Option directory.

src/option info.h Seethe section Step 4: Define the New Option
Table on page 301.

src/option_routines.c See the section Step 3: Develop the Option
Code on page 300.

src/option rs6000.1imp Add (or delete) the IMPORTed PV-WAVE
routines used in your Option (AIX only).

bin/Makefile Change the ROOTNAME variable to the name
of your Option directory.
lib/Makefile Change the ROOTNAME variable to the name

of your Option directory.

OpenVMS Platform Files to Modify

Files M odification
[.srcloption_info.h See the section Step 4: Define the New
Option Table on page 301.

[.srcloption_routines.c See the section Step 3: Develop the Option
Code on page 300.

[.src]loption_transfer.mar Definethe transfer vectors for the Option
routines (VAX only).

[.bin] link.com Changethe Option_Name variable to define
the name of the Option shareable libraries.

[.bin] options.opt Overridethe default PSECT attribute setting
for global variables (if needed).

[.bin]options_alpha.opt Define the symbol vectors for the Option
routines (Digital Alphaonly).

299

Windows Platform Files to Modify

Files M odification

makefile.nt Change the ROOTNAME variable to the
name of your Option directory.

src\makefile.nt Change the ROOTNAME variable to the
name of your Option directory.

src\option info.h See the section Step 4: Define the New
Option Table on page 301.

src\option routines.c See the section Sep 3: Develop the
Option Code on page 300.

src\option routines.def Define the EXPORTed Option routines,

and the IMPORTed PV-WAVE routines
used in your Option.

Step 3: Develop the Option Code

Thetemplatefileoption routines.c isavailablefor developing the Option
proceduresin C. If you have alimited number of Option routineswritteninC, itis
recommended that you place them inthe option routines.c file

If you want to split your Option routines into several separate files, you have to
modify the appropriate build files:

(UNIX) src/Makefile
(OpenVMS) [.SRC]BUILD.COM

(Windows) src\makefile.nt

NOTE Windows platformsrequire the L.ibMain function to be defined in one of
the files containing the Option routine code.

NOTE AIX/RS6000 platformsrequirealist of the Option procedures and/or func-
tionsto be defined inthe set _sys table function defined in the

option routines.c file(for details, refer directly to thefile src/
option_ routines.c).

If PV-WAVE procedure files are part of your Option, they should be placed in the
1ib subdirectory. That is because PV-WAVE automatically appends all option

directories |located in the directory pointed to by the VNI DIR environment vari-
able/logical and that contain the subdirectory 1ib tothe!Path system variable. The

300

PV-WAVE Programmer’s Guide

template Makefile isavailablein the 1ib subdirectory to create PV-WAVE
compiled files (. cpr) from PV-WAVE procedure files.

Step 4: Define the New Option Table

The Option Table needs to contain information regarding the number of functions
and procedures in the Option, the names of the functions and proceduresin the
Option, the feature name, and version of the Option.

Thisinformation must be entered into atemplatefile, option info.h, located
in src subdirectory. Just open thisfile and fill in the required information as indi-
cated in the comments. Here is a sample of the file with some additional notes:

/* Option Feature Identifier: Place the string between the double
quotes.

NOTE Leave this string blank for unlicensed options.

*/
static char featurel] = "";

/* Option Version Identifier: Replace the 0.0 with the option’s
version

*/
static double version = 0.0;
/* Option Functions: Enter the number of option functions and the

option function names below. Enter one name per string in the
"function names” array.

NOTE Function names must be in upper case and listed in alphabetical order.

*/
static int nm_ functions = 0;
static char * function names[] = {

/* Option Procedures: Enter the number of option procedures and the

option procedure names below. Enter one name per string in the
"procedure names” array.

NOTE Procedure names must bein upper case and listed in aphabetical order.

*/
static int nm procedures = 0;
static char * procedure names[] = {

}i

301

Step 5: Build the New Option

The procedure for building an Option, as explained in this section, is platform
dependent.

To build the Option shareable libraries for UNIX platforms use:
$ cd $vNI_DIR/<Option_Dir_Name>
% gmake all TARGARCH = ’<platformname>-

Thelog fileBuildLog. <platform> contains the results of the build.

NOTE The UNIX Makefiles are written for gmake, the FSF GNU version of
make.

To build the Option shareable libraries for OpenVMS platforms use:
$ SET DEFAULT VNI DIR: [<my option top dir>]
S @BUILD

To build the Option shareable libraries for Windows platforms use:
7:\VNI> cd <Option_Dir_Name>
$ nmake all -f makefile.nt

NOTE Theenvironment variables/logicallSVNI_DIR andWAVE DIR must beset
before building the Option. Refer to the PV-WAVE User’s Guide if you any ques-
tions about these variables.

Step 6: Test the New Option

Place the tests written for the new Option inatest subdirectory.

Keyword Processing

A new Option may require the creation of some PV-WAV E procedure files to han-
dle keyword processing.

The C or FORTRAN compiled code for Options will not support keyword param-
eters; however, handling keywords in an Option can be managed with PV-WAVE
procedure files. The PV-WAV E |anguage provides functions to check keyword
parameters and easily convert parameters from one data type to another.

Place any . pro files associated with an Option in the 1ib subdirectory.

302

PV-WAVE Programmer’s Guide

License Management

NOTE License Management support is available only for internal Visual Numer-
icsand for explicitly licensed third party development.

The information that allows for the unlocking of an Option should be protected
from the user. The user should not be able to use an Option license to unlock
another Option.

A license seat must be checked out in order for an Option function to be accessible
to the user; however, to compile, or load the functionsin PV-WAVE, alicense seat
is not necessary. In that sense, checking out seats is independent from the loading
for an Option.

The name of the Option as specified in the LOAD_OPTION PV-WAV E command
isused asthelicense feature name of the Option, and must match the feature name
of the Option in the license file.

Adding an Option to the PV-WAVE Search Path

The 1ib subdirectory of any properly named and located Option directory is auto-
matically appended to the ! Path and ! Option_Path system variables. This allows
direct accessto the PV-WAV E proceduresin the Option using PV-WAV E’s|oading
mechanism.

The PV-WAVE system variable ! Option_Path must be set to point to specific
Option(s). The !Option_Path system variable is used to locate the Option(s) share-
able executable when an Option is loaded using the PV-WAVE LOAD_OPTION
procedure.

NOTE Multiple versions of an Option are not supported. If multiple directories
with the same Option name are found in the directory pointed to by the VNI DIR
environment variable/logical, the Option with the highest version number is
appended to the Path and !Option_Path system variables.

303

Variable Handling Examples

This section lists example files that show how to use variable handling functions.
These files are located in:

(UNIX) $VNI DIR/wave/demo/interapp/opi
(OpenVMS) VNI DIR: [WAVE.DEMO.INTERAPP.OPI]

(Windows) %VNI_ DIR%\wave\demo\interapp\win32\opi

For UNIX Only

For UNIX Only

File Description

opiforunix4.f Example FORTRAN module that illustrates how to

use the FORTRAN OPI to PV-WAVE variables on
UNIX platforms with 4-byte long integers only.

opiforunix8g.f Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
UNIX platforms with 8-byte long integers only.

opiforunix.build C-shell script to compile and link opiforunix4.f
into a sharable object module that can be called from
PV-WAVE viathe LINKNLOAD command.

opiforunix.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the
FORTRAN functionsin opiforunix. f.

opiforunix.export List of symbolsexported by opiforunix4. £,
required by 1d on Silicon Graphics platforms only.

opicunix.build C-shell script to compileand link opicunix.cintoa
sharabl e abject modul e that can be called from PV-
WAVE viathe LINKNLOAD command.

opicunix.c Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on UNIX plat-
forms.

opicunix.export List of symbols exported by opicunix.c, required

by 14 on Silicon Graphics platforms only.

opicunix.pro PV-WAV E procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to cal the C
functionsin opicunix. f.

304

PV-WAVE Programmer’s Guide

For UNIX Only (Continued)

File Description

cwavec_unix.build C-shell script to compileand link an example of using
the OPI functions from an application that uses PV-
WAVE's cwavec functionality.

cwavec unix.c Example C module that uses PV-WAVE's cwavec
functionality. This C module also calls the functions
in opicunix.c and shows that the same OPI func-
tionsthat are used viaLINKNLOAD in the opi*
examples can also be used from a cwavec applica
tion.

For VAX OpenVMS Only

For VAX OpenVMS Only
File Description
opiforvaxvms.f Example FORTRAN module that illustrates how to

use the FORTRAN OPI to PV-WAVE variables on
VAX OpenVMS platforms only.

opiforvaxvms.com DCL scriptto compileand link opiforvaxms . £ into
a sharable object module that can be called from PV-
WAVE viathe LINKNLOAD command.

opiforvaxvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the FOR-
TRAN functionsin opiforvaxvms. f

opicvaxvms.c Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on VAX
OpenVMS platforms only.

opicvaxvms.com DCL script to compile and link opicvaxms.c intoa

sharabl e abject module that can be called from PV-
WAVE viathe LINKNLOAD command.

opicvaxvms.pro PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call theC

functionsin opicvaxvms.c.

setup.com DCL script to assign logicals used by
opiforvaxvms.pro and opicvaxvms.pro.

cwavec_vaxvms.com DCL script to compile and link an example of using
the OPI functions from an application that uses PV-
WAVE's cwavec functionality.

305

For Digital Alpha OpenVMS Only

For Digital Alpha OpenVMS Only

File

Description

opiforaxpvms. £t

opiforaxpvms.com

opiforaxpvms.pro

opicaxpvms.com

opilcaxpvms.pro

setup.com

cwavec_axpvms.com

Example FORTRAN module that illustrates how to
use the FORTRAN OPI to PV-WAVE variables on
Digital Alpha OpenVMS platforms only.

DCL script to compileand link opiforaxpms . £ into
a sharable object module that can be called from PV-
WAVE viathe LINKNLOAD command.

PV-WAV E procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to cal the
FORTRAN functionsin opiforaxpvms. f.

DCL script to compile and link opicunix.cintoa
sharabl e abject modul e that can be called from PV-
WAVE viathe LINKNLOAD command.

PV-WAVE procedure that illustrates how to use the
PV-WAVE LINKNLOAD command to call the C
functionsin opicunix.c.

DCL script to assign logicals used by

opiforaxpvms.pro and opicaxpvms.pro

DCL script to compile and link an example of using
the OPI functions from an application that uses PV-
WAVE's cwavec functionality.

For Windows Only

For Windows Only
File

Description

opicwin32.def

opicwin32.c

opicwin32.pro

Module definition file that declares symbolsthat are
exported by the DLL.

Example C module that illustrates how to use the C
OPI to access PV-WAVE variables on Win32 plat-
forms.

PV-WAV E procedure that illustrates how to use the
LINKNLOAD command to call the C functionsin
opicwin32.dl1.

306

PV-WAVE Programmer’s Guide

For Windows Only (Continued)

File Description

cwavec unix.c Example C module that uses PV-WAVE'S cwavec
functionality. This C module also callsthe functions
in opicwin32.c and shows that the same OPI
functions that are used viaLINKNLOAD in the
opi* examples can also be used from a cwavec
application.

NOTE FORTRAN connectivity is not available for Windows.

Files That Are Not Platform-specific

Files That Are Not Platform-specific

File Description
opi_c_devel.h Includefile for C applications using OPI for C.
opi f devel.h (UNIX and OpenVMS only) Equivalent of

opi_c_devel.h but for FORTRAN.

Option Programming Interface Language Bindings

This section presents an overview of the architecture of an OPI style Option and
describes the C and FORTRAN application programming interfaces for OPI style
Options. For both C and FORTRAN, this section discusses the background, data
types, and OPI functions used to manipulate PV-WAV E variables and structures
from an Option.

NOTE FORTRAN connectivity is not available for Windows.

OPI Variable Handling

OPI consists of C and FORTRAN callable functions that can be used to:
» get information about existing PV-WAVE variables

» create new PV-WAVE variables

* modify existing PV-WAVE variables

307

» alow existing PV-WAVE variables to be used as parametersto other PV-
WAVE functionality

These functions can be called from user-written programs, and may be used in con-
junction with cwavec, cwavefor, or the PV-WAVE LINKNLOAD command.
These functions makeit easier for user-written code to access PV-WAVE variables
and use other PV-WAVE functionality.

NOTE OPI variable handling functions are designed to be used with OPI options;
however, these functions can be used in any code that calls PV-WAVE (e.g., via
cwavec or cwavefor) and in code called from PV-WAVE (e.g., via
LINKNLOAD).

Use of Opaque Handles

OPI makes use of opague handlesfor elementsin the PV-WAVE internal code that
remain hidden from the Option developer. This makes it possible for Visual
Numericsto change the underlying implementation in the future without breaking
thisinterface definition. The following abbreviations are used for these handles:

* WVH — PV-WAVE variable handle. This handle gives Option developers
access to everything they need to know about a PV-WAVE variable.

* WSDH — PV-WAVE structure definition handle. Thishandle givesthe Option
developer accessto all elements of a PV-WAVE structure definition.

NOTE WSDH isnot a PV-WAVE variable of structure type. Structure definitions
exist independently of PV-WAVE variables.

CAUTION Theroutines described later in this chapter have been implemented as
functions that return a value indicating the success or failure of the function call.
The possible return values and their meanings are described for each function. It is
extremely important that any code using these functions looks at the returned val -
ues and takes the appropriate action. Ignoring the returned value and continuing to
execute after an error condition has occurred can result in memory trashing and PV-
WAVE crashes. Ignoring return values that indicate other PV-WAVE states can
result in incorrect PV-WAV E behavior.

308

PV-WAVE Programmer’s Guide

FORTRAN Variable Handling

NOTE FORTRAN connectivity is not available for Windows.

The FORTRAN-callable OPI functions are actually written in C and are part of the
PV-WAV E code base. Basically, these functionstake care of all parameter passing
differences between C and FORTRAN and then call one of the C-callable OPI
functions.

There is not an exact one-to-one correspondence between C-callable and FOR-
TRAN-callable functions due to basic language differences. However, thereis no
functionality missing from the FORTRAN-callable interface.

All FORTRAN-callable functions have names beginning with LF . Their C-call-
able equivalent has the same name but without the LF _ prefix.

Passing and returning string values is the biggest difference between FORTRAN
and C. Whilethe C-callablefunctions can return string val ues, the FORTRAN-cal |-
able functions must pass a string argument which will be filled in with the string
value that would be returned by the equivalent C-callable function.

In all the following function descriptions where one or more of the argumentsisa
string, the string argument is shown to be declared as a CHARACTER*31 FOR-
TRAN type. The maximum length of a PV-WAVE variable or structure definition
nameis 31 characters. However, for each string argument passed, FORTRAN also
passes the size of the string argument. When filling in astring argument for return
to the calling function, these PV-WAVE functions will not “overfill” the string.

For example, if you passa CHARACTER* 10 asthe string argument to befilled by
the LF_WVH_NAME function and the PV-WAVE variable name is longer than 10
characters, youwill get only thefirst 10 characters of the PV-WAVE variable name.
Also, if you pass a CHARACTER*10 variable as the string argument to the

LF _WSDH_OFFSET function, the LF. WSDH_OFFSET function still works as
expected.

Digital Alpha Digital UNIX FORTRAN Specifics

All the FORTRAN-callable functions are names begin with LF_ because they
return long integer values. On al OpenVMS and UNIX platforms except Digital
Alpha Digital UNIX, along integer in Cis equivalent to an INTEGER*4 in FOR-
TRAN. For Digital AlphaDigital UNIX, alonginteger in C isequivalent to an
INTEGER*8 in FORTRAN.

309

NOTE All INTEGER*4 function and parameter declarations must be changed to
INTEGER*8 for use on Digital AlphaDigital UNIX platforms.

OpenVMS FORTRAN Specifics

On OpenVMS, differences with string arguments are further confused by the use
of string descriptorsin OpenVMS. Therefore, each FORTRAN-callable function
that passes one or more string arguments has yet another version of the function on
OpenVMS. Functions whose names begin with LFD _ are used designed for use
under OpenVMS and are the equivalent of LF__ functions, except that string
descriptors are passed instead of string pointers.

Include Files

Thefileopi devel.hisaC include file containing #def ine macros,
typedef’'sand extern declarations needed by the OPI functions. Just
#include thisin your program.

Thefileopi £ devel.hlistssFORTRAN type declarationsand PARAMETER
statements needed by the FORTRAN OPI functions. Copy the needed statements
from thisfile into your program.

These files are located in:
(UNIX) SVNI _DIR/wave/src/priv
(OpenVMS) VNI_DIR [WAVE.SRC.PRIV]

(Windows) %$vni dir%\wave\src\priv

Examples

For examples showing the use of these functions, seethefilesin:
(UNIX) $VNI DIR/wave/demo/interapp/opi
(OpenVMS) VNI DIR: [WAVE.DEMO.INTERAPP.OPI]

(Windows) %vni_ dir%\wave\demo\interapp\win32\opi

310

PV-WAVE Programmer’s Guide

OPI Function Definitions for PV-WAVE Variables

Summary

wave_execute (page 313)
Executes a PV=WAVE command.

wave_compile (page 314)
Compiles a PV=WAVE command.

wave_interp (page 316)
Executes a compiled PV=WAVE command.

wave free WCH (page 317)
Frees the compiled PV=WAVE command.

wave _assign_num, wave_assign_string, wave _assign_num (page 317)
Assigns data to an existing PV=WAVE variable.

wave _get WVH (page 321)
Gets a PV=WAVE variable handle for an existing named PV=WAVE variable.

wave get unWVH (page 322)
Creates an unnamed PV=WAVE variable and returns its PV=WAVE variable handle.

wave free WVH (page 323)

Frees memory associated with a PV=WAVE variable handle.

wvh_name (page 324)
Returns the variable name of a PV=WAVE variable handle.

wvh_type (page 326)
Returns the variable type of a PV=WAVE variable handle.

wvh_ndims (page 327)

Returns the number of dimensions in a PV=WAVE variable.

wvh_nelems (page 328)
Returns the number of elements in a PV=WAVE variable.

wvh_dimensions (page 329)
Returns the number of dimensions and the size of each dimension.

wvh_sizeofdata (page 330)

Returns the size in bytes of the data area of a PV=WAVE variable.
wave_type_sizeof (page 330)

Returns the size in bytes associated with a PV=WAVE variable type.

311

wvh_is scalar (page 332)
Tests if a PV=WAVE variable is a scalar not an array.

wvh_is constant (page 333)
Tests if a PV=WAVE variable is a constant.

wvh_dataptr (page 334)

Returns a pointer to the data area of a PV=WAVE variable.

wave wsdh_from_wvh (page 335)
Returns a PV=WAVE structure definition handle for a PV=WAVE structure variable.

wave wsdh_from_name (page 336)

Returns a PV=WAVE structure definition handle given the name of a PV=WAVE struc-
ture variable.

wave_free WSDH (page 337)

Frees space associated with a PV=WAVE structure definition handle when it is no
longer needed.

wsdh_name (page 338)

Gets the structure name.

wsdh_ntags (page 339)

Gets the number of tags in a structure.

wsdh_tagname (page 339)

Gets the name of a structure tag.

wsdh_sizeofdata (page 341)
Gets the size of data area associated with a structure.

wsdh_offset (page 341)

Gets the byte offset of the data area for a named tag in a structure.

wsdh_element (page 342)

Creates a PV=WAVE variable handle for a tag in a structure.

wave_error (page 346)
Reports an error condition for the Option to PV=WAVE.

wave_onerror (page 348)
Sets the value of PV=WAVE error action.

wave_is _onerror (page 349)
Returns the current value of PV=WAVE error action.

wave_onerror_continue (page 349)
Sets the value of PV=WAVE error continue flag of the ON_ERROR condition.

312

PV-WAVE Programmer’s Guide

wave_is onerror_continue (page 350)
Returns the current value of PV=WAVE error continue flag of the ON_ERROR
condition.

opi_malloc, opi_free, opi_realloc, opi_calloc (page 344)
Provide memory allocation for OPIs.

wave execute
Executes a PV-WAV E command.

C Usage
long wave execute(any wave _cmd)

char *any wave cmd,;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_EXECUTE(any_wave _cmd)
CHARACTER*(*) any_wave_cmd

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WAVE_EXECUTE(any_wave_cmd)

Input Parameters

any wave_cmd — A string containing a PV-WAV E command to be executed.

Returned Status Codes
OPI_ SUCCESS — Successful.
OPI_FAILURE — Errorsoccurred but execution can continue.

OPI DO _NOT PROCEED — Errorsoccurred: cease execution. The calling C-
code should doitscleaning up (freemalloc’sspace, free handles, etc.) and return
toitscaler immediately.

313

In either of the error cases, PV-WAV E has already doneitsnormal error processing
which includes printing a message and setting the appropriate system variables.

Discussion

Thewave execute function takesthe string argument it is given and treatsit as
aPV-WAVE statement. The statement will be compiled and interpreted asif it were
the argument to a PV-WAVE EXECUTE function at the current interpreter
position.

The purpose of this function is to give your C function the ability to use all PV-
WAVE functionality from C code without having to write a separate interface to
every piece of PV-WAVE functionality. For example, suppose your C function
needs the transpose of a PV-WAVE variable that was passed as an argument to the
function. If you have access to the PV-WAV E TRANSPOSE function, you do not
have to write your own transpose routine inside the C code of your function.

For example, suppose your code has some related PV-WAVE system variables and
you want to change the value of asystem variable without requiring that the system
variable be an argument to your function. You can usewave execute toassign
anew valueto a PV-WAVE system variable.

NOTE wave execute happensinthe context of the currently active PV-WAV E
procedure or function. It knows about only those variablesthat are in the scope of
the currently active PV-WAV E procedure or function. Between the time

wave execute was caled and when it returns, many PV-WAV E context
changes could have occurred. But when wave execute returns, you are again
in the context of the PV-WAV E procedure or function that was active when

wave execute wascalled.

UNIX USERS |If you usewave execute inacwavec of cwavefor appli-
cation, you must call either cwavec or cwavefor at least onetime before using
wave_execute.

wave_compile

Compiles a PV-WAV E command.

314

PV-WAVE Programmer’s Guide

C Usage

long wave_compile(any_wave_cmd, WCHptr)
char *any_wave_cmd;

WCH *WCHptr;

FORTRAN Usage

Not available,

Input Parameters

any wave_cmd — A string containing a PV-WAV E command to be executed.

Output Parameters
WCHptr — A PV-WAVE handle to the compiled code ready to be executed.

Returned Status Codes
OPI_ SUCCESS — Successful.
OPI_ FAILURE — Errorsoccurred during compilation.

OPI_DO_NOT PROCEED — Errorsoccurred and execution should not continue.
The calling C-code should do its cleaning up (freemalloc’s space, free handles,
etc.) and return to its caller immediately.

In either of the error cases, PV-WAV E has already doneitsnormal error processing
which includes printing a message and setting the appropriate system variables.

Discussion

wave execute compilesthe PV-WAVE statement each timeitiscalled. Thisis
quiteineffectiveif wave execute iscalled several times(e.g., in theloop) with
the same PV-WAVE statement. It is more efficient to compile the PV-WAVE state-
ment once using wave compile, which returns the handle WCHptr. Then
execute the compiled PV-WAVE code pointed to by WCHptr several times using
wave_ interp.

Thewave compile function takesthe string argument itisgiven and treatsit as
aPV-WAVE statement. The statement will be compiled and WCHptr isreturned. If

315

the compilation of the PV-WAVE statement fails, OPI FAILURE isreturned, and
WCHptr is undefined.

wave_interp

Executes a compiled PV-WAV E command.

C Usage
long wave_interp(wch)
WCH wch;

FORTRAN Usage
Not available.

Input Parameters
wch — A PV-WAVE handle to the compiled code that is ready to be executed.

Returned Status Codes
OPI SUCCESS — Successful.
OPI FAILURE — Errorsoccurred but execution can continue.

OPI DO _NOT PROCEED — Errorsoccurred and execution should not continue.
The calling C-code should do its cleaning up (freemalloc’s space, free handles,
etc.) and return to its caller immediately.

In either of the error cases, PV-WAV E hasaready doneitsnormal error processing,
which includes printing a message and setting the appropriate system variables.

Discussion

Thewave interp function executes the PV-WAVE code previously compiled
by wave compile, and pointed to by the wch handle. If the wch handleisnot a
valid handle, OPT FAILURE isreturned. If the execution of the compiled code
fails, OPI_ DO NOT_ PROCEED isreturned.

316

PV-WAVE Programmer’s Guide

wave_free_ WCH
Frees the compiled PV-WAVE command.

C Usage
void wave free WCH(WCHptr)
WCH *WCHptr;

FORTRAN Usage
Not available.

Input Parameters
WCH ptr — A PV-WAVE handle to the compiled code that is ready to be executed.

Discussion

Thewave free WCH function frees the PV-WAVE resource allocated for the
WCH handle that was allocated in wave compile.

wave_assign_num
wave_assign_string
wave_assign_struct

Assigns data to an existing PV-WAVE variable.

C Usage
long wave_assign_num(wave_variable, type, ndims, dims, data, make_copy)
long wave assign_string(wave_variable, ndims, dims, data, make_copy)

long wave _assign_struct(wave variable, ndims, dims, wsdh, data, make_copy)

WVH wave variable;

317

long type;

long ndims;

long dimg/OPI_MAX_ARRAY_DIMS];
long make_copy;

WSDH wsdh;

char *data;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WAVE_ASSIGN_NUM(l_wvh, |_type, |_ndims, |_dims, value)
INTEGER*4 LF_WAVE_ASSIGN_STRING(I_wvh, |_ndims, |_dims, ¢_value)

INTEGER*4 LF_WAVE_ASSIGN_STRUCT(I_wvh, |_ndims, |_dims, |_wsdh,
s value)

INTEGER*41_wvh, |_type, |_ndims, |_wsdh
INTEGER*4|_dims(L_OPI_MAX_ARRAY_DIMS)
INTEGER* 1 value

CHARACTER*(*) c_value

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WAVE_ASSIGN_STRING(I_wvh, |_ndims, |_dims, c_value)

Input Parameters

wave_variable— A PV-WAVE variable handle pointing to the PV-WAVE variable
to assign.

type — The numerical type of the assignment for wave assign num. Must be
oneof theOPI_TYP_ * macros (PARAMETERS) defined in opi_devel.hor
opi f devel.h.

ndims— The number of dimensionsyou want the PV-WAV E variable to have, and
also indicates the number of elementsin dims [1 (the number of elementsusedin

318

PV-WAVE Programmer’s Guide

dims). For example, if ndims is2, thenthefirst 2 elementsof thedimsarray must
contain the dimensions you want the PV-WAVE variable to have.

dims— An array containing the dimensions of the PV-WAVE variable.
data— A pointer to the data you want to assign to the PV-WAVE variable.

Itisdeclared asa(char *) but the argument you pass will more commonly be a
pointer to whatever type of datayou are passing. For the

wave assign_string function, it should be apointer to astring if you are
assigning ascalar string, and it should be a pointer to an array of string pointersif
you are assigning an array of strings.

make_copy — If TRUE, thenwave assign * will makeacopy of the dataarea
for usein the PV-WAVE kernel. If make copy iSFALSE, the PV-WAVE kernel

will use the memory pointed to by data. This means that the memory pointed to by
datamust be free-able by the PV-WAV E kernel and must no longer be used outside
the kernel.

NOTE Dueto limitations of the OpenVM S/VAX operating system, PV-WAV E can
not free a pointer that was malloc’d outside the PV-WAV E address space. There-
fore thewave assign_ * functionsignorethemake copy argument and will
always make a copy of the users data area.

The FORTRAN LF_WAVE ASSIGN * functionswill alwaysmake acopy of the
value argument for usein the PV-WAVE kernel. Due to the dynamic nature of PV-
WAV E variables, PV-WAV E must be able to free the memory associated with a PV-
WAVE variable whenever it needsto. Since FORTRAN does not support dynamic
alocation of memory, the values of FORTRAN variables must be copied into
dynamically-allocated space in PV-WAVE if they are to used as PV-WAVE
variables.

wsdh — ThisisaPV-WAV E structure definition handle. The structure must already
exist in the current PV-WAVE session. Usethewave wsdh from name or
wave wsdh from_ wvh function to get the PV-WAV E structure definition han-
dle of an existing PV-WAVE structure variable.

Returned Status
OPI_SUCCESS — Successful assignment occurred.

OPI_FAILURE —wave_ assign_* considersthe arguments to beinvalid or
inconsistent.

319

OPI DO _NOT PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (freemalloc’s space,
free handles, etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE will have already done its normal error pro-
cessing which includes printing a message and setting the appropriate system
variables.

Discussion

Thewave assign_* functionsare wrappersto the function wave assign.
These wrappers give the Options devel oper access to the PV-WAVE assignment
statement from the C language. These functions can be used to change the type,
dimensions and/or contents of an existing PV-WAV E variable. The PV-WAVE vari-
able to be modified must already exist within the scope of the current PV-WAVE
procedure or function. It can be anamed variablein the currently active PV-WAVE
procedure or function or it can be an unnamed variable. Usethewave get WVH
function to get a PV-WAVE variable handle for a named PV-WAVE variable. Use
thewave get unWVH function to get a PV-WAVE variable handle for an
unnamed PV-WAVE variable.

Usewave assign num toassign numeric valuesto a PV-WAVE variable. Use
wave assign string toassign string valuesto a PV-WAVE string variable.
Usewave assign_ struct toassignastructurevalueto aPV-WAVE variable.

Thewave assign_ struct function has an addition argument, stdef. This
isthe handle of a PV-WAVE structure definition. The structure definition must
already exist in the current PV-WAVE session. Use the

wave wsdh from name orwave wsdh from wvh functionto get the han-
dle of an existing PV-WAVE structure definition.

Inal thewave assign_* functions, the data argument must be a pointer to the
data you want to assign to the PV-WAVE variable. It is declared as a (char *) but
the argument you pass will more commonly be a pointer to whatever type of data
you arepassing. Forthewave assign string function, it should beapointer
toastring if you are assigning a scalar string and it should be a pointer to an array
of string pointersif you are assigning an array of strings.

If themake copy argument is TRUE, thenwave assign_* will make acopy
of the dataareafor useinthe PV-WAVE kernel. If make copy iISFALSE, the PV-
WAVE kernel will usethe memory pointed to by data. This meansthat the memory
pointed to by data must be free-able by the PV-WAVE kernel and must no longer
be used outside the kernel.

320

PV-WAVE Programmer’s Guide

Array Indexing in C

PV-WAVE and C language array indexing is opposite. That is
WAVE ARRAY (i, j,k) isthesameascarray[k] [J] [i]. So, for example,
if the PV-WAVE array is:

WAVEARRAY (2,3,4,5,6,7,8,9)
then the corresponding C array is.
carray [9] [8] [7] [6] [5] [4] [3] [2]

The dims array argument to wave assign_* determinesthe array dimensions
inPV-WAVE. If youwereusingwave assign numtoassigncarray [] tothe
PV-WAV E variable named WAV EARRAY, then the dims argument to
wave_assign_ num should have the values:

long dims[] = {2,3,4,5,6,7,8,9};
even though PV-WAVE and C language array indexing is indexed as above.

If thewave assign * functionsare used to populate an undefined variable (for
example a new unnamed variable created using wave get unWVH), set
ndims=0, dims=NULL to create ascalar variable (ndims=1, dims[0]=1
creates a one dimensional, one element array).

wave_get WVH
Gets a PV-WAVE variable handle for an existing named PV-WAVE variable.

C Usage

long wave get WVH(wave var_name, WVHptr)
char *wave var_name;

WVH *WVHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WAVE_GET_WVH(wave var_name, |_wh)
CHARACTER*31 wave var_name

321

INTEGER*4 |_wvh

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WAVE_GET_WVH(wave var_name, |_wvh)

Input Parameters

wave var_name — A string containing the name of an existing PV-WAVE
variable.

Output Parameters

WVHptr — A PV-WAVE variable handle pointing to the variable named by
wave_var_name.

Returned Status

OPI_SUCCESS — PV-WAVE variable successfully found, and WVHptr is
returned.

OPI FAILURE — wave var_name was not found, and WA/Hptr is not defined.

OPI_DO_NOT PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (freemalloc’s space,
free handles, etc.) and return to its caller immediately.

In either of the error cases, PV-WAVE will have aready done its normal error pro-
cessing, which includes printing a message and setting the appropriate system
variables.

Discussion

Thewave get WVH function looks for wave_var_name in the symbol table of
the currently active PV-WAV E procedure or function. If found, a PV-WAVE vari-
able handle pointing to this variable is returned in WVHptr.

The variable named in wave_var_name must already exist in PV-WAVE.

wave_get unWVH
Creates an unnamed PV-WAV E variable and returnsits PV-WAV E variable handle.

322 PV-WAVE Programmer’s Guide

C Usage
long wave_get_unWVH(W\VHptr)
WVH *WWW/Hptr;

FORTRAN Usage

Not available,

Output Parameters

WVHptr — A PV-WAV E variable handl e pointing to the unnamed variabl e created
by wave get unwWvH.

Returned Status

OPI_ SUCCESS — ThePV-WAVE variablewas successfully created, and WVHptr
is returned.

OPI DO NOT PROCEED — Catastrophic errors occurred and execution should
not continue. The calling C-code should do its cleaning up (freemalloc’s space,
free handles, etc.) and return to its caller immediately.

Discussion

Thewave get unWVH function creates anew unnamed PV-WAV E variable for
limited usein the system procedure or function. This unnamed PV-WAVE variable
islike any other PV-WAVE variable in the currently active procedure or function
except that it does not require space in the current symbol table. Sinceit is
unnamed, it can not be accessed by the command line user.

The PV-WAV E variable handle for the unnamed variable can be used as any other
PV-WAVE variable handle in any of the routines described in this document. The
type, dimensions, etc., of the unnamed variable are undefined until they are defined
viathewave_ assign_* functions.

wave_free_ WVH
Frees memory associated with a PV-WAVE variable handle.

323

C Usage
void wave_free WVH(WVHptr)
WVH *WWW/Hptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_FREE_WVH(_wvh)
INTEGER*4 |_wvh

Input Parameters

WVHptr — A PV-WAVE variable handle of a named or unnamed PV-WAVE vari-
ableto free.

Discussion

Thisfunction frees the space associated with both named and unnamed PV-WAV E
variable handles. Before an option procedure or function returns, it must call this
routine to free all PV-WAV E variable handles obtained viathe wave get WVH

andwave get unWVH functions. The option developer should not freeaWVH
which will be used as areturn value.

When anamed variable'sWVH ispassed to thisfunction, only the space associated
with the PV-WAVE variable handle is freed; the PV-WAVE variable itsalf is not
atered in any way. When an unnamed variable's PV-WAVE variable handleis
passed to this function, space associated with both the PV-WAVE variable handle
and the unnamed variable are freed; the unnamed variable no longer exists after this
function returns.

wvh_name

Returns the variable name of a PV-WAVE variable handle.

C Usage

char *wvh_name(wvh)

324

PV-WAVE Programmer’s Guide

WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WVH_NAME(l_wvh, wave variable)
INTEGER*4 |_wvh
CHARACTER*31 wave variable

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WVH_NAME(I_wvh, wave variable)

Input Parameters
wvh — The PV-WAVE variable handle of the PV-WAVE variable.

Returned Value — C
Returns a pointer to the PV-WAVE variable name. NULL is returned on failure.

NOTE For maximum speed and space efficiency, this function returns a pointer to
astring stored internally in PV-WAVE. DO NOT modify the string in any way. Any
maodification of the string pointed to by this returned value may cause PV-WAVE
to crash.

NOTE Unnamed variablesdo haveanamestring, but itisaninternal identifier that
can not be recognized at the PV-WAV E command line.

Returned Value — FORTRAN

The variable name isreturned in the wave variable string.

The function returns—1 on failure, if |_wvh isnot avalid PV-WAVE variable
handle.

325

wvh_type

Returns the variable type of a PV-WAVE variable handle.

C Usage
long wvh_type(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WVH_TYPE(_wvh)
INTEGER*4|_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

Returned Values for C
Returns the PV-WAV E variable type. On failure, -1 is returned.
The valid variable type codes (in C) and their corresponding PV-WAV E types are:

OPI_TYP UNDEFINED — Undefined.

OPI_TYP BYTE — Byte.

OPI_ TYP_ SHORT — Integer (FIX).

OPI TYP LONG — Long integer.

OPI_TYP FLOAT — Floating point.

OPI TYP DOUBLE — Double precision.

OPI_TYP COMPLEX — Complex.

OPI TYP DCOMPLEX — Double-precision complex.

OPI_TYP STRING — String.

326

PV-WAVE Programmer’s Guide

OPI TYP STRUCT — Structure.

Returned Values for FORTRAN
In FORTRAN, the valid type codes are:

L_OPI_TYP UNDEFINED
L_OPI_TYP BYTE

L _OPI_TYP_ SHORT

L, OPI_TYP_LONG

L _OPI_TYP FLOAT

L, OPI_TYP DOUBLE

L _OPI_TYP COMPLEX
L, OPI_TYP_ DCOMPLEX
L _OPI_TYP STRING

L OPI_TYP STRUCT

All possible type codes are listed as #define’'sinopi devel.h
(PARAMETERS inopi_f devel.h).

wvh_ndims

Returns the number of dimensionsin a PV-WAVE variable.

C Usage
long wvh_ndims(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_NDIMS(l_wvh)

327

INTEGER*4 |_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

Returned Values
Returns the number of dimensionsin the variable. Returns 1 for scalar variables.

On failure, =1 is returned.

wvh_nelems
Returns the number of elementsin a PV-WAVE variable.

C Usage
long wvh_nelems(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WVH_NELEMS(I_wvh)
INTEGER*4 |_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

Returned Values
Returnsthe total numbers of e ementsin the variable. Returns 1 for scalar variables

On failure, =1 is returned.

328 PV-WAVE Programmer’s Guide

wvh_dimensions

Returns the number of dimensions and the size of each dimension.

C Usage

long *wvh_dimensions(wvh, dims)
WVH wvh;

long dimgOPI_MAX_ARRAY_DIMS];

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_DIMENSIONS(I_wvh, |_dims)
INTEGER*4 |_wh
INTEGER*4|_dims(L_OPI_MAX_ARRAY_DIMS);

Input Parameters
wvh— The PV-WAVE variable handle of the variable.

Output Parameters

dims— An array of the size of each dimension.

Returned Values

Returns the number of dimensions.

If wvh isnot avalid PV-WAVE variable handle, the returned value is—1.
If Oisreturned, the variable is ascalar for all types except structures.

See Also

wvh is scalar

329

wvh_sizeofdata
Returns the size in bytes of the data area of a PV-WAVE variable.

C Usage
long wvh_sizeofdata(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_SIZEOFDATA(I_wvh)
INTEGER*4 |_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returnsthe sizein bytes of the dataarea of the variable. Notethat for scalar strings,
wvh sizeofdata returnsthesizeof a (char *) and for string arrays,

wvh sizeofdatareturnswvh nelems*sizeof (char *).To getthe
length of the actual string, you must get the data pointer and use the PV-WAVE
STRLEN function or some other method of finding thelength of the string pointed
to by the data pointer.

On failure, -1 is returned.

wave_type_sizeof
Returns the size in bytes associated with a PV-WAVE variable type.

C Usage

long wave_type_sizeof (opi_type)

330 PV-WAVE Programmer’s Guide

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_TY PE_SIZEOF(I_opi_type)
INTEGER*4 1 _opi_type

Input Parameters

opi_type— A valid variable type code, excluding OPI_TYP_STRUCT. Thisfunc-
tion does not recognize OPI_TYP_STRUCT since the structure definition nameis
needed to know its size (see wsdh_sizeofdata on page 341).

Thevalid variable type codes (in C) and their corresponding PV-WAV E types are:
OPI_TYP UNDEFINED — Undefined.
OPI_TYP BYTE — Byte.
OPI_TYP_ SHORT — Integer (FIX).
OPI TYP LONG — Long integer.
OPI_TYP_ FLOAT — Floating point.
OPI TYP DOUBLE — Double precision.
OPI_TYP COMPLEX — Complex.
OPI TYP DCOMPLEX — Double-precision complex.

OPI_TYP STRING — String.
In FORTRAN, the valid type codes are:

L_OPI_TYP UNDEFINED
L _OPI_TYP BYTE
L_OPI_TYP SHORT

L _OPI_TYP_ LONG
L_OPI_TYP FLOAT

I, OPI_TYP_DOUBLE

331

L _OPI_TYP COMPLEX
L OPI_TYP DCOMPLEX

I, OPI_TYP_STRING

All these type codes are listed as #define’sinopi devel.hor
(PARAMETERS inopi_ f devel.h).

Returned Values

Returns the size in bytes needed to store a scalar PV-WAVE variable of the type
given.

Returns—1if opi_type isnot one of the basic types, i.e,, OPI_TYP BYTE
through OPI_TYP STRING.

This function does not recognize OPI_TYP_STRUCT since the structure defini-
tion name is needed to know its size (see wsdh_sizeofdata on page 341).

wvh_is_scalar
Testsif aPV-WAVE variableis ascalar (not an array).

C Usage
long wvh_is_scalar(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WVH_IS _SCALAR(l_wh)
INTEGER*4|_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

332 PV-WAVE Programmer’s Guide

Returned Values

Returns 1 if the variable is a scalar. Returns O if the variable is not a scalar and
returns—1 if wvh is not avalid PV-WAV E variable handle.

For scalar structures, this function returns 1 (TRUE) whilewvh_dimensions
does not return 0. Thisis because internally PV-WAV E stores structure-type vari-
ablesinan array evenif thevariableisascalar (1 element). So, if you want to know
if astructure- type variableisascalar (1 element) or an array of type structure, use
thisfunctionrather thanwvh_dimensions. If youusewvh dimensions and
it returns 1, you needtolook at thedims [] array to determineif itisascalar vari-
able or an array of type structure.

wvh _is constant
Testsif aPV-WAVE variable is a constant.

C Usage
long wvh_is_constant(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WVH_IS_CONSTANT(l_wh)
INTEGER*4|_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable.

Returned Values

Returns TRUE if the variable is a constant. A constant PV-WAV E variable can not
haveitstype or value changed. wave assign_* will fail if you try to assign a
value to a PV-WAV E constant.

On failure, -1 is returned.

333

wvh_dataptr

Returns a pointer to the data area of a PV-WAVE variable.

C Usage
char *wvh_dataptr(wvh)
WVH wvh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WVH_DATAPTR(I_wvh)
INTEGER*4 |_wvh

Input Parameters
wvh — The PV-WAVE variable handle of the variable

Returned value

Returns a pointer to the data area of the variable. You need to cast thisto the proper
datatype, according to wvh_type.

NULL isreturned on failure. Will return NULL if WVH isaPV-WAVE variable
handle for a PV-WAVE structure.

In FORTRAN, LF_WVH_DATAPTR returns—1 on failure.

Discussion

In FORTRAN, you should pass the data pointer using $VAL () to afunction or
subroutine, which can then declare it to be the proper data type.

Examples

For examples of how to use the data pointer in FORTRAN, seethe examplesin the
directory:

(UNIX) SVNI DIR/wave/demo/interapp/opi

334

PV-WAVE Programmer’s Guide

(OpenVMS) VNI DIR: [WAVE.DEMO.INTERAPP.OPI]

NOTE FORTRAN connectivity is not available for Windows.

Specifically, look at thewLNLF _* functions (and how they are called) in one of the
opifor*.f example programs.

wave _wsdh from wvh
Returns aPV-WAV E structure definition handle for aPV-WAV E structure variable.

C Usage

long wave_wsdh_from_wvh(wvh, WSDHpitr)
WVH wvh;

WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_WSDH_FROM_WVH(I_wh, |_wsdh)
INTEGER*4|_wvh, |_wsdh

Input Parameters

wvh — A PV-WAV E variable handle of anamed or unnamed PV-WAV E structure
variable.

Output Parameters
WSDHptr — The PV-WAVE structure definition for wvh.

Returned Values

If the PV-WAVE variable exists and is of type structure, OPT_SUCCESS will be
returned and a PV-WAVE structure definition handle will be returned in the
WSDHptr argument. OPI_FAILURE will be returned if the PV-WAVE variable

335

handleisinvalid or thevariableisnot of typestructure. OPI_DO_NOT PROCEED
will be returned for catastrophic failures such as PV-WAVE being unable to alo-
cate memory or any other resource.

wave wsdh from name

Returns a PV-WAV E structure definition handle given the name of a PV-WAV E
structure variable.

C Usage

long wave wsdh_from_name(struct_def _name, WSDHptr)
char *struct_def_name;

WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WAVE_WSDH_FROM_NAME(struct_def_name, |_wsadh)
CHARACTER* 31 structure_def _name
INTEGER*4 |_wsdh

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WAVE_WSDH_FROM_NAME(struct_def_name, |_wsadh)

Input Parameters
struct_def_name — A string name of a PV-WAV E structure variable.

Output Parameters
WSDH ptr — The PV-WAVE structure definition handle for struct_def _name.

336

PV-WAVE Programmer’s Guide

Returned value

If there is a PV-WAV E structure definition with the given name, OPI_ SUCCESS
will be returned and a PV-WAV E structure definition handle will be returned in the
WSDHptr argument. Otherwise, OPI FAILURE will be returned.

OPI DO _NOT PROCEED will bereturned for catastrophic failures such as PV-
WAV E being unable to allocate memory or any other resource.

Discussion

Since PV-WAVE structure definitions exist independently of PV-WAVE variables,
itisnot necessary to have aPV-WAV E variable handlein order to accessastructure

definition.

To create anew PV-WAVE structure definition, usethewave execute function
such as:

wave execute(’a = {new_struct, tagl:0, ... }’)

wave free WSDH

Frees space associated with a PV-WAVE structure definition handle when it is no
longer needed.

C Usage
void wave free WSDH(WSDHptr)
WSDH *WSDHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

SUBROUTINE LF_WAVE_FREE_WSDH(I_wsdh)
INTEGER*4 |_wsdh

Input Parameters
WSDHptr — A PV-WAVE structure definition handle.

337

Discussion

Thisfunction must be called to free the space associated with the PV-WAVE struc-
ture definition handle when it is no longer needed. This does not destroy the
structure definition in PV-WAVE, it only freesthe space associated with the handle.

wsdh _name

Gets the structure name.

C Usage
char *wsdh_name(wsdh)
WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_ WSDH_NAME(I_wsdh, string)
INTEGER*4 |_wsdh
CHARACTER*31 string

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WSDH_NAME(I_wsdh, string)

Input Parameters
wsdh — A PV-WAV E structure definition handle.

Returned Value — C

Returns the name of the structure definition associated with the PV-WAVE struc-
ture definition handle.

ReturnsNULL on failure, if the handle argument is not avalid PV-WAVE structure
definition handle.

338

PV-WAVE Programmer’s Guide

Returned Value — FORTRAN

Fills the string argument with the name of the structure definition associated with
the PV-WAVE structure definition handle.

The function will return —1 on failure, if the handle argument is not avalid PV-
WAVE structure definition handle.

wsdh_ntags

Gets the number of tagsin a structure.

C Usage
long wsdh_ntags(wsdh)
WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_NTAGS(I_wsdh)
INTEGER*4 |_wsdh

Input Parameters
wsdh — A PV-WAV E structure definition handle.

Returned Value
Returns the number of tags in the structure definition.

Returns—1 onfailure, if the handle argument isnot avalid PV-WAVE structure def-
inition handle.

wsdh_tagname

Gets the name of a structure tag.

339

C Usage

char *wsdh_tagname(wsdh, N)
WSDH wsdh;

long N;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_TAGNAME(_wsdh, N, string)
INTEGER*4 |_wsdh

INTEGER*4 N

CHARACTER*31 string

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WSDH_TAGNAME(l_wsdh, N, string)

Input Parameters
wsdh — A PV-WAVE structure definition handle.
N — The number of the desired tag.

Returned Value — C
Returns the name of the Nth tag in the structure definition. Tag numbers start at O.

Returns NULL on failure, if the handle argument is not avalid PV-WAVE structure
definition handle.

Returned Value - FORTRAN

Fills the string argument with the name of the Nth tag in the structure definition.
Tag numbers start at 0.

The function will return —1 on failure, if the handle argument is not avalid PV-
WAVE structure definition handle.

340

PV-WAVE Programmer’s Guide

wsdh_sizeofdata

Gets the size of data area associated with a structure.

C Usage
long wsdh_sizeofdata(wsdh)
WSDH wsdh;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_SIZEOFDATA (I_wsdh)
INTEGER*4 |_wsdh

Input Parameters
wsdh — A PV-WAV E structure definition handle.

Returned Value

Returns the size in bytes of the data area heeded to store a scalar PV-WAVE vari-
able of this structure type.

Returns—1 onfailure, if the handle argument isnot avalid PV-WAV E structure def-
inition handle.

wsdh_offset
Gets the byte offset of the data area for a named tag in a structure.

C Usage
long wsdh_offset(wsdh, tagname)
WSDH wsdh;

char *tagname;

341

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_OFFSET(I_wsdh, tagname)
INTEGER*4|_wsdh
CHARACTER* 31 tagname

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WSDH_OFFSET(I_wsdh, tagname)

Input Parameters
wsdh — A PV-WAVE structure definition handle.

tagname — The name of the desired tag in the structure.

Returned Value
Returns the offset in bytes of the tag’'s data area.

Returns—1 onfailure, if the handle argument isnot avalid PV-WAV E structure def-
inition handle, or if the tag doesn’t exist in the structure.

Discussion

If the given tagname existsin the structure definition, wsdh of fset returnsan
offset which can be used to find the data associated with this tagname. The unit of
offset isnumber of bytes. Giventhat (char *) P holdsa pointer to the data area
of aPV-WAVE variable of thisstructuretype, (P+offset) pointstothedatacor-
responding to thistagname. Notethat (P+of fset) must be cast to the type of
the associated tagname. The pointer to the data area of a PV-WAV E variable can be
retrieved fromthewvh dataptr function and thetype of the associated tagname
can be retrieved fromthe wsdh_element function.

wsdh_element
Creates a PV-WAVE variable handle for atag in a structure.

342 PV-WAVE Programmer’s Guide

C Usage

long wsdh_element(wsdh, tagname, WNVHptr)
WSDH wsdh;

char *tagname;

WVH *WVHptr;

FORTRAN Usage

NOTE FORTRAN connectivity is not available for Windows.

INTEGER*4 LF_WSDH_ELEMENT(I_wsdh, tagname, |_wvh)
INTEGER*4 |_wsdh, |_wvh
CHARACTER* 31 tagname

OpenVMS FORTRAN Usage
INTEGER*4 LFD_WSDH_ELEMENT(I_wsdh, tagname, |_wvh)

Input Parameters
wsdh — A PV-WAVE structure definition handle.

tagname — The name of the desired tag in the structure.

Output Parameters

WVHptr — A PV-WAVE variable handle that describes this one element of the
structure.

Returned Status

If the function returnsOPI SUCCESS, then the WVH will be returned in the
VWVHptr argument. If the function can not allocate enough memory to create the
WVH, it will return OPI_DO NOT_PROCEED. If the function fails because it
does not find a tag whose name matches tagname, then it returnsOPI _FAILURE
and VWHptr is undefined.

343

Discussion

If tagname isavalid tag name in the structure definition referred to by wsdh, then
wsdh_element will create a PV-WAVE variable handle that describes this one
element of the structure definition. Since one element of a structure definition has
all the characteristics of a PV-WAVE variable (except it has no dataarea), aWVH
isaconvenient way to describeit. All the WV H_* functionsthat return information
about a PV-WAVE variable can al so be used to return information about a structure
element. wwh_dataptr will return NULL if it is passed aWVH for a structure
element since structure elements do not have data areas. Since creating a WVH
requires allocating some memory, wsdh _element may fail if the allocation
reguest fails.

opi_malloc, opi_free, opi_realloc, opi_calloc

Allocates memory for an OPI.

C Usage

void *opi_malloc (unsigned int len);

void opi_free (void * buff);

void *opi_realloc (void * buff, unsigned int len);

void *opi_calloc (unsigned int 11, unsigned int 12);

Input Parameters

Refer to the corresponding system functions: malloc, free, realloc, and
calloc.

Returned value

Refer to the corresponding system functions: malloc, free, realloc, and
calloc.

Discussion

On some platforms (OpenVM S VA X, Windows 95, Windows NT) dynamic mem-
ory alocation in an OPI that is built as a shared library uses a different address
space than the memory allocation in the main executable, in this case the

344 PV-WAVE Programmer’s Guide

PV=WAVE kernel. The consequenceisthat memory allocated from the OPI’s own
malloc may only be freed by the same OPI’'s free function. The same applies
for the functions realloc and calloc.

NOTE The heap administration of the kernel is corrupted when the ruleis vio-
lated; namely, by allocating memory in an OPI, passing a pointer to the kernel, and
allowing the kernel to free this memory.

Thefunctionsopi malloc,opi free,opi realloc andopi calloc
give the OPI access to the kernel’s memory allocation routines. In order to avoid
changing existing C-code, an includefileis provided (opi_malloc.h). This
include file has preprocessor directives which change functions callstomalloc,
free,realloc and calloc intothecorresponding OPI versions. You must ref-
erencetheincludefileinanincludedirective (#include ‘opi malloc.hi’)
after all system include files but before the first memory allocation function call.

C Language Error Handling

This section describes the methods an Option uses for handling C Language error
conditions.

Whenever an Option’s C procedures or functions fail, the Option devel oper needs
to be able to call the PV-WAVE error handling mechanism. The variables that
would have been returned by the Option will be undefined variables when an error
occurs on the Option side.

When an OPI Call Fails

Most OPI callsreturn astatus. It is up to the Option devel oper to handle the status
codes appropriately. A status can have the following values:

* OPI SUCCESS — Thecall issuccessful.
* OPI FAILURE — Thecall failed, but execution can continue.

* OPI DO NOT PROCEED — Catastrophic failurehasoccurred. For example,
PV-WAVE is unable to alocate memory or any other PV-WAVE resource.

Recovering from Errors Inside the Option Code

OPI provides access to the standard PV-WAVE error handling functionality (see
wave_error on page 346). Currently, when an error occursin PV-WAVE, the inter-

345

preter recoversitself asbest it can and then takeswhatever action the user requested
viathe ON_ERROR and ON_IOERROR commands. To remain consistent with
that model, an Option procedure or function needs to be able to tell the calling
interpreter that the option procedure or function did not complete successfully.
Then the interpreter will not continue interpreting any command that depends on
the results of the Option procedure or function.

wave_error

Reports an error condition for the Option to PV-WAVE.

C Usage

void wave_error(error_number, string, print, trace, on_ioerror)
long error_number;

char *string;

long print, trace, on_ioerror;

FORTRAN Usage
Not available.

Input Parameters

error_number — A valueto useto set !Err.

string — A string to useto set |Err_String.

print — If nonzero the error message is printed.
trace — In nonzero trace information will be printed.

on_ioerror — If nonzero, the action taken after the error will be determined from
the ON_IOERROR dtate of the currently active PV-WAV E procedure or function.

Discussion

Thewave error function allowsthe Option procedure or function to tell the PV-
WAVE kernel that it should proceed asif the Option procedure or function failed.
When the Option procedure or function returnsto the calling interpreter, the inter-
pretation of the current PV-WAVE command will be immediately terminated and

346

PV-WAVE Programmer’s Guide

PV-WAV E will continue based on the ON_ERROR or ON_IOERROR state of the
currently active PV-WAV E procedure or function.

NOTE Thewave error function should not be called if the system procedure
or function is exiting because an OPI_DO_NOT PROCEED status was returned
from another OPI function. The OPI function will have already set the proper error
conditionsin the PV-WAVE kernel. Unsuccessful OPI functions return to the
Option procedure or function for one reason only; to allow the Option procedure
or function to clean up malloc’d memory before returning to the PV-WAVE
kernel.

If thewave error functionisnot called before an Option procedure or function
returns, the PV-WAVE kernel will proceed as if there were no errors.

When the PV-WAVE interpreter detects an error condition, it normally prints an
error message string, setsthe ! Err system variable to a number associated with the
error, setsthe !'Err_String system variable to atext string associated with the error,
prints a traceback message and then proceeds according to whether the error was
an /O error or regular error.

The Option procedure or function can control how PV-WAVE reacts to its errors
with the arguments to the wave error function, asfollows:

e Theerror_number argument is the value to which Err will be set.

» Thestring argument isthe text string that will appear in the printed error mes-
sage and in the 'Err_String system variable.

» |If theprint argument isFALSE, the error message will not be printed; only the
system variables will be set.

» |If thetrace argument is FALSE, the traceback message will not be printed.

» If theon_ioerror argument is TRUE, the action taken after the error will be
determined from the ON_IOERROR state of the currently active PV-WAV E
procedure or function. Otherwise, the action taken after the error will be deter-
mined from the ON_ERROR state of the currently active PV-WAV E procedure
or function. The PV-WAVE !Err system variable will be set to the value of
error_number and the string argument will be copied to the PV-WAVE
IErr_String system variable. The PV-WAVE kernel actually copies the string
and does not freeiit.

» |If thetrace argument is TRUE, the PV-WAVE kernel will print out the trace-
back information that commonly accompanies PV-WAVE errors.

347

« If the print argument is TRUE, the string will also be printed to stderr just
as kernel error messages are printed.

e If printisFALSE, only the system variables will be updated. That is, no trace-
back or error message will be printed.

If your Option needs to return any other status information to the PV-WAVE user,
it should be written as a system function and return a PV-WAVE variable that con-
tains the status information unique to your function.

wave_onerror

Sets the value of PV-WAVE error action.

C Usage
void wave_onerror(action)

long action;

FORTRAN Usage

Not available,

Input Parameters
action — A value of the PV-WAVE error action:

0 Stop at the statement in the procedure that caused the error. (Thisisthe de-
fault action.)

1 Return all the way back to the main program level.

2 Returntothecaller of the program unit which established the ON_ERROR
condition.

3 Returnto the program unit which established the ON_ERROR condition.

Discussion

Thewave_onerror function setsthe value of the action to take in the same way
PV-WAV E command ON_ERROR does.

348

PV-WAVE Programmer’s Guide

wave is_onerror

Returns the current value of PV-WAVE error action.

C Usage

long wave is onerror()

FORTRAN Usage
Not available.

Discussion
Returns the value of the ON_ERROR action.

wave_onerror_continue
Sets the value of PV-WAVE error continue flag of the ON_ERROR condition.

C Usage
void wave_onerror_continue(cont)

long cont;

FORTRAN Usage
Not available.

Input Parameters
cont — A value of the PV-WAVE error continue flag of the ON_ERROR condition.

Discussion

Thewave onerror continue setsthecontinueflag of the ON_ERROR con-
dition. Valid values are TRUE or FALSE.

349

wave _is onerror _continue

Returns the current value of PV-WAVE error continue flag of the ON_ERROR
condition.

C Usage

long wave _is_onerror_continue()

FORTRAN Usage
Not available.

Discussion

Returns the current value of the continue flag of the ON_ERROR condition. Valid
values are TRUE or FALSE.

350 PV-WAVE Programmer’s Guide

A

APPENDIX

FORTRAN and C Format Strings

Thisappendix discussesformat stringsthat you can useto transfer datato and from
PV=WAVE. Format strings specify the format in which datais transferred as well
as the data conversion required.

Some PV=WAVE functions use format strings patterned after the ones used in the
FORTRAN programming language. Other functions recognize both FORTRAN-
or C-style format strings.

Therest of thisappendix discussesthe format specifications used in format strings.
This appendix also discusses format reversion and the use of group repeat
specifications.

What Are Format Strings?

A format string consists of one or more format specifications that tell PV=WAVE
what types of data are being handled and how to format the data. For example, aC
format string for importing data might look like this:

$3d %f£

This string contains two format specifications. Thefirst one ($34d) transferssigned
integer data, with amaximum field width of three spaces. The second specification
(% £) transfersfloating-point data, with no specified field width. Thisformat string
might be used to read a data file containing two columns of numbers, one column
containing integers and the other floating-point numbers.

A-1

When to Use Format Strings

All PV=WAVE functions that transfer or format data accept FORTRAN-style for-
mat strings. However, for agroup of I/O commandsthat start with theletters“DC”,
you have the choice of using either FORTRAN- or C-style format strings.

Useformat stringsto import or export datawhen you already know thetype of data
and itsformat. If you do not provide aformat string, PV=WAVE uses its default
rulesfor formatting the output. Theserulesare described in Free Format Output on
page 155.

TIP Another possibility, if you do not know exactly what your datalookslike, use
the DC_READ_FREE function, and let PV=WAVE help you with the interpreta-
tion of the data.

What to Do if the Data is Formatted Incorrectly

If asterisks appear in place of the data, then the values were formatted incorrectly.
Possibly, the values to be transferred were larger than the format alowsfor, or the
data type is not compatible with the format specification. If this happens, change

the format to better accommodate the val ues.

NOTE The asterisks only appear if a FORTRAN format string is used. If the for-
mat was specified incorrectly using a C string, then incorrect data may be
transferred.

Example — Using C and FORTRAN Format Strings

Below is shown part of a datafile; this file contains data of many different types.
For the purpose of this example, assume you are importing the data with one of
PV=WAVE’s /O routines. To specify afixed format for importing thisfile, you
have to know what kind of datait contains, and then create aformat string that will
import the data properly.

You can use C format strings only if you are using one of the DC routines (either
DC_READ_FIXED or DC_WRITE_FIXED). These routines are introduced in
Functions for Simplified Data Connection on page 146. The detailed descriptions
for these routines can be found in a separate volume, the PV=WAVE Reference.

A-2 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Phone Data

Date Time Minutes Type Ext Cost Number Called
901002 093200 21.40 1 311 5.78 2158597430
901002 093600 51.56 1 379 13.92 2149583711
901002 093700 61.39 2 435 16.58 9137485920

Thefirst four lines of the phone datafile are text — thetitle and column headings.
Since these lines do not contain data, you may wish to filter them out. If you are
using either DC_READ_FREE or DC_READ_FIXED, theselines can be skipped
with the Nskip keyword.

Thefirst two columnsinthefile, date and t ime, contain integer data. Since they
appear to be fairly large integers, import them with the C conversion specification
%Id. In FORTRAN, you need to specify the width of the field aswell as the type.
The FORTRAN specifier would be 16.

The next column, minutes, contains floating point numbers, which can be
imported with %f for C or F5.2 for FORTRAN.

If you have adata column that is not necessary for the analysis, such asthe type
column, import it as an ordinary character with %cin C or A1in FORTRAN. The
data must be read when using a C format because assignment suppression is not
allowed in PV=WAVE.

The ext column contains small integers, which you can import with %i (or %d)
inCor I3in FORTRAN.

The cost column is best imported with %f in C or F5.2 in FORTRAN.

In our example, the Number Called dataisnot needed for the analysis. This
data can be skipped because it falls at the end of the row.

Based on thisinterpretation of the data, the C format string for reading this datafile
lookslikethis:

$1d %1d %£

o\°
o\°

c %1 st

The FORTRAN format string for reading this data file looks like this:

(I6,1X,16,2X,F5.2,4X,A1,4X,13,2X,F5.2)

Example — Using C and FORTRAN Format Strings A-3

In FORTRAN, X isthe specifier for blank space. It is used to account for the space
between each column of values.

Another way to skip the t ype column would beto enter the following FORTRAN
specification:

(I6,1X,I6,2X,F5.2,9%,13,2X,F5.2)

This specification treats the t ype column as just another blank space.

NOTE Import date and t ime with a character format if you want to use the
STR_TO_DT conversion utility to convert date and t ime into “true” (Julian)
date/time data. This would change the C format to:

o
o°
o°

s %s %f %c %1 &f

and the FORTRAN format to:

(A6,1X,A6,2X,F5.2,9%,13,2X,F5.2)

For more information on the STR_TO_DT conversion utility, refer to the descrip-
tion for STR_TO_DT in the PV=WAVE Reference, or refer to Working with Date/
Time Datain the PV=WAVE User’s Guide. The chapter that describes date and time
dataalso includes an exampl e of how to handle date/time datathat does not include
the delimiters that the STR_TO_DT conversion utility expects.

Using Format Reversion

If thedataisall of the sametype, you can abbreviate the C and FORTRAN format
strings using the technique of format reversion. Format reversion is a shorthand
way of specifying aformat string.

For more information on format reversion with FORTRAN format strings, refer to
aFORTRAN 77 handbook.

Example — Using Format Reversion to Write Integer Data

This example writes datato afile using asingle C format string:
varl = INDGEN (20)

status = DC_WRITE FIXED("simple.dat", varl, $
Format="5%i")

A-4 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Similarly, the entire file can be written with other PV=WAV E statements using the
following FORTRAN format string:

OPENW, 1, "simple.dat"

varl = INDGEN(20) +1

PRINTF, 1, varl, Format="(5(I4))"
CLOSE, 1

The abbreviated format strings repeatedly writes the integer valuesin var1 until
all of the data has been transferred. Theresult isadatafile, simple.dat, that
contains 20 integer values:

4 5
9 10
11 12 13 14 15
6 17 18 19 20

Example — Using Format Reversion to Read Floating-Point Data

Thefollowing datafile, tesla. dat, contains only floating point numbers:

.8945 .5768 .3958 .3098 .8948 .84095
.0938 .8749 .4798 .9204 .2479 .9485

This entirefile can be read using asingle C format string:

status = DC_READ FIXED('tesla.dat’, varl, $
Format="%f")

This abbreviated format string repeatedly reads or writes floating point numbers
until al of the data are read or written.

Similarly, the entirefile can be read with other PV=WAV E statements using thefol-
lowing FORTRAN format string:

OPENR, 1, "tesla.dat"

varl = FLTARR(12)

READF, 1, varl, Format="(F5.4,2X)"
CLOSE, 1

ThisFORTRAN format string exampl e assumes that there are two spaces between
each value, as represented by the 2X.

Using Format Reversion A-5

Group Repeat Specifications

For datathat isnot al the sametype, but follows aregularly-repeated pattern in the
file, you can use anested format specification enclosed in parentheses as part of the
format string. Thisis called a group specification, and has the following form:

[n](a,f,S,f S, -Fln)

A group specification consists of an optional repeat count n followed by aformat
specification enclosed in parentheses. The format specification inside the parenthe-
sesisreused n times before any more of the format string is processed.

Use of group specifications allows more compact format specifications to be writ-
ten. For example, the format specification:

Format=' ("Result: ", "<", I5, ">", "<", 6§
I5’ ||>||)l

can be written more concisely using a group specification:
Format=' ("Result: ", 2("<", I5, ">"))’

If therepeat count isone, or isnot given, the parentheses serve only to group format
codes for usein format reversion.

Example — Using Group Repeat Specifications to Read a Data File

Suppose you had a datafile that contains data that needs to be read into three vari-
ables; thefile is organized like the file shown below:

Bullwinkle Boris Natasha Rocky

10 11 10 11

1000.0 9000.97 1100.0 0.0 0.0 2000.0

5000.0 3000.0 1000.12 3500.0 6000.0 900.0
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
950.0 1050.0 1350.0 410.0 797.0 200.36

2600.0 2000.0 1500.0 2000.0 1000.0 400.0
1000.0 9000.0 1100.0 0.0 0.0 2000.37

5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following statements read the data file shown above and place the datainto
three variables:

name = STRARR(4) & years = INTARR(4)
salary = FLTARR(12, 4)
; Create variables to hold the name, number of years, and monthly

A-6 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

; salaries.

status = DC_READ FIXED(’'bullwinkle.wp’, $
name, years, salary, Format= " (4Al6, " + $
v/, I3, 3(10X,I3), /, 48(F7.2, 3X))", $
Ignore:[“$BLANK_LINES"])

; DC_READ_FIXED transfers the values in “bullwinkle.wp” to the

; variables in the variable list, working from left to right. Two slashes
; in the format string force DC_READ_FIXED to switch to a new

; record in the input file.

When reading row-oriented datawith DC_READ_FIXED, each variableis“filled
up” before any dataistransferred to the next variable in the variable list. The four
strings are transferred into the variable name, the four integers are transferred into
the variable years, and the 48 floating-point values are transferred into the vari-
able salary.

Because this example uses one of the “DC” functions, the data could also be read
using C format specifiers:
status = DC_READ FIXED(’'bullwinkle.wp’, $

name, years, salary, Ignore=$S
["$BLANK_LINES"], Format="4%s 4%i 48%f™")

NOTE The vaue of the Ignore keyword in the statements shown above insures
that all blank lines are skipped instead of being interpreted as zeroes.

FORTRAN Formats for Data Import and Export

You can use FORTRAN format strings with any PV=WAV E function or procedure.
FORTRAN format strings must be enclosed in parentheses, and the individual for-
mat specifiers must be separated by commas. This section discusses each of the
format specifiers that can be used to produce a FORTRAN format string.

FORTRAN Format Specifiers

The following tables show the FORTRAN format specifiers that you can usein
PV=WAVE.

The following table shows data conversion characters, which specify the type of
datathat is being transferred.

FORTRAN Formats for Data Import and Export A-7

Data Transfer Format Codes
FORTRAN Format Codes that Transfer Data

Conversion
Character

How the Datais Transferred

[n]A[w]

[n]D[w.d]

[n]E[w.d]

[n]F[w.d]

[N]G[w.d]

=)

I{w] or
[{w.m]

=)

] O[w] or
O[w.m]

Z[w] or
Z[w.m]

5.3

3,

=N

Transfers character data. n is a number specifying the number of
times to repeat the conversion. If nisnot specified, the conversion
is performed once. w is a number specifying the number of char-
actersto transfer. If wis not specified, al the characters are trans-
ferred.

Transfers double-precision floating-point data. nis anumber spec-
ifying the number of times to repeat the conversion. w specifies
the number of charactersin the external field, and d specifies the
number of decimal positions.

Transfers single-precision floating-point data using scientific
(exponential) notation. The options are the same as for the D con-
version character.

Transfers single-precision floating-point data. The options are the
same as for the D conversion character.

Uses E or F conversion, depending on the magnitude of the value
being processed. The options are the same as for the D conversion
character.

Transfersinteger data. nis a number specifying the number of
timesto repeat the conversion. w specifies the width of thefield in
characters. m specifies the minimum number of non-blank digits
required.

Transfers octal data. The options are the same as for the | conver-
sion character.

Transfers hexadecimal data. The options are the same asfor the |
conversion character.

Obtains the number of charactersin the input record to be trans-
ferred during aread operation. This conversion character is used
for input only. In an output statement, the Q format code has no
effect except that the corresponding 1/0 list element is skipped.

NOTE Charactersin square brackets[] are optional.

A-8 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Data Appearance Format Codes

The following table shows specifiers that are used only to specify the appearance
of data, such asthe number of spaces between valuesin afile.

FORTRAN Format Codes that Do Not Transfer Data

Specifier Appearance of Transferred Data

The colon format code in aformat string terminates format pro-
cessing if no moreitems remain in the argument list. It has no
effect if variables still remain on the list.

$ During input, the $ format code isignored. During output, if a$
format code is placed anywhere in the format string, the newline
implied by the closing parenthesis of the format string is sup-

pressed.

guoted During input, quoted strings are ignored. During output, the con-

string tents of the string are written out.

nH FORTRAN-style Hallerith string, where n is the number of char-
acters. Hollerith strings are treated exactly like quoted strings.

nX Skips n character positions.

Tn Tab. Sets the absolute character position n in the current record.

TLn Tab Left. Specifies that the next character to be transferred to or
from the current record is the nth character to the left of the cur-
rent position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the nth character to the right of the cur-
rent position.

NOTE For more information about the format codes shown in the previous two
tables, refer to the detailed descriptionsin the next section.

FORTRAN Format Code Descriptions

A Format Code
The A format code transfers character data.

FORTRAN Format Code Descriptions A-9

Format
[n]A[w]
where:

* n—isanoptiona repeat count (1< n< 32767) specifying the number of times
the format code should be processed. If nis not specified, arepeat count of 1
isused.

* w—isanoptiona width (1 <w< 256), specifying the number of charactersto
be transferred. If wis not specified, the entire string is transferred. If wis
greater than the length of the string, only the number of charactersin the string
istransferred. Since PV=WAVE strings have dynamic length, w specifies the
resulting length of input string variables.

NOTE Duringinput, if the Q FORTRAN format specifier is used, the number of
charactersin the input record can be queried and used as a“parameter” in asubse-
guent A FORTRAN format specifier.

Example

For example, the statement:

PRINT, Format=' (A6)’, '123456789'
generates the output:
123456

: Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list.

Example

For example, the following statement:

PRINT, Format=’(6(I1, :, ", "))’, INDGEN(6)
outputs a comma separated list of integer values:

o, 1, 2, 3, 4, 5

The use of the colon format code prevents a comma from being output following
the final item in the argument list.

A-10 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

$ Format Code

When PV=WAV E compl etes output format processing, it normally issuesanewline
to terminate the output operation. However, if a$ format code is found in the for-
mat specification, this default newlineis not output.

NOTE The $ format code isonly used during output; it isignored during input
formatting.

Example

The most common use for the $ format code isin prompting for user input. For
example, the following statements:

PRINT, Format='($, "Enter Value: ")’
; Prompt for input, suppressing any <Return>.

READ, value
; Read the response.

prompts for input without forcing the user’s response to appear on a separate line
from the prompt.

F, D, E, and G Format Codes

TheF, D, E, and G, format codes are used to transfer floating-point val ues between
memory and the specified file.

Format
[n]F{w.d]
[n]D[w.d]
[n]E[w.d] or [n]E[w.dE€]
[n]G[w.d] or [n]G[w.dEE€]
where:

* n—isanoptional repeat count (1< n< 32767) specifying the number of times
the format code should be processed. If nis not specified, arepeat count of 1
isused.

FORTRAN Format Code Descriptions A-11

* wd—isanoptiona width specification (0 <w < 256, 1 <d < w). w specifies
the number of charactersin the external field, and d specifies the number of
decimal positions.

 e—isanoptiona width (1< e< 256) specifying the width of exponent part of
thefield. PV=WAVE ignores this value, but it is allowed to maintain compati-
bility with FORTRAN.

During input, the F, D, E, and G format codes all transfer w characters from the
external field and assign them as areal value to the corresponding entry in the I/O
argument list.

The Fand D format codes are used to output val ues using fixed-point notation. The
valueisrounded to d decimal positions and right-justified into an external field that
isw characters wide. The value of w must be large enough to include aminus sign
when necessary, at least one digit to thel eft of the decimal point, the decimal point,
and d digits to the right of the decimal point. The code D isidentical to F (except
for its default values for w and d) and existsin PV=WAVE primarily to maintain
compatibility with FORTRAN. The defaults for w, d, and e are shown in the fol-
lowing table:

Floating-point Format Defaults

Data Type W d e
Float, Complex 15 7 2
Double 25 16 2
All Other Types 25 16 2

The E format codeis used for scientific (exponential) notation. The valueis
rounded to d decimal positions and right justified into an external field that isw
characterswide. Thevalue of w must belarge enough to include aminussign when
necessary, at least one digit to the left of the decimal point, the decimal point, d dig-
itsto the right of the decimal point, a plus or minus sign for the exponent, the
character “€” or “E”, and at |east two characters for the exponent.

The G format code is a compromise between these choices — it uses the F output
style when reasonable and E for other values.

NOTE During output, if the field provided is not wide enough, it isfilled with
asterisks (*) to indicate the overflow condition. If wis zero, the“natural” width for
the value is used — the valueis output using a default format without any leading

A-12 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

or trailing white space, in the style of the C standard /O library printf (3S)
function.

If w, d, or e are omitted, the values listed in the previous table are used.

The case of theformat codeisignored by PV=WAV E except during output. For out-
put, the case of the E and G format codes determines the case used to output the
exponent in scientific notation. The following table gives examples of several float-
ing-point formats and the resulting output.

Examples of Floating Point Output

Format Internal Value Formatted Output
F 100.0 __100.0000000
F 100.0D ___100.0000000000000000
F10.0 100.0 ___1o00.

F10.1 100.0 ____100.0

F10.4 100.0 __100.0000

F2.1 100.0 **

el0.4 100.0 1.0000e+02
E10.4 100.0 1.0000E+02
gl04 100.0 ___100.0

g10.4 10000000.0 _1.000e+07

I, O, And Z Format Codes

Thel, O, and Z, format codes are used to transfer integer values between memory
and the specified file. The | format codeis used for decimal values, O is used for
octal values, and Z is used for hexadecimal values.

Format
[n]1[w] or [n]I[w.m]
[n]O[w] or [n]O[w.m]
[n]Z[w] or [n]Z[w.m]

where:

FORTRAN Format Code Descriptions A-13

* n—isanoptiona repeat count (1< n< 32767) specifying the number of times
the format code should be processed. If nis not specified, arepeat count of 1
isused.

« w—isanoptiona integer value (0 < w < 256) specifying the width of thefield
in characters. The default values used if wisomitted arelisted in the following
table. If the field provided is not wide enough, it isfilled with asterisks (*) to
indicate the overflow condition.

NOTE If wiszero, the“natural” width for the value is used — the value is output
using a default format without any leading or trailing white space, in the style of
the C standard 1/O library print £ (3S) function.

Integer Format Defaults

Data Type w
Byte, Integer 7
Long, Float 12
Double 23

All Other Types 12

* m— isthe minimum number of non-blank digits required (1 < m< 256); this
occurs only during output. Thefield is zero-filled on the left if necessary. If m
is omitted or zero, the externa field is blank filled.

The case of the format code isignored by PV=WAVE, except during output. For
output, the case of the Z format codes determines the case used to output the hexa-
decimal digits A-F. The following table gives examples of several integer formats
and the resulting output.

Examples of Integer Output

Format Internal Value Formatted Output
I 3000 __3000

16.5 3000 _03000

15.6 3000 ol

12 3000 *x

O 3000 __5670

A-14 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Examples of Integer Output (Continued)

Format Internal Value Formatted Output
16.5 3000 _05670

05.6 3000 il

02 3000 *x

z 3000 _ bb8

Z 3000 ____BBS8

Z6.5 3000 _00bb8

Z5.6 3000 *okk kK

Z2 3000 *x

Q Format Code

The Q format code returns the number of charactersin the input record remaining
to be transferred during the current read operation. It isignored during output
formatting.

Format

Q

Q isuseful for determining how many characters have been read on aline. It can
also be used to query the number of charactersin the input record for later use asa
“parameter” in the following A FORTRAN format specifier.

Example
The following statements count the number of charactersin afile demo . dat:

OPENR, 1, "demo.dat"
; Open the file for reading.
n = 0L
; Create a longword integer to keep the count.

WHILE (not EOF (1)) DO BEGIN READF, 1, $
cur, Format='(Q)’ & n = n + cur &

; Count the characters.
END

PRINT, n, $
Format=’' ("Counted", I, "characters.")’

FORTRAN Format Code Descriptions A-15

; Report the result.

CLOSE, 1
; Done with the file.

H Format Codes and Quoted Strings

Format
The format for a Hollerith constant is:
nHc,c,C,...C,
where:
n — isthe number of charactersin the constant (1 < n < 255).

¢; — representsthe characters that make up the constant. The number of characters
must agree with the value provided for n.

During output, any quoted strings or Hollerith constants are sent directly to the out-
put. During input, they are ignored.

Example

For example, the statement

PRINT, Format='("Value: ", IO0)’, 23
resultsin

Value: 23

being output. Notice the use of single quotes around the entire format string and
double quotes around the quoted string inside theformat. Thisis necessary because
we areincluding quotesinside a quoted string. It would have been equally correct
to use double quotes around the entire format string and single quotes internally.
Another way to specify the string is with a Hollerith constant:

PRINT, Format=' (7HValue: , IO0)’, 23

NOTE Thezerowidth of theinteger format string (1) resultsinthe“natural” width
being used to output the value * 23'.

T Format Code

The T format code specifies the absolute position in the current external record.

A-16 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

Format
Tn
where:

n — is the absolute character position within the external record to which the cur-
rent position should be set (1 < n < 255).

NOTE T differsfromthe TL, TR, and X format codes primarily inthat it requires
an absolute position rather than an offset from the current position.

Example

For example:

PRINT, Format=$
"("First", 20X, "Last", T10, "Middle")’

produces the following outpult:
First Middle Last

TL Format Code

The TL format code moves the current position in the external record to the left.

Format
TLn
where:

n— isthe number of charactersto moveleft fromthe current position (1< n< 255).
If the value of n is greater than the current position, the current position is moved
to Column 1.

NOTE TL isused to move backwardsin the current record. It can be used during
input to read the same data twice, or during output to position the output
nonsequentially.

Example

For example:

PRINT, Format=’ ("First", 20X, "Last", TL15,$
"Middle") "’

FORTRAN Format Code Descriptions A-17

produces the following output:
First Middle Last

TR and X Format Codes
The TR and X format codes move the current position in the external record to the
right.

Format
TRn
nX

where:

n— isthe number of charactersto skip (1 < n<255). During input, n charactersin
the current input record will be skipped. During output, the current output position
is moved n characters to the right.

The TR or X format code can be used to leave blanks in the output record, or to
skip over unwanted values while reading data.

Example

For example:

PRINT, Format=' ("First", 15X, "Last")’
or

PRINT, Format='("First", TR15, "Last")'’

results in the outpuit:

First Last

These two format codes only differ in oneway: using the X format code at the end
of an output record will not cause any charactersto be written unlessit isfollowed
by another format code that causes characters to be output. The TR format code
always writes characters in this situation. Thus:

PRINT, Format=' ("First", 15X)°’
does not leave 15 blanks at the end of the line, but the following statement does:

PRINT, Format=’ ("First", 15TR)’

A-18 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

C Format Strings for Data Import and Export

You can use C format strings in PV=WAV E with any of the functions that begin
with thetwo letters“ DC”; thisgroup of functions has been provided to simplify the
process of getting your datain and out of PV=WAVE. This new group of 1/0O func-
tions does not replace the READ, WRITE, and PRINT commands, but does
provide an aternative for most 1/0 situations.

The FORTRAN strings, discussed in an earlier section of this appendix, are the
same for either importing or exporting data. The C format strings, however, differ
significantly for importing and exporting data. Thus, the following sections discuss
C format strings for importing data, and then those for exporting data.

Using C Format Strings for Importing Data

The C format strings for importing data can be different than those for exporting
data. The format strings for importing data are made up of conversion specifiers
and literal characters (used for pattern matching), separated by ablank space. Each
conversion specifier consists of a % followed by a conversion character. Between
the % and the conversion character, you can place one of the following:

* Anoptional number specifying a maximum field width.

* Anhif theimported integer is expected to be a short (16 hit) integer, or an| if
the imported integer is expected to be along (32 bit) integer.

NOTE Unlikethe C programming language, PV=WAV E does not alow the use of
an assignment suppression character, which is used to skip over an unwanted input
field.

The following table shows the C conversion charactersthat can be used for import-
ing datain PV=WAVE:

C-style Conversion Characters for Importing Data

Conversion .

Character How the DataisImported

c Transfers character data, one character at atime.
ef,g Transfers double-precision floating-point data with

optional sign, decimal point, and exponent. Precede
with | for double-precision.

C Format Strings for Data Import and Export A-19

C-style Conversion Characters for Importing Data (Continued)

gﬁg\:g;e?n How the DataisImported

dori Transfers asigned integer. Precede with | for long
integer.

o] Transfers octal data.

X Transfers hexadecimal data.

u Transfers unsigned integer data.

s Transfers character strings.

% Used in pattern matching to produce aliteral % sym-

bol. No conversion occurs.

Using C Format Strings for Exporting Data

The C format strings for exporting data can be different than those for importing
data. The format string for exporting datais made up of ordinary characters and
conversion specifications, which cause conversion and printing of the next valuein
the file. Each conversion specification consists of a % followed by a conversion
character. Between the % and the conversion character, you may place, in order:

* A minussign (-) to left justify the exported values.
e A number to specify the minimum field width.
» A period separating the field width number from the precision number.

* A number to specify the precision, or the maximum number of charactersto be
printed from a string, or the number of digits after the decimal point of afloat-
ing point value, or the minimum number of digits for an integer.

* Anhif the exported integer isashort, or an | if the exported integer isalong.

The following table shows the C conversion characters that can be used for export-
ing datain PV=WAVE:

C-style Conversion Characters for Exporting Data

Conversion .
Char acter How the Data is Exported
C Transfers character data, one character at atime.

A-20 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

C-style Conversion Characters for Exporting Data

Conversion .

Char acter How the Data is Exported

eorE Transfers double-precision floating-point data using
scientific (exponential) notation. Use the form
[-]m.dddddd e + xx or [[]m.dddddd + Exx, where
the number of d’sis given by the precision.

f Transfers double-precision floating point datain the
form
[-]Jm.dddddd, where the number of d'sis given by the
precision. Precede with | for double-precision.

gorG Uses %e or %f format, depending on the magnitude
of the value being processed.

dori Transfer signed integer data.

o] Transfers octal data.

xor X Transfers hexadecimal data.

u Transfers unsigned integer data.

S Transfers character strings.

%

Transfers aliteral % symbol. No conversion occurs.

C Format Strings for Data Import and Export A-21

A-22 Appendix A: FORTRAN and C Format Strings PV-WAVE Programmer’s Guide

B

APPENDIX

Modifying Your Environment

This Appendix discusses methods for modifying your PV=WAV E environment for
UNIX, OpenVMS, and Windows.

Modifying Your PV-WAVE Environment
(UNIX/OpenVMS Only)

Under UNIX, PV=WAV E uses environment variablesto determineitsinitial state.

Under OpenVMS, logical names are used for the same purpose. In either case the
names and functions are the same. This section explains how to modify or custom-
ize environment variables and logicals.

NOTE Normally, you do not need to alter your environment. If PV=WAVE is
installed properly, your environment will be already set up. Theinformation in this
section applies only if you wish to modify or customize your environment.

WAVE_DEVICE: Defining Your Terminal or Window System

In order to function properly, PV=WAVE must know the type of terminal or win-
dow system you wish to use. By default, it assumes X, the X Window System. If
you wish, this default can be changed, as described below.

B-1

Changing the Default Device on a UNIX System

PV=WAVE reads the value of the environment variable WAVE DEVICE when it
starts. If WAVE_DEVICE isdefined, PV=WAVE calls the procedure SET_PLOT
with this string. For example, to use PV=WAV E with Tektronix terminals, include
the following command inyour . login (or .profile) file

setenv WAVE DEVICE tek

The device name can be entered in either upper or lower case. If WAVE DEVICE
is defined, it must contain the name of avalid PV=WAV E graphics device.

UNIX and OpenVMS USERS See the description of SET_PLOT in the
PV-WAVE Reference for a complete list of device names.

Changing the Default Device on an OpenVMS System

PV=WAVE reads the value of the logical name WAVE DEVICE when it starts. If
WAVE DEVICE ispresent, PV=WAVE callsthe procedure SET PLOT with this
string. For example, to use PV=WAV E with Tektronix terminals, include the fol-
lowing command in your LOGIN. COM file:

$ DEFINE WAVE DEVICE tek

WAVE_DIR: Ensuring Access to Required Files

WAVE_DIR istheroot of the PV=WAVE directory structure. This environment
variableis defined in wvsetup. All PV=-WAVE files are located in subdirectories
of WAVE_DIR.

Setting WAVE_DIR on a UNIX System

The WAVE_DIR environment variable must be correctly defined in order for
PV=WAVE to run properly. If WAVE DIR isnot defined, PV=WAVE assumes a
default of /usr/local/lib/wave.

WAVE_ DIR isdefined in the wvsetup file. To make sure that you have
WAVE_ DIR properly defined, enter the following command at the UNIX prompt:

source <Mmai ndir>/wave/bin/wvsetup

Setting WAVE_DIR on an OpenVMS System

TheWAVE_DIR logical must be correctly defined in order for PV=WAVE to run
properly. For example, if the PV=WAVE distributionislocated in DUAL : [WAVE]
on your system, enter the following DCL command:

B-2 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

$ DEFINE WAVE DIR DUALl: [WAVE.]/trans= (conceal, term)

WAVE_DIR must bedefined using the physical device name of the disk. Most sites
use logical names to refer to disks. If you wish to define WAVE DIR in terms of
the disk’slogical name, usethe DCL, F$TRNLNM lexical function to trangdlate the
name.

For example, if the main PV=WAVE directory iSDISKA: [WAVE]:

S DEFINE WAVE DIR ' FSTRNLNM (""DISKA"")' $
[WAVE.] /trans= (conceal, term)

WAVE_PATH: Setting Up a Search Path (UNIX, OpenVMS)

WAVE_PATH sets the function and procedure library directory search path. This
environment variableis also defined in wwsetup. The search pathisalist of loca
tionsto search if the procedure or functionisnot found in the current directory. The
current directory isaways searched first. PV=WAV E then looks for the function or
procedure in the locations specified by the system variable ! Path. The details of
how !Path isinitialized differ between UNIX and OpenVMS, athough the overall
concept issimilar. For moreinformation on system variabl es, see System Variables
on page 28.

Setting Up WAVE_PATH on a UNIX System

The environment variable WAVE PATH is a colon-separated list of directories. If
you do not explicitly definewAVE PATH, and you use PV=WAV E’s default startup
command file, PV=WAVE starts its search in the current working directory,
searchesnext in SVNI_DIR/wave/1lib, and then searches numerous
subdirectories of SVNI_DIR/wave/demo.

Each user may add directoriesto WAVE PATH that contain PV=WAVE programs,
procedures, functions, and “include” files. You may find it convenient to add to the
value that is already defined in your wvsetup file. For example:

setenv WAVE_ PATH $WAVE PATH":"/user/mylib

This command adds the directory /user/mylib to the existing variable
WAVE_PATH.

IPath isacolon-separated list of directories, similar to the PATH environment vari-
able that UNIX usesto locate commands. When PV=WAVE starts, !Path is
initialized from the environment variable WAVE PATH. The value of ! Path may be
changed once you are running PV=WAVE. For example, the following command
addsthedirectory /usr2/home/wave files tothe beginning of the search
path:

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-3

WAVE> !Path = '/usr2/home/wave files:' + !Path

Setting Up WAVE_PATH on an OpenVMS System

WAVE PATH iscomma-separated list of directories and library text files. Text
libraries are distinguished by prepending an “@” character to their name. If you do
not explicitly define WAVE_PATH, and you use PV=WAVE's default startup
command file, PV=WAVE starts its search in the current working directory,
searches next in @WAVE_DIR: [LIB] USERLIB, and then searches numerous
subdirectories of @WAVE DIR: [DEMO].

Each user may assign WAVE PATH to aunique combination of directories and text
libraries that contain PV=WAV E programs, procedures, functions, and “include’
files. You may find it convenient to set up this variable in your LOGIN. coM file.
For example:

$ DEFINE WAVE PATH $

"DISKA: [USER.WAVELIB], $
@WAVE DIR: [LIB]USERLIB.TLB"

causes PV=WAVE to search for programs first in the current directory, then in the
directory DISKA: [USER.WAVELIB], and finaly in the Standard library, which
issupplied by Visual Numerics, Inc., as an OpenVMS text library. For more infor-
mation on OpenVMS text libraries, see OpenVMS Procedure Libraries on page
233.

WAVE PATH can aso be defined as a multi-valued logical name (for example a
search list logical). Therefore, the above example can also be written as.

$ DEFINE WAVE PATH DISKA: [USER.WAVELIB], $
"@WAVE_DIR: [LIB]USERLIB.TLB"

PV=WAVE simply takes the various transl ations and concatenates them together
into acomma separated list. Note that the quotes around the second trandation in
this example are necessary to keep DCL from seeing the “@” character as an invi-
tation to execute a command file.

Under OpenVMS, !Path isacomma-separated list of directories and text libraries.
Text libraries are distinguished by prepending an “@” character to their name.
When PV=WAVE starts, ! Path isinitialized from the logical name WAVE PATH.
The value may be changed once you are running PV=WAVE. For example, the fol-
lowing command addstheDISKA : [PROJECTLIB] directory tothebeginning of
the search path:

WAVE> !Path = 'DISKA: [PROJECTLIB],' + !Path

B-4 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

WAVE_STARTUP: Using a Startup Command File

WAVE_STARTUP points to the name of acommand file that is executed when
PV=WAVE starts. Common uses are to compile frequently-used procedures or
functions, to load data, and to perform other useful operations. It contains state-
ments which are individually compiled and executed, in the same manner as
command file execution. For moreinformation on command files, see Creating and
Running a Command (Batch) File on page 7.

The default startup file for UNIX iscalled wavestartup and islocated in
<path>/wave/bin. For OpenVMSthedefault fileiswavestartup.dat and
islocated in:

WAVE DIR: [000000.BIN]

Thewavestartup fileturns off the compiler messages, sets up the WAVE >
prompt, and then calls the Standard library routine setdemo . pro. Thisroutine
sets up the default key bindings for the function keys and displaystheir definitions
upon entering PV=WAV E. For more information about the SETDEMO command,
see the PV=-WAVE Reference.

Using a Startup File Under UNIX

To use astartup file under UNIX, set the environment variable WAVE _ STARTUP
to the name of thefile to be executed. For example, assume the startup file named
startfile containsthe following statements:

.RUN add.pro

.RUN square.pro
INFO

Set the environment variable with the setenv command:

setenv WAVE STARTUP startfile

When you start PV=WAVE by entering wave at the UNIX prompt, you get the fol-
lowing display:

PV-WAVE. Version ...

% Compiled module: ADD.

% Compiled module: SQUARE.

$ At S$MAINS .

Code area used: 0.00% (0/16384), Data area used: 0.05% (2/4096)
local variables: 0, # parameters: 0

Saved Procedures:

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-5

ADD

Saved Functions:
SQUARE

WAVE>

The startup file compiles the ADD procedure and the SQUARE function, and dis-
plays general information about the current status of PV=WAV E before displaying
the WAVE > prompt.

Using a Startup File Under OpenVMS

To use a startup file under OpenVMS, assign the OpenVMS logical name
WAVE_STARTUP to the name of the file to be executed.

The procedure search path, !Path, is used to search for thefileif it isnot in the cur-
rent directory.
To defineastartup file named startfile, enter:

DEFINE WAVE STARTUP startfile

When you enter wave at the operating system prompt, the file is executed.

WAVE_FEATURE_TYPE: Setting the Default Operating
Mode

The environment variable WAVE_FEATURE_TYPE letsyou set the default operat-
ing mode to “runtime”’. When this environment variable is set to RT, compiled
PV=WAV E applications can be executed directly from the operating system prompt
without using the - r option. For example:

% setenv WAVE FEATURE TYPE RT
Set the environment variable.

% wave somerset
Run a compiled, saved PV-WAVE application called somerset.

WAVE_RT_STARTUP: Using a Startup Procedure in Runt-
ime Mode

WAVE RT STARTUP points to the name of acompiled procedure file that is exe-
cuted when PV=WAVE initializes in runtime mode. The startup file may contain
PV=WAVE routines that are executed each time PV=WAVE is started in runtime
mode.

B-6 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

UNIX and OpenVMS USERS For moreinformation on saving and using com-
piled routines, see Runtime Mode for UNIX and OpenVMS on page 12.

On aUNIX system, the default startup file for runtime modeis:
SWAVE_DIR/1lib/std/rtwavestartup.cpr
On an OpenVMSS system, the default startup file for runtime modeis:

WAVE_DIR: [000000.LIB.STD] RTWAVESTARTUP.CPR

WAVE_INIT_CODESIZE: Setting Initial Size of the Code
Area

Theenvironment variableWAVE INIT CODESIZE letsyou settheinitial size of
the code area for PV=WAVE. For example:

% setenv WAVE INIT CODESIZE 2000000
Set the initial size of the code area to 2 MB.

WAVE_INIT_LVARS: Setting Initial Value for Number of
Local Variables

The environment variable WAVE_INIT LVARS letsyou set theinitial number of
local variables for PV=WAVE. For example:

% setenv WAVE INIT LVARS 400
Set the initial number of local variables to 400.

Changing the PV-WAVE Prompt

Thetext string PV=WAVE uses to prompt you for input is specified by the system
variable!Prompt. You can change the prompt by setting this system variable to the
new prompt string. The prompt is currently defined in thefilewavestartup for
UNIX and WAVESTARTUP . DAT for OpenVMS.

Here's an example showing how to tailor your prompt to display text:
!Prompt = 'Hello World!s> '

Here's another example that causes PV=WAVE to ring the bell on the terminal
without echoing visible text when prompting:

!Prompt = '\007'

The ASCII code for the bell is 7. It does not have a printable representation, so it
is specified using the octal escape sequence \007.

Modifying Your PV-WAVE Environment (UNIX/OpenVMS Only) B-7

UNIX and OpenVMS USERS See Representing Nonprintable Characterswith
UNIX/OpenVMS on page 24.

TIP You can also place a prompt definition in your WAVE _STARTUP file, as
described on WAVE_STARTUP: Using a Startup Command File on page B-5.

For an alternate way to modify the prompt, see the description of the PROMPT pro-
cedure in the PV=-WAVE Reference.

Defining Keyboard Shortcuts

Function keys may be equated to a character string using the DEFINE_KEY pro-
cedure. For example, the <R4> key on a Sun-style keyboard or the <PF4> key on
aDigital keyboard, can be equated to the string PLOT, as shown in the example
below. This allows frequently used strings and commands to be entered with asin-
gle key stroke.

SETUP_KEYS
; Load predefined function key definitions.

DEFINE KEY, ‘F11’, ’'PLOT’
; Enter the text “PLOT” when the F11 function key is pressed.

For detailed information on DEFINE_KEY, seeits description in the PV=WAVE
Reference.

Thecommand INFO, /Keys displaysthe current definition of all function keys.

TIP A natural placeto put your key definitionsisin the startup file so that the func-
tion keys are defined when PV=WAVE isinitialized. The defaults for the key
definitions are set up with the setdemo . pro procedure in the wavestartup
file. See WAVE_STARTUP: Using a Sartup Command File on page B-5.

Using PV-WAVE with X Windows

A brief explanation of how to set up the X Windows system to work with
PV=WAVE is provided in this section.

TIP Theinterfaceto the X Windows system isdescribed in detail in the PV=-WAVE
Reference.

B-8 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

If You Are Running Under X Windows

Little or no customizing isrequired to use PV=WAV E with the X Windows system.
You can control the number of colors used by PV=WAVE, if and how windows are
repainted, and the type of color system (visua class).

Be sure that your system is properly set up to display X graphics. For UNIX sys-
tems under the C shell, you may need to enter:

% setenv DISPLAY hosthame:o.o
% xhost hostname

For OpenVMS systems, you may need to enter:

$ SET DISPLAY /CREATE /NODE=Nodename -
/SCREEN=0.0 /TRANSPORT=transport_type

where hostname or nodename is the name of the system on which you want graph-
ics to be displayed.

Modifying Your PV-WAVE Environment (Windows)

Under Windows, PV=WAV E obtains the information it needs to determine itsini-
tial state from environment variables. Windows NT and Windows 95 allow
environment variables to be specified in two ways:

e TheRegistry (Windows NT and Windows 95)

e The System window (launched from the Windows Control Panel — Windows
NT only)

* TheAUTOEXEC.BAT file (in Windows 95 only)

This section discusses ways to customize PV=WAVE using system variables and
environment variables. In addition, several important environment variables are
discussed in detail.

NOTE Aslong asPV=WAVE isinstalled properly, your environment will be
aready set up. Much of the information in this section applies only if you wish to
modify or customize your environment.

Adding a Procedure Library to the Search Path

This section explains how to add your own procedure library to the default
PV=WAVE path. Thisdefault path is used by PV=WAV E to |ocate procedure librar-

Modifying Your PV-WAVE Environment (Windows) B-9

ies(directoriescontaining . pro and . cpr files), such asthe Standard Library and
the Users’ Library.

Thebest way to add aprocedurelibrary to the default pathisto usethe ! Path system
variable.

The system variable ! Path stores alist of directories, similar to the PATH environ-
ment variable that Windows uses to locate commands. When PV=WAVE starts,
IPath isinitialized with all of the directory paths necessary to run PV=WAVE and
any PV=WAV E Companion Technologies or options that have been installed.

You can modify !Path while PV=WAVE is running, or you can modify it in your
PV=WAVE startup file. If you modify !Path during a PV=WAVE session, the
change only takes effect for that session. If you modify the startup file, the change
takes effect every time you start PV=WAVE. (For information on the startup file,
see WAVE_STARTUP: Using a Startup Command File on page B-5.)

For example, the following command adds the directory
D:\myra\results\wave to the beginning of the search path:

IPath = 'D:\myra\results\wave;’+!Path

Again, if thislineistyped at the WAVE > prompt, the change takes effect only for
the current session. If you add thislineto aPV=WAVE startup file, the change takes
effect every time you start PV=WAVE.

TIP When looking for afunction or procedure file, PV=WAVE searches current
working directory first. PV=WAV E then looks for the function or procedure in the
locations specified by !Path.

For more information on system variables, see System Variables on page 28.

Environment Variables

PV=WAVE relies on the user’s environment for configuration and customization
information. The following environment variables tell PV=WAVE whereit is
installed, where to find important files, and how it is to behave when started.

PV=WAVE Environment Variables

IMSLERRPATH WAVE_DEMO WAVE_HELPDIR
IMSLSERRPATH WAVE_GALL WAVE_HELP_PATH
VNI_DIR WAVE_GALL2 WAVE_USER

B-10 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

WAVE_DIR WAVE_GALL3 WAVE_PATH

WAVE_STARTUP WAVE_ARL WAVE_VERSION
WAVE_APPL WAVE_RAY WAVE_BIN
WAVE_CODEBOOK WAVE_LANG LM_LICENSE FILE
WAVE_DATA WAVE_LIB

Support for Environment Variables in Windows

Environment Variable Support in Windows NT

Windows NT was designed to support applications ported from UNIX and has
strong support for environment variables. You can set environment variablesfor an
individual user and for a particular computer by using the System icon in the Win-
dows Control Panel. This environment is picked up by GUI applications launched
from the Program Manager aswell as Consol e applications. Environment variables
can take up as much space as needed and can be easily changed on a system-wide
basis without restarting Windows.

Environment Variable Support in Windows 95

Windows 95 does not offer the same strong degree of support for environment vari-
ables as does Windows NT. Windows 95 Consoles are designed to support MS-
DOS applications and offer only alimited amount of space for environment vari-
ables; the amount of spaceis configurable, but thisisdifficult to do for a particular
Console without requiring the user to manually change the settings.

Under Windows 95, the system environment as seen by new Console windows and
by applications launched from shortcuts and the Start menu, must be set in the
AUTOEXEC.BAT file at thetime the system is started. If you want to change these
environment settings you must modify AUTOEXEC . BAT and reboot the system.

In generd, it isimpractical to store all of the environment variable information
needed by your system’s applications in the AUTOEXEC . BAT file.

For this reason, PV=WAV E makes use of a new Windows feature, the Registry, to
extend the way in which environment variables are obtained.

What is the Registry?

The Registry is arepository provided by Windows NT and Windows 95 to allow
applications and the operating system to store and manipulate configuration and

Modifying Your PV-WAVE Environment (Windows) B-11

status information; the Registry is designed to replace the use of environment vari-
ables and system configuration (. INI) files. The Registry is essentially a
hierarchical database. See The Windows Interface Guidelines for Software Design
for more information.

WIN32 applications are expected to store their configuration information at a par-
ticular location in the Registry. PV=WAVE follows this convention and stores the
information previously contained in environment variables at the following keys.

Thisfirst key is the location where PV=WAV E environment variables are defined
upon product installation:

HKEY LOCAL_ MACHINE\Software\Visual Numerics\PV=WAVE\
6.0\Environment

The environment variables defined in thislocation are:
e VNI DIR

e WAVE DIR

e LM LICENSE FILE

You can define your own environment variablesin the following Registry location.
Any variables defined in this user area take precedance over variables defined in
the PV=WAVE Registry location.

HKEY CURRENT USER\Software\Visual Numerics\PV=WAVE\ 6.0\Environment

For information on how to modify the Registry, see Modifying the Registry on page
13.

The information at the keysis stored in name-value pairs, where the nameisthe
name of the environment variable and the value is the variable's value.

How the PV-WAVE Environment is Set

At initiaization, PV=WAVE looks for each of the environment variableslisted in
the Table on page B-10 in the current environment. If the variable is found,
PV=WAVE usesits value and does no further processing for that variable.

If the variable is not found, PV=WAVE looks for an entry in the

HKEY CURRENT USER Key in the Registry, and finally looks in the

HKEY LOCAL MACHINE Registry key. This means that you can override the
Registry entriesin alocal shell and that any batch or startup files that you are cur-
rently using will continueto work — PV=WAV E only usesthe Registry if it cannot
find the information it needs in the local environment.

B-12 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

TIP The environment variables are processed in the order listed in listed in the
Table on page B-10. This meansthat you can use the values of earlier environment
variableswhen setting later ones: sinceVNI_ DIRislisted beforeWAVE DIR,you
can defineWAVE_DIR aS$VNI_DIR%/wave.

Modifying the Registry

Normally, the PV=WAVE Registry entries are only modified by the setup program
when PV=WAVE isinstalled and it should not be necessary to change the entries
there by hand. But, if this does become hecessary, you can use the Windows Reg-
istry Editor utility to modify PV=WAVE registry entries.

On Windows NT thisprogramis regedt32 . exe, and on Windows 95 itis
regedit.exe. You must have Administrator privilegesto modify entries under
the HKEY LOCAL_ MACHINE key on Windows NT.

CAUTION Be extremely careful when modifying the Registry. In general, chang-
ing entries under the PV=WAVE keys described above is safe but changing values
in other parts of the Registry can cause serious system problems. If you are unsure
about whether you are changing the proper value, consult with your System
Administrator.

Backing Up the Registry

On Windows 95, it is a good idea to make a backup copy of the Registry before
modifying Registry values. The Registry isstored in thefile SYSTEM. DAT in the
$windir% folder and you can make a backup by copying thisfile to another
folder with the Explorer or viathe xcopy command from a Console.

Seethearticle Backing Up the Registry or Other Critical Files, 1d: Q132332, inthe
Microsoft Knowledge Base for more information.

WAVE_PATH: Setting Up a Search Path (Windows)

WAVE_PATH sets the function and procedure library directory search path. This
environment variableisalso defined in wvsetup. The search pathisalist of loca
tionsto search if the procedure or functionisnot found in the current directory. The
current directory isaways searched first. PV=WAV E then looks for the function or
procedure in the locations specified by the system variable ! Path. The details of
how !Path isinitialized differ between UNIX and OpenVMS, athough the overall

Modifying Your PV-WAVE Environment (Windows) B-13

concept issimilar. For moreinformation on system variabl es, see System Variables
on page 28.

Setting Up WAVE_PATH on a UNIX System

The environment variable WAVE PATH is a colon-separated list of directories. If
you do not explicitly definewAVE PATH, and you use PV=WAV E’sdefault startup
command file, PV=WAVE startsiits search in the current working directory,
searchesnext in VNI_DIR\wave\lib, and then searches numerous
subdirectoriesof VNI _DIR\wave\demo.

Each user may add directoriesto WAVE_PATH that contain PV=WAV E programs,
procedures, functions, and “include” files. To add the WAVE_PATH environment
variable:

Step 1 Inthe Control Panel, double-click the System icon.

Step 2 Inthe System Properties dialog box, click the Advanced tab, then the
Environment Variable button (or click the Environment tab).

Step 3 Create the new system variable WAVE_PATH and add the paths to the
directories you want included in PV=WAVE's path at startup.

VNI_DIR and WAVE_DIR: Ensuring Access to Required
Files

The VNI_DIR environment variable must be correctly defined in order for
PV=WAVE to run properly; VNI DIR isdefined during the installation process.

All PV=WAVE files are placed in asubdirectory of VNI_DIR that becomes the
top-level directory for PV=WAVE; the path to this directory is stored in the envi-
ronment variable WAVE_DIR. Look in the file system where you have installed
Visua Numerics software and you will see a subdirectory named wave. Thisis
where PV=WAV E has been installed, the directory to which the environment vari-
ablewAVE_DIR points, and where PV=WAVE expectsto find its required files.

To see what the value of WAVE DIR ison your computer, enter the following
command at the prompt of an MS-DOS command prompt window:

echo SWAVE DIR%

NOTE Remember that VNI _DIR and WAVE DIR areonly defined automatically
on the machine where PV=WAV E was installed, and only for the user who per-
formed theinstallation. If you wish to run PV=WAVE on adifferent machine or for

B-14 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

different users, you must explicitly set the value of these variables using the Con-
trol Panel’s System window (on Windows NT) or in the AUTOEXEC . BAT file
(Windows 95) before you run PV=WAV E on that machinefor thefirst time. Or, you
can rerun the installation program (the setup program). For detailed information
on rerunning the setup program, see the Installation Guide. You may also need
to use the File Manager to connect the disk that contains the PV=WAVE files. For
instructions on connecting another disk, consult your Windows documentation.

When Are PV-WAVE’s Environment Variables Defined?

VNI _DIRandWAVE DIR aretheonly environment variablesthat get defined dur-
ing the installation process. Other PV=WAV E environment variables get defined
dynamically as PV=WAVE is started. However, the value of any environment vari-
ablethat has been explicitly defined prior to PV=WAVE startup isleft intact instead
of being redefined during startup. For information about other PV=WAV E environ-
ment variables, refer to subsequent sectionsin this discussion of the PV=WAVE
environment.

Method of Starting PV-WAVE Can Affect Your Environment

When you use System window (launched from the Control Panel on Windows NT
only) to set the value of environment variables, the value applies only to MS-DOS
command prompt windows that you open subsequent to making those changes. A
session of PV=WAVE that you start from a new MS-DOS command prompt win-

dow will be aware of your changes and will honor them.

However, the Windows program group to which PV=WAV E belongs will be
unaware of the changes you made. Consequently, if you start PV=WAVE by click-
ing on anicon in aprogram group, that session of PV=WAV E will also be unaware
of the changes you made. For the program group to be aware of the changes you
made, you must log off and then log back on to your computer.

WAVE_DATA: Retrieving Data Files Directly Where They
Reside

You can storeyour datain adifferent area, e.g., adisk that actually resides on adif-
ferent computer, and still easily access those files, by defining avalue for

WAVE_ DATA prior to starting PV=WAVE. Thisway you can leave your datafiles
intact in the areawhere you first stored them, and not have to specify along path
to them or copy them into your current working directory.

Modifying Your PV-WAVE Environment (Windows) B-15

NOTE Thedefault WAVE DATA path isused by the PV=WAVE Gallery and other
demonstration programs. If you reset WAVE DATA, these demonstration systems
will not work.

Using WAVE_DATA in PV-WAVE Function and Procedure Calls

WAVE DATA specifies asingle path, and this path is used to initialize the
PV=WAVE system variable !Data_Dir. You can then use this system variable as a
shorthand notation for pointing to datafiles, as shown in the following sample
PV=WAVE statements:

OPENR, 1, !Data Dir+’latest.dat’

or

status = DC_READ DIB(!Data Dir+’ztee.bmp’, $
zt, Imagewidth=xsize, Imagelength=ysize)

PV=WAVE does not use a search path when accessing, opening, and closing data
files; it uses only the path that you specify, which is the current working directory
if you have not specified any other path.

NOTE By default, !Data Dir isinitialized during PV=WAVE startup by acall to

setdemo . pro. If the startup command file you are using does not include a call

to setdemo . pro, several system variables, including !Data_Dir, may not beini-
tialized properly. For more details, refer to WAVE_RT_STARTUP: Using a Sartup
Procedure in Runtime Mode on page B-19.

WAVE_DEVICE: Defining Your Terminal or Window System

PV=WAVE must know the type of terminal or window system that you are using.
By default, it assumes win32 (Windows, 32 bit). If you wish, this default can be
changed, as described below.

Changing the Default Device

PV=WAVE sets the value of the environment variable WAVE DEVICE towin32
when it starts. But if you prefer WAVE_DEVICE to have a different value, such as
PS (PostScript), you can enter the following command at the prompt of an
MS-DOS command prompt window:

set WAVE DEVICE=PS

B-16 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

In this situation, PV=WAVE will start as expected, but will send graphics output to
afile using the specified format (PostScript) and the default filename of wave . ps.
You will not be able to display graphics windows on the screen of your computer
until you enter the command:

SET PLOT, ’'win32’

The device name can be entered in either upper or lower case. If WAVE DEVICE
is defined, it must contain the name of avalid PV=WAV E graphics device. For
details, see thelist of valid output devicesin the PV=WAVE Reference.

TIP Usethe DEVICE command to reconfigurethe behavior of any of PV=WAVE's
drivers, including the PostScript driver mentioned in this section. For example, you
could usethe Filename keyword to choose adifferent output filename, or you could
use the Epsi keyword to enable encapsulated PostScript interchange format.

WAVE_STARTUP: Using a Startup Command File

WAVE STARTUP points to the name of acommand file that is executed by
PV=WAVE on initialization. The startup file contains a series of PV=-WAVE state-
ments and is executed each time PV=WAVE is started. Common uses are to
compilefrequently-used procedures or functions, to |oad data, and to perform other
useful operations. It contains PV=WAV E statements which are individually com-
piled and executed, in the same manner as command file execution. For more
information on command files, see Creating and Running a Command (Batch) File
on page 7.

The default startup filename iswavestartup andislocated in

$WAVE DIR%\bin. Thewavestartup fileturns off the compiler messages,
definesthe WAVE > prompt, and then calls the Standard library routine

setdemo . pro. Thisroutine setsup the default key bindingsfor thefunction keys
and displays their definitions upon entering PV=WAVE. For more information
about the SETDEM O command, see the PV=WAVE Reference.

To use adifferent PV=WAVE startup file:

A Createafile containing the commands you want to be executed every timeyou
start PV=WAVE. For example, assume the startup file named
startfile.txt containsthefollowing statements:

.RUN add.pro
.RUN square.pro
INFO

Modifying Your PV-WAVE Environment (Windows) B-17

A Inan MS-DOS command prompt window, enter this command to set the envi-
ronment variable WAVE STARTUP to the name of the file to be executed:

set WAVE STARTUP=startfile.txt

Thestartup file compiles ADD and SQUARE and displaysgeneral information
about the current status of PV=WAV E before displaying the normal WAVE >
prompt. The messages you see when you start PV=WAV E this way are shown
in Figure B-1 below.

To use this startup file every time you start PV=WAVE use the System icon in
the Windows Control Panel (Windows NT) or modify the AUTOEXEC . BAT
file (Windows 95).

= PY-WAVE Console - z:\devel\wavelhintbin.i3B6nt\wave.exe A | -

[z:%docs]
twdocs]

wdocs]
twdocs]
indoes 1
[z:%docs]
[=:“docs luave

PU-UAVE CL Verszion 6.82 (i386nt Windows-NT 8BxEBG6).
Copyright <G> 1995%, Uisual Mumerics,. Inc.

All rights reserved. Unauthorized reproduction prohibited.
¢ Windows NT version 3.51 build 1857

PU-WAVE v6.B2 Build #4688 <(Sun Jan 28 22:51:34 MST 19962

¢« Compiled module: ADD.
¢ Compiled module: SQUARE.
¢ At SMAINS .
Code area used: B.88x (B-768). Data area used: B8.88x (B-8888>
local variables <{including B parameters>: 6-5808
common symhols: B-8
Baved Procedures:
ADD SQUARE
Baved Functions:

AVE>

Figure B-1 The appearance of a PV=WAVE Console window when a startup file is being
used. The messages that get printed to the screen vary depending on the exact contents of
the startup file.

TIP When you create anew startup file, start with acopy of PV=WAVE's default
startup file, wavestartup. Thisway, you will still define a default WAVE >
prompt and default behavior for function keys. Also, you will not inadvertently dis-
ablethe setupsfor aPV=WAVE feature, e.g., the PV=WAV E gallery, that you might
want to use later.

WAVE_FEATURE_TYPE: Setting the Default Operating

B-18 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

Mode

The environment variable WAVE_ FEATURE_TYPE letsyou set the default operat-
ing mode of PV=WAVE to “runtime”’. When this environment variableis set to RT,
compiled PV=WAV E applications can be executed directly from the operating sys-
tem prompt without using the - r option. For example:

C:\ set WAVE FEATURE TYPE=RT
Set the environment variable.

C:\ wave somerset
Run a compiled, saved PV=WAVE application called somerset.

WAVE_RT_STARTUP: Using a Startup Procedure in Runt-
ime Mode

WAVE _RT STARTUP pointsto the name of acompiled procedure file that is exe-
cuted when PV=WAVE initializes in runtime mode. The startup file may contain
saved, compiled PV=WAV E routines that are executed each time PV=WAVE is
started in runtime mode.

Windows USERS For moreinformation on saving and using compiled routines,
see Runtime Mode for Windows on page 15.

Thedefault startup filenamethat PV=WAVE looksfor whenitisrunning in runtime
modeis:

$WAVE DIR$\LIB\STD\rtwavestartup.cpr

WAVE_INIT_CODESIZE: Setting Initial Size of the Code
Area

The environment variableWAVE INIT CODESIZE letsyou settheinitial size of
the code areafor PV=WAVE. For example:

C:\ set WAVE INIT CODESIZE 2000000
Set the initial size of the code area to 2 MB.

WAVE_INIT_LVARS: Setting Initial Value for Number of
Local Variables

The environment variable WAVE INIT LVARS letsyou set theinitial number of
local variables for PV=WAVE. For example:

C:\ set WAVE INIT LVARS 400

Modifying Your PV-WAVE Environment (Windows) B-19

Set the initial number of local variables to 400.

Changing the PV-WAVE Prompt

Thetext string PV=WAVE uses to prompt you for input is specified by the system
variable 'Prompt. You can change the prompt by setting this system variableto the
new prompt string. The prompt is currently defined in the file wavestartup.

Here's an example showing how to tailor your prompt to display text:
!Prompt = ‘Hello World!s> '’

Here' sanother example that causes PV=WAV E to echo the text string, plusring the
bell on the termina when prompting:

!|Prompt = ‘Hello World!s ' + STRING(7B)

The ASCII code for the bell is 7. It does not have a printable representation, so it
is specified using the value 7.

Windows USERS See Representing Nonprintable Characterswith Windows on
page 24.

TIP You can also place aprompt definition inyour WAVE STARTUP file; thisfile
isdescribed in WAVE_STARTUP: Using a Startup Command File on page B-17 of
this guide.

For an aternate way to modify the prompt, see the description of the PROMPT pro-
cedure in the PV=WAVE Reference.

B-20 Appendix B: Modifying Your Environment PV-WAVE Programmer’s Guide

Programmer’s Guide Index

A

ABS function 22

absolute value 22

access mode, for VMS 205
actual parameters 218-220
addition operator 38

See also operators

AND operator 41

See also operators

annotation

See also string processing; strings; fonts

arithmetic errors, checking for 245
arithmetic operations, overflow condition 21
arrays

accessing 260
assignment statements 50-51
associative 104
* (asterisk) in notation 75
columns in 40
combining 78-81
concatenation operators 40
degenerate dimensions 76
eliminating unnecessary dimensions 73
extracting fields from 34
functions to create from various data

types 36
indexed by rows and columns 71
lists 104
masking 45
multidimensional subscripts 72
non-existent element, referencing 72
of structures 99
reading

data into 168, 169

rows in 40
storing elements with array subscripts 81

structures with 97-99

subarrays 76

subscripts
multidimensional 72
of other arrays 76-78
storing elements 81

subsetting with relational operators 44

transposition of 40
ASCII

See also input/output

fixed format I/O 148, 149

formatted files 139

free format 148—-149

row-oriented files 140
assignment operator 38

See also operators
assignment statements 48-53
ASSOC function 145, 147
associated variables

advantages 195

description of 26

efficiency of 194

example 195-196

exporting image data with 176

in assignment statements 53

in relation to UNIX FORTRAN

programs 199

writing into 198
associative arrays, defining 104
attributes

of an expression 251

of variables 26

VMS record 206-207

B

batch files. See command files

Index -

21

BEGIN statement 53
binary data
See also input/output
advantages and disadvantages of 144
comparison with ASCII, input/output 145
efficiency of 174
procedures, input/output 147, 174
reading FORTRAN files 204
record length 142
record-oriented 143
strings, transferring 182
UNIX vs. FORTRAN 183
VMS 143
block-mode file access (VMS) 205
blocks of statements 53-55, 64
breakpoints
clearing in debugger 282
setting in debugger 281
byte
See also BYTE function; data types
a basic data type 19, 25
converting characters to 33, 116
reading from XDR files 190
BYTE function 34, 117,183

C

carriage control
VMS FORTRAN, table of 207
VMS output 206
case folding 117
CASE statement 55
changing the PV-WAVE prompt B-20
characters
See also annotation; fonts; strings; string
processing
extracting 120
in regular expressions 125
non-printable, specifying 24, 116
non-string arguments to string routines
122
CHECK_MATH function 33, 244, 245
clipboard
command line functions 211
menu controls 211
used to exchange image data 210
closing
files 135
code area, PV-WAVE 224

code size

setting at startup 17
color

images 175

pseudo 175

represented by shades of gray 175

TIFF files 178
color tables

saving in TIFF file 178
column-oriented data

ASCII files 139

FORTRAN write 168

in arrays 40

transposing with rows 40
command files

creating and running 7, 8

differ from main programs 7

executing at startup B-5, B-17
command line editing 271
command recall

with INFO command 271
comment, adding a 48
common block

COMMON statement 56, 230

creating common variables for

procedures 229

use of variables 56
compiled files. See runtime mode
compiling

See also executive commands;

programming; runtime mode

automatically 5, 61, 218, 223

interactively 223

procedures and functions 222

.RUN with filename 17, 222

run-time 253

saving compiled procedure 13, 15

system limits 224

with EXECUTE function 253
complex

constants 22

data type 19, 25, 141

double-precision type 19, 25

numbers 22

variables, importing data into 152
COMPLEX function 34
concatenating strings 114
concatenation operators 40

See also operators

22 Index -

PV-WAVE Programmer’s Guide

constants

types of 20

using correct data types 259
conversion character. See format strings
conversion functions 32
converting

data to

string type 115

mixed data types in expressions 259

radians to degrees 28

strings, case of 117
cpr files. See runtime mode
customizing PV-WAVE

prompt string B-20

your environment (Windows) B-9

D

data
See also data types; extracting data; files;
input/output; reading; writing
CSV format 147
drop-outs 52
files
pointing to with WAVE_DATA B-15
where to store B-15
fixed format I/O 146, 155, 163
floating-point, with format reversion A-5
formatting
into strings 115
strings A-1-A-2
with STRING function 183
free format
ASCII I/0 151, 153, 155
output 155
logical records 142
record-oriented 144
row-oriented 140
sorting tables of formatted data 163
types of 19
unformatted 179
data area, PV-WAVE 225
data types
combining in arrays 36
constants 19
eight basic 31
mixed, in
expressions 32
relational operators 43

of variable, determining 251
IData_Dir system variable B-16
date/time data

reading into PV-WAVE 160

transfer with DC_READ_FIXED 163

transferring with templates 158-159
DC (Data Connection) functions

advantages of 146

for simplified data connection 146

opening, closing files 135
DC_READ_FIXED function 150, 163—

171,173, A-7
DC_READ_FREE function 132, 149
DC_READ_TIFF function 147, 177
DC_READ_24_BIT function 147
DC_READ_8_BIT function 147
DC_WRITE_FIXED function 150
DC_WRITE_FREE function 132, 149
DC_WRITE_TIFF function 147, 177
DC_WRITE_24_BIT function 147
DC_WRITE_8_BIT function 147, 177
deallocating

file units 202

LUNs 135, 138
debugger 275
DECLARE FUNC statement 60
declaring functions 60
DECStation 3100, error handling 247
degrees

convert from radians 28
DELSTRUCT procedure 92
DELVAR procedure 92
device drivers

getting information about 269
DIB data

input/output 211
digital gradient function 220
dimensions of expressions, determining

251
directory path

IPath 9
disappearing variables 231, 238
$ (dollar sign) in command files 8
double complex

data type 19, 25
double-precision

complex data type 19

constants 21

data type 19

Index - 23

dynamic
data types 32
definition of environment variables
(Windows) B-15
structures 32

E

editor, in debugger 281
8-bit image data
how stored 175
ELSE
in CASE statement 55
in IF statement 63
EMF files
input and output 211
END statement 53
ENDCASE, end statement 55
ENDIF, end statement 63
ENDREPEAT statement 55
ENDWHILE statement 55
environment
modifying (UNIX/OpenVMS) B-1
modifying (Windows) B-9
environment variables
changing B-1
changing (Windows) B-9
don’t seem to be defined properly
(Windows) B-15
VNI_DIR (Windows) B-14
WAVE_DATA (Windows) B-15-B-16
WAVE_DEVICE B-1-B-2
WAVE_DEVICE (Windows) B-16
WAVE_DIR B-2
WAVE_DIR (Windows) B-14
WAVE_FEATURE_TYPE B-6
WAVE_INIT_CODESIZE B-7, B-19
WAVE_INIT_LVARS B-7, B-19
WAVE_PATH B-3-B-4, B-13-B-14
WAVE_RT_STARTUP B-6
WAVE_STARTUP B-5-B-6

WAVE_STARTUP (Windows) B-17, B-19

Windows B-11
EOF function 160, 200
EQ operator 45

See also operators
equality operator 45

See also operators
error handling

See also debugger; math errors
accumulated math error status 244
arithmetic 243
categories of 237
DECStation 3100 247
during program execution 238
enabling/disabling math traps 246
floating-point 243
input/output 135, 240
list of procedures 237
machine dependent handling 247
mechanism in procedures and
functions 230
message
issuing 231, 241-242
OpenVMS 248
options for recovery 238
overflow 245
recovery from 230
running SunOS Version 4 247
SGlI IRIX 5.3 workstations 248
Sun-3 and Sun-4 247
escape sequences, creating 24
Excel. See Microsoft Excel
exclusive OR operator 42
See also operators
executing
application in debugger 277, 283
command files 8
commands from a function 226, 253
interactive programs 3
main programs 6
executive commands
.LOCALS 226
..LOCALS compiler directive 226
.RUN
compiling functions and proce-
dures 222
syntax 222
.SIZE 225
explicitly formatted. See fixed format
exponentiation operator 39
See also operators
exporting data. See data; writing
expressions
efficiency of evaluation 258
evaluation of 32
finding attributes of 251
forcing to specific data types 33

24 ndex -

PV-WAVE Programmer’s Guide

general description 29

invariant 260

structure of 35-37

type and structure of 31, 35

with mixed data types 259
extracting data from variables 34-35

F

files
access mode, VMS 205
allocating units 134, 138
closing 135
column-oriented ASCII 139
CSV format 147
deallocating LUNs 135, 138
fixed format /0O 155
formatting, codes for A-8-A-21
free format ASCII I/O 148
getting information about 200, 270
indexed files for VMS 207
1/0 with structures 100
locating on disk 199
locating on disk (Windows) B-15
logical records, changing size of 142
logical units 134
opening 134-135
organization of VMS 204
organization options 139
pointer, positioning 200
portable binary 188
record-oriented binary files 143
row-oriented 140
standard input, output and error 135
startup command (Windows) B-17
testing for end of file 200
UNIX 203
VMS 198, 205-207
XDR 189
FINDFILE function 199
FINITE function 33, 244
FIX function 33-34
fixed format
ASCII I/0 148, 149
choosing 148
comparison with free format 146
data, examples of reading 164
I/0 155, 163

fixed-length record format, VMS 198, 205

FLOAT function 34
floating-point
constants 21
data type 19, 25
errors 243
FLUSH procedure 150, 199
flushing
file units 199
FOR statement 57-60
force fields
examples 58
increment parameter 58
simple 58
formal parameters
copying actual parameters into 219
definition of 218
format reversion A-4
format strings
C conversion characters A-19—-A-20
C format codes A-19-A-21
definition of A-1
discussion of 155-158
for data transfer 156
FORTRAN format codes 171, A-8-
A-18
group repeat specifications A-6
how to use A-2
interpreting 156
reading multiple array elements 171
reversion 157, A-4
when to use 156
formatted data
rules for 151, 156
strings 115
structures for I/0 101
using STRING function 173
FORTRAN programming language
binary data, reading with PV-WAVE
204
format strings 171, A-8-A-18
on UNIX 183
free format
ASCII /0 148-149
input 151-152
output 155
FREE_LUN procedure 138
FSTAT function 201-202
FUNCTION definition statement 218
function keys

Index - 25

equating to character strings B-8
getting information about 271

functions

G

compiling with .RUN and filename 17
copying actual parameters into formal
parameters 219
creating
interactively 4
with a text editor 5
declaring 60
defining 218
discussion of 217
keyword parameters 61
libraries of VMS 233
parameters 218
actual 218
passing mechanism 228
positional 61
search path B-3-B-6, B-13-??
type conversion 32
user-defined 224

GE operator 45

See also operators

GET_KBRD function 148, 203
GET_LUN procedure 138
GOTO statement 48, 62
graphics

device driver, changing B-16

greater than 30

See also operators

greater than or equal 30

See also operators

group repeat specifications A-6

See also format strings

GT operator 45

H

See also operators

help, online

file information 200
information, on a session 267

/

IF statement
avoiding 256
discussion of 62-64
images
8-bit format 175
how stored 175
interleaving 176, 178
output 176
reading
associated variable method 195
block of data from tape 210
storing data 175
24-bit format 175
IMAGINARY function 22
inclusive OR operator 42
See also operators
indexed files, VMS 207
INFO procedure
detailed examples 267
input/output
See also error handling; format
strings; reading; writing
ASCII, pros and cons of 145
associated variables 194
binary data
portability 189
procedures 174
pros and cons of 145
record-oriented files 143
string variables 182
choosing a method 145
DIB data 211
EMF data 211
fixed formats 155
fixed vs. free format data 146
free format 151
image data 175
portable binary 189
PV-WAVE and C program 179
record-oriented binary files 143
strings with structures 102
structures 100
unformatted
associated variable 194
discussion 151
in structures 101
string variables 152, 181

26 Index -

PV-WAVE Programmer’s Guide

VMS binary files 143
when to open a file 135
XDR files 188
integer
constants 20
conversions, errors in 245
data type 19, 25
data, shown in figure 141
output, for format codes A-14
syntax of constants 20
writing with format reversion A-4-A-5
interapplication communication
C programs
creating XDR files 191
reading files with 181
writing to PV-WAVE 179
interleaving
description of 176
image data 176, 178

pixels 178
invariant expressions, removing from loops
260
J
journaling
description of 10
examples 11

in relation to PRINTF 11

K

keyboard

accelerators B-8

bindings used in debugger 281

defining keys B-8

getting input from 203

show current bindings 271
keywords

checking for presence of 250

definition of 219

examples 221

functions, using with 61

passing of 219
KEYWORD_SET function 249

L

LE operator 30, 45
See also operators
less than 30, 45
See also operators
less than or equal 30, 45
See also operators
libraries
creating and revising for VMS 234—
235
Standard (std) 231
Users’ 231-233
VMS procedure, searching 233
linear algebra
rules 39
lists, defining 104
local variables
setting number of at start up 17
local variables, definition of 221
.LOCALS 226
..LOCALS 226
logical operators 43
See also operators
logical records 142
logical unit number. See LUNs
longword
data type 19
integer, on Digital UNIX 188
loops. See statements
LT operator 30, 45
See also operators
LUNs
getting information using FSTAT 201
operating system dependencies 137
reserved 135-136
to open and close files 134
use of 136-138

M

magnetic tape
accessing under VMS 208
main
programs, executing 6
program, definition of 6
program, differs from command file 7
program, re-using 7

Index - 27

Visual Numerics directory (Windows) B-14
masking
arrays 45
math errors
See also error handling
accumulated math error status 244
detection of 243
hardware-dependent 247
procedures for controlling 237
traps, enabling/disabling 246
matrix
expressions 88
multiplication 39, 84
printing
interactively 84
reading
from a file 86
interactively 84
subarrays 87
subscripts 72
maximum operator 44
See also operators
memory
See also virtual memory
allocation 226
order and arrays 260
physical 261
message
error 231, 241-242
Microsoft Excel
importing data from PV-WAVE 213
transferring spreadsheet data to PV-
WAVE 213
minimum operator 44
See also operators
modulo operator 40
See also operators

N

NE operator 45
See also operators
nested procedures, getting information on 273
non-printable characters 24
not equal 30
See also operators
NOT operator 42
See also operators
N_ELEMENTS function 250

N_PARAMS function 249
N_TAGS function 103

(0,

ON_ERROR procedure 231, 237
ON_IOERROR procedure 237, 240
opening files. See files
OPENR procedure 134
OPENU procedure 134
OPENW procedure 134
operands, checking validity of 244
operating system
See also interapplication
communication; UNIX operating
system; VMS operating system;
Windows operating system
operators
Boolean 41
general description 29
grouping of expressions 38
hierarchy of 30
list of 37
precedence 30
relational 43
using with arrays 44
OPI applications
bindings 307
creating 295
error handling 345
example 293
keyword processing 302
license management 303
loading 288
required files 291
runtime mode 16
summary of variable-handling
routines 311
unloading 288
variable handling 311
Option Programming Interface. See OPI
applications
OR operator 42
See also operators
overflow
See also error handling
checking for in integer conversion
245
in type conversions 33

28 Index -

PV-WAVE Programmer’s Guide

with integer arithmetic 21

P

padding
bytes 101
page faults 261
page file quota 265
parameters
See also keywords
actual 218
checking for
number of 249
copying 219
formal to actual correspondence 219
number required 220
passing
by reference 228
by value 228
mechanism 97, 218, 228
positional 219
PARAM_PRESENT function 249, 251
IPath system variable B-10
Pgflquo 264
pixels
interleaving 176, 178
plotting
IP system variable 28
POINT_LUN procedure 200, 205
portable data, XDR 188-189
PRINT procedure 149
PRINTF procedure 11, 149
printing
formatted data 173
PRO statement 218
significance of 6
Procedure Call statement 64
procedures
actual parameters 218
automatic compiling, conditions for 61
compiling 222
compiling with .RUN and filename 17
creating with editor 5
discussion of 217
libraries of VMS 233
parameters 218
sources of 64
program
call stack 242

code area full 224
control routines 237, 252
creating 5
data area full 225
declaring functions 60
determining number of parameters
249
file search method B-4, B-10
formal parameters 218
format of 6, 7
increasing speed of 255
information on a 272
list of compiled 272
main PV-WAVE 6
maximum size of code 268
nested, information on 273
number of
parameters 249
required parameters 220
required components 220
running as batch 8
search path 9, B-3, B-13
submitting to Users’ Library 232
user-written 61
programming
See also debugger; error handling;
WAVE Widgets; Widget Toolbox
accessing large arrays 260
code size 268
commenting programs 48
efficiency 256
format strings A-1-A-2
tips 255-266
virtual memory
minimize allocation 265
running out of 262
IPrompt system variable B-20
prompt, changing B-7, B-20
pseudo-color
images 175
PV-WAVE session
customizing (Windows) B-9
how affected by environment
variables (Windows) B-15
recording 10

R

radians, converting to degrees 28

Index - 29

random file access 205
READF procedure 149, 164, 169, 172
reading

binary files 180

binary files between different systems 188

byte data from an XDR file 190

C-generated XDR data 191

CSV data 147,213

date/time data 153, 160

DC_READ routines A-7

DIB data 211

EMF data 211

files, using C programs 181

fixed-format ASCII data 163

freely-formatted ASCII data 149

from magnetic tapes 208

into complex variables 152

into structures 153

keyboard input 203

multiple array elements 168

multiple array elements with FORTRAN
format string 171

records with multiple array elements 168—

171

row-oriented FORTRAN written data 170

tables of formatted data 163
unformatted data 179
word-processing data 164
XDR files 192
8-bit image data 175
READU procedure 147
record attributes of VMS files 206
record-oriented, binary files 144
records
definition of 142
extracting fields from 34
fixed length format (VMS) 198, 205
length of 142
multiple array elements 168—172
recovering from errors 238
registry B-13
registry, Windows B-11
regular expressions 123-129
relational operators 43
See also operators
REPEAT statement 67
REPLICATE function 99, 180
reserved LUNs. See LUNs
reserved words 27

RETALL procedure 231
RETURN procedure 61, 220, 231
reversion, format 157, A-4
REWIND procedure 208
RGB
triplets 178
RMS files, reading images 198
row-oriented
ASCII data 140
FORTRAN write 170
.RUN 222
See also executive commands
running. See executing
runtime mode
compilation of statements 12
compiling procedures for 13
definition of 12
developing applications 14
OPI applications 16
search path 14
starting PV-WAVE in 13, 15

S

saving
TIFF data 177
scalars
arrays, relation to 266
combining with subscript arrays or
ranges 80
definition of 26
subscripting 74
searching
for VMS libraries 233
semicolon after @ symbol 9
set command
for WAVE_DEVICE B-16
for WAVE_FEATURE_TYPE B-19
for WAVE_STARTUP 15, B-18
setenv UNIX command
for WAVE_DEVICE B-2
for WAVE_PATH B-3
for WAVE_STARTUP B-5
setup program, for PV-WAVE (Windows)
B-15
Silicon Graphics IRIX 5.3, error handling
248
.SIZE 225
SIZE function 251-252

30 Index -

PV-WAVE Programmer’s Guide

SKIPF procedure 208
sorting
tables 167-168
source file. See debugger
spheres
See also rendering
standard error output 135
standard input 135
Standard Library
location of 3, 232
suggestions for writing routines 232
standard output 135
starting PV-WAVE
flag for code size 17
flag for number of local variables 17
from program group B-15
not working as expected B-15
startup file
for UNIX B-5
for VMS B-6
for Windows B-17
statements
assignment 48-49
blocks of 53
CASE 55
changing data types 50
COMMON block 56

compiling and executing with EXECUTE

function 253
components of 47
GOTO 62
IF 62, 63
labels 48
list of 12 types 47
procedure calls and definition 64
REPEAT 67
runtime compilation 12, 13
spaces in 48
tabs in 48
types of 47
stream mode files, VMS 206
STRING function 34, 173
string processing
extracting substrings 120
inserting substrings 114, 120
locating substrings 120-121
non-string arguments 122
obtaining length of strings 119
removing white space 114, 118

working with text 113
strings
See also annotation; fonts; string
processing
basic data type 25
binary transfer of 181
concatenating 114
constants 22
converted from byte 116
converting to byte 183
definition of 113
determining length of 114
examples of string constants 22
formatting 114
FORTRAN and C formats 156
importing with free format 152
initializing to a known length 183
input/output with structures 102
length issues with structures 102
operations supported 113-114
substrings 120
used in structures 102
writing to a file 155
STRLEN function 114
STRLOWCASE function 117
STRMID function 121
STRPOS function 120
STRPUT procedure 121
STRTRIM function 118-119
STRUCTREF function 91
structures
advanced usage 103
arrays 97, 99
associative arrays 104
data type 25
defining 90
deleting 90-91
formatted input/output 101
getting information about 96, 272
importing data into 153
input and output 100
lists 104
number of tags in 103
passing as parameters 97
references 94-95
replicating 99
scope of named and unnamed 92
string
input/output 102

Index - 31

length issues 102
subscripted references 94
tag names

reference to a field 94
unformatted input/output 101
unnamed, creating 92
writing 101

STR_TO_DT function 161
subarrays
See also arrays; subsetting
structure of 76
subscript range use 87
submatrices
See also matrix; subsetting
subscript range use 87
subscripts
arrays of 52
* (asterisk) operator 75
combining arrays with 79-81
matrices, use in 72
multidimensional arrays 72
notation for columns and rows 71
ranges 51

list of 4 types 74-75

summary table of 75

to select subarray 74
reference syntax of 71
scalars, use with 74
storing elements with 81
structure references 94
subscript arrays 49

subsetting
relational operators, use of 44
subarrays, selecting ranges of 74-78
subtraction operator. See operators
SunOS Version 4, error handling 247
swap area. See virtual memory
SYSGEN parameters
VIRTUALPAGECNT 264
WSMAX 264
system variables
definition of 28
getting information about 273
passing 228-229
values of 273

T

examples 167
sorting 167-168
tabs in statements. See statements
tag
See also data types; unnamed
structures
definition of 89
field reference in structure 94
names in a structure 103
numbers of 103
TAG_NAMES function 103
tape, magnetic
accessing under VMS 208
end of file mark 208
mounting a tape drive (VMS) 209
reading from 208-210
rewinding 208
skipping records or files 208, 209
writing to 208
TAPRD procedure 208
TAPWRT procedure 208
TeX documents. See LaTeX documents
text. See annotation; characters; fonts;
string processing; strings
TIFF
compression of files 177
conformance levels 178
reading a file in 177
saving data in TIFF format 177
TOTAL function 40
traceback information 242
transferring data. See input/output; read-
ing; writing
TRANSPOSE function 40
transposing
rows and columns 40
24-bit image data
storing 175
types
See also data types 31, 35

U

unformatted data
See also input/output
advantages/disadvantages of 144
input/output 101, 151, 152, 181,

194
tables reading
32 Index - PV-WAVE Programmer’s Guide

associated variable method 194
FORTRAN generated in UNIX 183
FORTRAN generated in VMS 186
problems in 189

routines for transferring 149

UNIX operating system

description of files in 203-204
environment variable

WAVE_DIR B-2
FORTRAN programs with ASSOC 199
reading data in relation to FORTRAN 183
reserved LUNs 137
virtual memory 263
writing FORTRAN programs to PV-WAVE

184

unnamed structures

creating 92-94
uses for 92

updating a file, using OPENU 133
Users’ Library

v

documentation for 233
location of 231

submitting programs to 232
support for routines in 233

variable length record format files, VMS 206
variables

associated 26, 53, 198
attributes 25
checking for undefined 250
complex, importing data 152
data types 26
definition of 24
determining

data type of 251

number of elements in 250
disappearing 231, 238
examining in debugger 283
forcing to specific data type 33
in common blocks 56
local, definition of 221
naming conventions 26
size and type information 26, 251
structure of 26
system. See system variables
types of 26

vector

definition of 26
subscripts 76
using as subscripts to other arrays
78
vertex lists
See also polygons
virtual memory
description of 261
in relation to PV-WAVE 261
in relation to swap area 263
minimizing use of 265
swap area, increasing 263
UNIX 263
variable assignments 262
VMS 263
virtual page count parameter 264
VMS operating system
access mode 205
accessing magnetic tape 208
binary data 143
data files, information on 204
error handling 248
files 204-207
formal parameters for procedures
and functions 220
FORTRAN programs, writing 186
libraries 233-234
mounting a tape drive 209
offset parameter 198
record attributes 206
record-oriented data, transferring
144
reserved LUNs 137
RMS files, reading images 198
setting WAVE_DIR B-2
stream mode files 206
variable length format 206
virtual memory 263
working set size 264
VNI_DIR
description of B-15
UNIX system B-3
Windows system B-14

w

wavestartup file B-5
wavestartup file (Windows) B-17
wave_assign_num 317

Index - 33

wave_assign_string 317
wave_assign_struct 317
wave_compile 314
WAVE_DATA B-15-B-16
WAVE_DEVICE B-1-B-2, B-16
WAVE_DIR B-2, B-14, B-15

OpenVMS system B-2

UNIX system B-2

Windows system B-14
wave_execute 313
wave_free_WCH 317
wave_free_wsdh 337
wave_free_WVH 323
wave_get_unWVH 322
wave_get_ WVH 321
wave_interp 316
WAVE_PATH B-3-B-4, B-13-B-14
WAVE_STARTUP B-5-B-6, B-17
wave_type_sizeof 330
wave_wsdh_from_name 336
wave_wsdh_from_wvh 335
WEOQOF procedure 208
WHERE function 50, 52, 257
WHILE statement 68

wildcards, vs. regular expressions 128

window systems

defining with WAVE_DEVICE B-1-B-2

Windows B-9-B-20

X Windows B-8
Windows

autoexec.bat B-11

environment variables B-9, B-11, B-15

program group B-15
registry B-9, B-11

word-processing application, reading data from

163
working set
description of 261
page maximum parameter 264
quota 265
WRITEU procedure 147, 180
writing
binary data file 180
CSV data 147,213
DIB data 211
EMF data 211
flushing buffers 199
free format data 155

integer data, using format reversion A-4—

A-5

strings to a file 155, 182

to tape (VMS) 208

unformatted data 179

with UNIX FORTRAN programs 184

with VMS FORTRAN 186
wsdh_element 342
wsdh_name 338
wsdh_ntags 339
wsdh_offset 341
wsdh_sizeofdata 341
wsdh_tagname 339
Wsquo quota 264
wvh_dataptr 334
wvh_dimensions 329
wvh_is_constant 333
wvh_is_scalar 332
wvh_name 324
wvh_ndims 327
wvh_nelems 328
wvh_sizeofdata 330
wvh_type 326

X

X Window System

using with PV-WAVE B-8
XDR data, reading and writing 188-193
XOR operator 42

See also operators

Z

34 Index -

PV-WAVE Programmer’s Guide

	PV-WAVE Programmer's Guide
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - PV-WAVE Programming
	Where to Find Libraries of PV-WAVE Programs
	Creating Your Own Library

	Creating and Running Programs
	Creating and Running Programs Interactively at the Command Line
	Creating and Running a Function or Procedure
	Creating and Running Main Programs
	Creating and Running a Command (Batch) File
	Creating Journal Files

	Using PV-WAVE in Runtime Mode
	Runtime Mode for UNIX and OpenVMS
	Runtime Mode for Windows
	Runtime Mode for Dynamically Loaded Options
	Other Ways to Run the Program

	Startup Flags

	2 - Constants and Variables
	Constants
	Numeric Constants
	String Constants

	Variables
	Attributes of Variables
	Names of Variables
	System Variables

	3 - Expressions and Operators
	Operator Precedence
	Type and Structure of Expressions
	Type Conversion Functions
	Extracting Fields

	Structure of Expressions
	PV-WAVE Operators
	Assignment, Array, and Numeric Operators
	Boolean Operators
	Relational Operators

	4 - Statement Types
	Components of Statements
	Statement Labels
	Adding Comments

	Assignment Statement
	Form 1
	Form 2
	Form 3
	Form 4
	Associated Variables in Assignment Statements

	Blocks of Statements
	CASE Statement
	Common Block Definition Statement
	FOR Statement
	Form 1: Implicit Increment
	Form 2: Explicit Increment

	Function Declaration Statement
	Function Definition Statement
	Automatic Compilation of Functions and Procedures

	GOTO Statement
	IF Statement
	Definition of True in an IF Statement

	Procedure Call Statement
	Examples
	Positional Parameters and Keyword Parameters
	More On Parameters

	Procedure Definition Statement
	REPEAT Statement
	WHILE Statement

	5 - Using Subscripts with Arrays
	Syntax
	Subscript Reference Discussion
	Examples

	“Extra” Dimensions
	Subscripting Scalars

	Subscript Ranges
	Structure of Subarrays
	Examples

	Arrays as Subscripts to Other Arrays
	Combining Array Subscripts with Others
	Combining Array Subscripts with Scalar or Range Subscripts
	Combining with Other Subscript Arrays

	Storing Elements with Array Subscripts
	Memory Order
	Matrices
	Reading and Printing Matrices Interactively
	Reading a Matrix From a File
	Printing a Matrix to a File
	Subarrays
	Matrix Expressions

	6 - Working with Structures
	Introduction to Structures
	Defining and Deleting Structures
	Example of Defining a Structure
	Deleting a Structure Definition
	Creating Unnamed Structures

	Structure References
	Subscripted Structure References
	Examples of Structure References
	Using INFO with Structures
	Parameter Passing with Structures
	Storing into Structure Array Fields

	Creating Arrays of Structures
	Examples of Arrays of Structures

	Structure Input and Output
	Formatted Input and Output with Structures
	Unformatted Input and Output in Structures
	String Input and Output
	String Length Issues

	Advanced Structure Usage
	Example of Tag Indices

	Working with Lists and Associative Arrays
	Defining a List
	Defining an Associative Array
	Defining a List within a Structure within an Associative Array
	How to Reference a List
	How to Reference an Associative Array
	Supported Operations for Lists
	Supported Operations For Associative Arrays
	Lists, Associative Arrays Input and Output

	7 - Working with Text
	Example String Array
	Basic String Operations
	Concatenating Strings
	String Formatting
	Using STRING with Byte Arguments

	Converting Strings to Upper or Lower Case
	Removing White Space from Strings
	Determining the Length of Strings
	Manipulating Substrings
	Using Non-string and Non-scalar Arguments
	Using Regular Expressions
	Simple Regular Expressions: A Brief Introduction
	Basic Special Characters Used In Regular Expressions
	Escaping Special Characters
	Practical Regular Expression Examples
	Regular Expressions vs. Wildcard Characters
	For More Information

	8 - Working with Data Files
	Simple Examples of Input and Output
	Opening and Closing Files
	Opening Files
	Closing Files

	Logical Unit Numbers (LUNs)
	Reserved Logical Unit Numbers (–2, –1, 0)
	Logical Unit Numbers for General Use (1º99)
	Logical Unit Numbers Used by GET_LUN/FREE_LUN (100º128)

	How is the Data File Organized?
	Column-Oriented ASCII Data Files
	Row-Oriented ASCII Data Files
	How Long is a Record?

	Types of Input and Output
	Each Type of I/O has Pros and Cons
	Functions for Simplified Data Connection
	Binary I/O Routines
	ASCII I/O Routines
	Other I/O Related Routines

	Free Format Input and Output
	Free Format Input
	Free Format Output

	Explicitly Formatted Input and Output
	Using FORTRAN or C Formats for Data Transfer
	Transferring Date/Time Data
	Reading, Sorting, and Printing Tables of Formatted Data
	Reading Records Containing Multiple Array Elements
	Using the STRING Function to Format Data

	Input and Output of Binary Data
	Input and Output of Image Data
	READU and WRITEU
	Transferring Data with READU and WRITEU
	Binary Transfer of String Variables
	Reading UNIX �FORTRAN-�Generated Binary Data
	Reading OpenVMS �FORTRAN-�Generated Binary Data
	Reading and Writing Long Integers Under Digital UNIX

	External Data Representation (XDR) Files
	Opening XDR Files
	Transferring Data To and From XDR Files
	XDR Conventions for Programmers

	Associated Variable Input and Output
	Advantages of Associated File Variables
	Working with Associated File Variables
	How Data is Transferred into Associated Variables
	Using the Offset Parameter
	Writing Associated Variable Data
	Binary Data from UNIX FORTRAN Programs

	Miscellaneous File Management Tasks
	Locating Files
	Flushing File Units
	Positioning File Pointers
	Testing for End-of-File
	Getting Information About Files
	Getting Input from the Keyboard

	UNIX-Specific Information
	Reading FORTRAN-Generated Binary Data

	OpenVMS-Specific Information
	Organization of the File
	Access Mode
	Record Format
	Record Attributes
	File Attributes
	Creating Indexed Files
	Accessing Magnetic Tape

	Windows-Specific Information
	Exchanging Image Data Using the Clipboard
	Input and Output of DIB and Metafile Images
	Transferring Data from PV-WAVE to Microsoft® Excel
	Transferring Data from Microsoft® Excel to PV-WAVE

	9 - Writing Procedures and Functions
	Procedure and Function Parameters
	Correspondence Between Formal and Actual Parameters
	Copying Actual Parameters into Formal Parameters
	Number of Parameters Required in Call
	Example Using Keyword Parameters

	Compiling Procedures and Functions
	Using .RUN with a Filename
	Compiling Automatically
	Compiling with Interactive Mode

	System Limits and the Compiler
	Program Code Area Full
	Program Data Area Full

	Using the ..LOCALS Compiler Directive
	Example 1
	Example 2
	Example 3

	Parameter Passing Mechanism
	Procedure or Function Calling Mechanism
	Recursion
	Example Using Variables in Common Blocks

	Error Handling in Procedures
	Error Signaling
	“Disappearing Variables”

	The Users’ Library
	Submitting Programs to the Users’ Library
	Support for Users’ Library Routines

	OpenVMS Procedure Libraries
	Creating OpenVMS Procedure Libraries

	10 - Programming with PV-WAVE
	Description of Error Handling Routines
	Default Error Handling Mechanism
	Controlling Errors
	Error Handling in WAVE Widgets Applications
	Controlling Input and Output Errors

	Error Signaling
	Obtaining Traceback Information

	Detection of Math Errors
	On Windows Systems
	On UNIX and OpenVMS Systems
	Checking the Accumulated Math Error Status
	Special Values for Undefined Results
	Check the Validity of Operands
	Check for Overflow in Integer Conversions
	Trap Math Errors with the CHECK_MATH Function
	Enable and Disable Math Traps
	Examples Using the CHECK_MATH Function

	Hardware-dependent Math Error Handling
	Error Handling on a Sun-4 (SPARC) Running SunOS Version 4
	Digital Workstation Error Handling
	VAX/OpenVMS Error Handling
	Error Handling for Silicon Graphics Workstations Running IRIX 5.3

	Checking for Parameters
	Checking for Parameters
	Checking for Keywords
	Checking for Number of Positional Parameters
	Checking for Number of Elements
	Checking for Size and Type of Parameters
	Example of Checking for Size and Type of Parameters

	Using Program Control Routines
	Executing One or More Statements
	Example of Executing Multiple Statements in a Single Command

	11 - Tips for Efficient Programming
	Increasing Program Speed
	Avoid IF Statements for Faster Operation
	Use Array Operations Whenever Possible
	Use System Routines for Common Operations
	Use Constants of the Correct Type
	Remove Invariant Expressions from Loops
	Access Large Arrays by Memory Order
	Be Aware of Virtual Memory
	Running Out of Virtual Memory?
	Controlling Virtual Memory System Parameters under UNIX
	Controlling Virtual Memory System Parameters under OpenVMS
	Minimize the Virtual Memory Used

	Array Operations are Rewarded

	12 - Getting Session Information
	Using the INFO Procedure
	Calling INFO with No Parameters
	Calling INFO with Positional Parameters
	Calling INFO with Keyword Parameters

	13 - Using the PV-WAVE Debugger
	The Main PV-WAVE Debugger Window
	Using the Debugger’s Online Help System
	Starting the Debugger
	Changing the Working Directory
	Loading an Application at Startup
	Executing a Command File at Startup

	Saving Your Work and Stopping the Debugger
	Loading Files into the Debugger
	Loading a Single-File Application
	Loading a Multi-File Application

	Running an Application
	Detecting Execution Errors
	Editing the Source File
	Editing in the Source Window
	Using a Separate Text Editor

	Setting Breakpoints
	Controlling Program Execution
	Examining Variables
	Showing a Single Variable
	Monitoring a Variable
	Listing Variables and Structures

	Obtaining Session Information
	Customizing the Debugger

	14 - Creating an OPI Option
	Introduction
	Managing Options
	Loading and Unloading an Option

	The Developer Environment
	The Directory Structure
	Makefiles
	The bin Directory
	The src Directory
	The lib Directory
	Main Directory Requirements
	Required Files
	Option Example

	Creating An Option
	Step 1: Create a New Option Directory Structure
	Step 2: Modify the Template Files
	Step 3: Develop the Option Code
	Step 4: Define the New Option Table
	Step 5: Build the New Option
	Step 6: Test the New Option

	Keyword Processing
	License Management
	Adding an Option to the PV-WAVE Search Path
	Variable Handling Examples
	Option Programming Interface Language Bindings
	OPI Variable Handling
	FORTRAN Variable Handling
	Include Files
	Examples

	OPI Function Definitions for PV-WAVE Variables
	Summary

	wave_execute
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Status Codes
	Discussion

	wave_compile
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status Codes
	Discussion

	wave_interp
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Status Codes
	Discussion

	wave_free_WCH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_assign_num
	wave_assign_string
	wave_assign_struct
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Status
	Discussion

	wave_get_WVH
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status
	Discussion

	wave_get_unWVH
	C Usage
	FORTRAN Usage
	Output Parameters
	Returned Status
	Discussion

	wave_free_WVH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wvh_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value — FORTRAN

	wvh_type
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values for C
	Returned Values for FORTRAN

	wvh_ndims
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_nelems
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_dimensions
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Values
	See Also

	wvh_sizeofdata
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wave_type_sizeof
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_is_scalar
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_is_constant
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Values

	wvh_dataptr
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned value
	Discussion
	Examples

	wave_wsdh_from_wvh
	C Usage
	FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Values

	wave_wsdh_from_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned value
	Discussion

	wave_free_WSDH
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wsdh_name
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value — FORTRAN

	wsdh_ntags
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Value

	wsdh_tagname
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value — C
	Returned Value - FORTRAN

	wsdh_sizeofdata
	C Usage
	FORTRAN Usage
	Input Parameters
	Returned Value

	wsdh_offset
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Returned Value
	Discussion

	wsdh_element
	C Usage
	FORTRAN Usage
	OpenVMS FORTRAN Usage
	Input Parameters
	Output Parameters
	Returned Status
	Discussion

	opi_malloc, opi_free, opi_realloc, opi_calloc
	C Usage
	Input Parameters
	Returned value
	Discussion

	C Language Error Handling
	When an OPI Call Fails
	Recovering from Errors Inside the Option Code

	wave_error
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_onerror
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_is_onerror
	C Usage
	FORTRAN Usage
	Discussion

	wave_onerror_continue
	C Usage
	FORTRAN Usage
	Input Parameters
	Discussion

	wave_is_onerror_continue
	C Usage
	FORTRAN Usage
	Discussion

	A - FORTRAN and C Format Strings
	What Are Format Strings?
	When to Use Format Strings
	What to Do if the Data is Formatted Incorrectly
	Example — Using C and FORTRAN Format Strings
	Using Format Reversion
	Group Repeat Specifications
	FORTRAN Formats for Data Import and Export
	FORTRAN Format Specifiers

	FORTRAN Format Code Descriptions
	A Format Code
	: Format Code
	$ Format Code
	F, D, E, and G Format Codes
	I, O, And Z Format Codes
	Q Format Code
	H Format Codes and Quoted Strings
	T Format Code
	TL Format Code
	TR and X Format Codes

	C Format Strings for Data Import and Export
	Using C Format Strings for Importing Data
	Using C Format Strings for Exporting Data

	B - Modifying Your Environment
	Modifying Your �PV�WAVE Environment (UNIX/OpenVMS Only)
	WAVE_DEVICE: Defining Your Terminal or Window System
	WAVE_DIR: Ensuring Access to Required Files
	WAVE_PATH: Setting Up a Search Path (UNIX, OpenVMS)
	WAVE_STARTUP: Using a Startup Command File
	WAVE_FEATURE_TYPE: Setting the Default Operating Mode
	WAVE_RT_STARTUP: Using a Startup Procedure in Runtime Mode
	WAVE_INIT_CODESIZE: Setting Initial Size of the Code Area
	WAVE_INIT_LVARS: Setting Initial Value for Number of Local Variables
	Changing the PV�WAVE Prompt
	Defining Keyboard Shortcuts
	Using �PV�WAVE with X Windows

	Modifying Your �PV�WAVE Environment (Windows)
	Adding a Procedure Library to the Search Path
	Environment Variables
	Support for Environment Variables in Windows
	What is the Registry?
	How the PV-WAVE Environment is Set
	Modifying the Registry
	Backing Up the Registry
	WAVE_PATH: Setting Up a Search Path (Windows)
	VNI_DIR and WAVE_DIR: Ensuring Access to Required Files
	WAVE_DATA: Retrieving Data Files Directly Where They Reside
	WAVE_DEVICE: Defining Your Terminal or Window System
	WAVE_STARTUP: Using a Startup Command File
	WAVE_FEATURE_TYPE: Setting the Default Operating Mode
	WAVE_RT_STARTUP: Using a Startup Procedure in Runtime Mode
	WAVE_INIT_CODESIZE: Setting Initial Size of the Code Area
	WAVE_INIT_LVARS: Setting Initial Value for Number of Local Variables
	Changing the PV�WAVE Prompt

	Index

