AVS
DEVELOPER'’S
GUIDE

Release 4
May, 1992

Advanced Visual Systems Inc.

Part Number: 320-0013-02, Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright O 1989, 1990, 1991, 1992
Advanced Visual Systems Inc.
All Rights Reserved

AVSis atrademark of Advanced Visua Systems Inc.

STARDENT is aregistered trademark of Stardent Computer Inc.

IBM is aregistered trademark of International Business Machines Corporation.
AIX, AlXwindows, and RISC System/6000 are trademarks of |nternational
Business Machines Corporation.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.
HP is a trademark of Hewlett-Packard.

CRAY is aregistered trademark of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is aregistered trademark of SPARC International.
SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, XDR, and XGL are trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.
Motif is atrademark of the Open Software Foundation.

IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.
IRIX, IRIS Indigo, IRIS GL, Elan Graphics, and Personal IRIS are trademarks of Silicon Graphics, Inc.
Mathematicais a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM s atrademark of MIT.

PostScript is a registered trademark of Adobe Systems, Inc.

FLEXIm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227—7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227-19(c)(2).

Advanced Visua Systems Inc.
300 Fifth Ave.
Waltham, MA 02154

TABLE
OF
CONTENTS

1 AVS Overview
introduction _ ...l
AVS Overview o iiiiiiisssssessesobd
Modules o iiiiiiecsesssssccssssessool?
DataTypes i iiiiiiiiiii..... L3
AVS Flow Networks___~~~ -~~~ .14
Data Flow i iiiiiiiiii.....lB
Module Life Cycle _____________ _______________......1l8
Use of Shared Memory__ L liiiiiise....lB
Heterogeneous Network Support __ -~ ____~- - .17
Data Flow Diagram _____________ 18
Multiple Module Processes in AVS 1-10
Release Compatibility. . __.._._____.....ldl
Portability Issues ______________________ 1
Writing Portable Code 1-11
Porting Binary Data Files 1-12
Program Examples Online -~~~ "~ - " __ 143

I TSI TSI TSI SIS ST TSI SITISISISESE ST E S S AT 1

2 AVS Data Types
Introduction = iiiiiisssssessssseseeoild
By e i iiiiiiissiiisccsessseseccesssssccsssseesccld
Integers o iiiiiiiiiiiiiiii....28
Floating-Point Numbers__~~~—~~ "~~~ 24
e
Fields L _...._24
Mapping Computational Space to Coordinate Space 2-4
Uniform Fields 2-5
Rectilinear Fields 2-6
Irregular Fields 2-6
AVS Mapping Information 2-7
Examples of Field Mappings 2-8
Example 1 2-8

AVS DEVELOPER'S GUIDE CONTENTS-1

TABLE OF CONTENTS

Example 2 2-10
Example 3 2-10
Example 4 2-11
Example 5 2-12
Example 6 2-12
Field Components 2-13
Declaring Fields 2-16
Manipulating Fields from C 2-17
Manipulating Fields from FORTRAN 2-19
Creating Fields 2-20
Scatter Data 2-21
Image Data 2-21
Volume Data 2-22
Colormaps, 11111 I
Geometries ... 2-23
Manipulating Edit Lists 2-25
Templates for New Filter Utilities 2-26
Writing a New Filter Utility 2-27
Converting a Polyhedron 2-27
Converting a Polygon 2-28
Converting a Scalar Mesh 2-28
Converting a Mesh 2-28
Converting a Sphere 2-28
Converting a Disjoint Line 2-28
Converting a Polyline 2-28
O -
dnstructured CellData o eeeeeersersenaannanaaa il
Molecular Data Type ¢ cceesssssssssssssssssssssansaod
User-Defined Data Types _ ______________________________._ 2-30
5 1
3 AVS Modules
Modules o iiiiiiii.o 3
Module Components ________________________________.__ 31
Name 3-1
Type 3-1
Ports 3-2
Parameters 3-3
Parameters As Input Ports 3-3
Functions 3-4
The Description Function 3-5
The Computation Function 3-7
Initialization Function 3-8
Destruction Function 3-8
Subroutines and Coroutines ___~_________________________ 39
Subroutine Modules 3-9

CONTENTS-2 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Coroutine Modules 3-11
Handling Errorsin Modules__________ _____ . _ ... 313
Selective Computation_________ . ____..____...318
Building and Linking Modules ___________________________ 318

Writing Subroutines 3-16

Writing Coroutines 3-16

Include Files 3-16

C Language Include Files 3-17
FORTRAN Include Files 3-17
avs_math.h Include File 3-18

Compiling and Linking Modules 3-18
Converting an Existing Application to 4 Viodiig -~ 7711171111131
Debugging Modules . __ 3-20

Syntax of avs_dbx 3-20
Using avs_dbx 3-21
T
1
4 Advanced Topics
Introduction ...
Memory Allocation Debugging __________________ . ____ 41

Run Time Environment Variables 4-2
Coroutine Synchronization _~__~~ 1 __ [_ [__ 44

Coroutine Scheduling with X 4-5

Coroutine Scheduling with Other Devices 4-6

Synchronous Execution 4-6
Upstream Data _______________________________________ A7

Overview of Upstream Data Feedback Mechanism 4-7

Implementing Upstream Data 4-8

Transformation Information 4-8
Selection Information 4-11

Rules for Picking Obijects 4-13
Picking the Top Level Object 4-13
User-Defined Upstream Data 4-15
Automatic Connections of Ports -~ _____________ 415

Port Classes 4-15

Port Visibility 4-17
User-Defined Data_____ - __ [___ [________ 418

Defining User-Defined Data 4-18

Using a User-Defined Data Type On an Input Port 4-19

Using a User-Defined Data Type On an Output Port 4-20
image Picking DataType ______~~ " - 42
Multiple Modules ina Single Process -~ _ [__ 42

Restrictions 4-22

Implementing Multiple Modules Processes 4-23

Implementing Reentrant Modules 4-24

AVS DEVELOPER'’S GUIDE CONTENTS-3

TABLE OF CONTENTS

Modifying Modules that Share Processes 4-24
Linking Multiple Modules Together 4-24
Module Groups .. &2
5 Command Language Interpreter.
introduction ___51
Access to the CLI 5-1
Command Line Option 5-1
Server Option 5-2
Module Access 5-2
.avsrc File Option 5-3
Basic Concepts 5-4
Commands and Tokens 5-4
Case Sensitivity 5-4
Interrupting CLI execution 5-5
Multiple Line Commands 5-5
Variable References 5-5
Output Redirection 5-6
Identifiers 5-6
Module Names and Aliases 5-6
Parameter Names 5-7
Port Names 5-7
Combining Networks 5-7
Module Tags 5-8
Module Maps 5-8
Pend Operations 5-9
Writing CLI Scripts ______________________ . __________.59
Writing Scripts 5-10
Playing Back Scripts 5-11
The Script Controller Browser 5-11
Script Suites 5-12
Commands ___ oD2
Command Usage Notation % 5-13
Basic CLI Commands________________________________ 513
General Commands 5-14
Script Commands 5-14
Variables Commands 5-15
Network Editor Commands ~__ " ______________ 516
Network Commands 5-17
Module Commands 5-18
Parameter Commands 5-20
Port Commands 5-20
Creating Macro Modules From CLI 5-21
Macro Module Description File 5-22
Another Way to Create Macro Modules From CLI 5-22

CONTENTS-4 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Geometry Viewer Commands_ _ ________________________._ 5-22
Geometry CLI State 5-23
Saving/Restoring Scenes and Objects 5-24
Geometry CLI Versus .obj and .scene Files 5-24
Saving Network Geometry State 5-25
Naming Objects, Cameras and Lights 5-25
Matrix Operations 5-26
Global Object Commands 5-26
Browser Commands 5-27
Object Commands 5-27
Light Commands 5-30
Camera Commands 5-31
Action Commands 5-33

iimage Viewer Commands TRy
Scene Commands 5-34
View Commands 5-34
Image Commands 5-35
Image Processing Technigue Commands 5-36
Label Commands 5-37
Cycle Commands 5-37

Graph Viewer Commands 53
Reading Plot Data 5-38
Modes for Reading Data 5-39
Writing Plot Data 5-39
General Plotting 5-39
Titles and Labels 5-40
Plot Legend 5-40
Miscellaneous Dataset Information 5-41

User Interface Layout Commands T84
Introduction 5-42
Basic Layout Concepts 5-43
Widget Naming 5-44
Geometry 5-45
Module Based Layout Control 5-46

Dynamic Layouts 5-47

Layout commands 5-47

Application Commands ~~ 7T
A . AVS Library Routines

Introduction __ L __.__._Al

Include File A-1

Type Declarations A-1

Routine Summary _____________________________________AZ

Routines for Module Initialization A-2

Routines for Module Description Functions A-2

AVS DEVELOPER'’S GUIDE CONTENTS-5

TABLE OF CONTENTS

Routines for Modifying and Interpreting Parameters A-2
Routines for Coroutine Modules A-3
Status Monitoring Routines A-3
AVS Command Language Interpreter Routine A-3
Routines for Selective Computation A-3
Routines for Creating Fields A-3
Field Accessor Routines A-4
Colormap Accessor Routines A-4
User Data Accessor Routines A-4
FORTRAN Array Accessor Routines A-5
FORTRAN Single Byte Accessor Routines A-5
Routines for Handling Errors A-5
Routines for Module Initialization 7T A

Routines for Module Description Functions

Routines for Mggi‘fyi‘n‘g‘firlol Interpreting Parameters

Routines for Coroutine Modules

Status Monitoring Routine

AVS Command Language Inierpreter Routine ______ """ """

Routines for Selective Com;_)utation

Routines for Creating Fields

Field Accessor Routines

Colormap Accessor Routines

User Data Accessor Routines

FORTRAN Array Accessor Routines

FORTRAI}I‘S‘ngIe Byte Accessor Routines

ISP DY
OGOt ot o rot pot

]
D
A

O RN QN LRI N R PN~

Bt ot
[P4P 4IPS
YL

Routines for Handling Errors 772717111 TT T T TIUAT
B AVS C Language Field Macros
Macros for Qbtaining the Dimensions of aField_____ -~ ______ B
MAXX B-1
MAXY B-1
MAXZ B-1
Macros for Qbtaining Elements of a Scalar Data Array ___________ Bl
12D B-1
13D B-2
14D B-2
Macros for Qbtaining Elements of a Vecior Data Array___________ B2
11DV B-2
12DV B-3
13DV B-3
14DV B-3
Macros for Qbtaining Rectilinear Coordinate Arrays - _______ B4
RECT X B-4
RECT_Y B-4
RECT_Z B-4

CONTENTS-6 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Macros for Obtaining Coordinates for 3D Data Elements __________ B-4
COORD_X_3D B-4
COORD_Y_3D B-5
COORD_Z_3D B-5

5 1

C Examples of AVS Modules

Introduction ___ . ___Cd
AVS Example Modules C-1

A C Language Subroutine Module _ "~ "~~~ "~~~ C4

A FORTRAN Subroutine Module -~~~ "~~~ "~~~ C#

A C Language Coroutine Module -~ "~~~ __ . . CH

D On-Line Help Facility,

Introduction __ o iiiiiiiii.....Dd

Help Files - Format and Naming Conventions______________._ D1

Integrating_ Your Help Files into the Help System______________ D=2
AVS Help D-3

The -reindex Option and AVS_HELP_PATH D-3
AVS Help Search D-4
Man Command D-4

E Unstructured Cell Data Library,

Overview e eiieiiiallEA

Synopsis o iiieiiio...ER

ucd Routine Summary __________________________________E3
Structure Manipulation Routines E-3
Structure Query Routines E-3
Cell Manipulation Routines E-3
Cell Query Routines E-3
Node Manipulation Routines E-4
Node Query Routines E-4

Description ____ . ___._____.__ES8
The Setup of the UCD Structure E-5
Cells, Nodes, and Mid-Edge Nodes E-6
UCD Data Structure and Type Definitions E-7
File Format for UCD Data Files E-9
ASCII UCD File Format E-9
Binary UCD File Format E-13

Structure Manipulation Routines _~___~~________ [____E1I§

AVS DEVELOPER'’S GUIDE CONTENTS-7

TABLE OF CONTENTS

Structure Query Routines_ _ .. iii-ce- E-21
Cell Manipulation Routines _____._.........[E28
Cell Query ROUINES o iiiiiiiiio......E34
Node Manipulation Routines .~~~ EA4l
Node Query Routines. .~~~ e
Examples ... E-56
Allocating a New Structure E-56
C Code: E-56
FORTRAN code: E-58
Storing Information About the Nodes E-59
C Code: E-59
FORTRAN Code: E-60
Storing Information about the Cells E-62
C Code: E-62
FORTRAN Code: E-63

F Field Arguments in FORTRAN
Introduction o iiiii...td
Field passing using multiple arguments __~___ "~~~ "~~~ Fl
Array Allocation ______________________________________F4
Memory Allocation and Application Portability F-4

G Geometry Library.
Introduction i iiiiiiiiiii... G
Synopsis . __...G2
Compiling and Linking G-2
Routine Listing _______________________________________G3
Obiject Creation Routines G-3
Obiject Utility Routines G-4
Obiject Property Routines G-4
Obiject Texture-Mapping Routines G-4
Obiject Vertex Transparency Routines G-4
Object File Utilities G-5
Object Debugging Routines G-5
AVS Module Interface Routines G-5
Overview: AVS Geometry Obiect Data Structure _______________ G-
Geometry Object Types (Geometry Primitives) G-6
Mesh Obijects G-6
Polyhedrom Obijects G-6
Polytriangle Objects G-7
Sphere Objects G-8
Label Objects G-8

CONTENTS-8 AVS DEVELOPER'S GUIDE

TABLE OF CONTENTS

Geometry File Filters G-8
Geometry Producing Modules G-9
The Edit List G-9
T o
T i
Creating an Object G-11
Extents G-11
Flags G-12
User Supplied Primitive Data G-12
User Supplied Vertex Data G-13
Object Uity Routines 77711111 T I TG
Object Property ROULINGS ___ .. cicremreneannena G20
Object Texture Mapping Routines_______________8&
Object Vertex Transparency Routines __________G3%
Object File Undlities, *___ = .8
Object Debugging Facilities -~~~ """~~~ """~ "~ """ 77777 G33
AVS Module Interface Routines .. _____G 34
Edit Lists G-34
Object Transformations G-36
Light Transformations G-37
Camera Transformations G-37
U
Files -~ T I G-51
1
H The F77_Binding Utility Program
Introduction L iiiiiiesiiio..oH
inter-Language Calling Conventions________________________H1
Function Naming Rules H-1
Matching C and Fortran Calling Conventions H-2
Handling String Arguments H-2
Handling Function Return Values H-2
f77_binding Function Declarations H-3
Return Types H-3
Function Names H-3
Argument Declarations H-4
Other Lines H-5
Fortran Include Files ___ "~~~ ___HS
£77_binding Command:LineSyntax ________________________H®#
Options H-6
Examples . ______ha

AVS DEVELOPER'’S GUIDE CONTENTS-9

TABLE OF CONTENTS

List of Tables

Table 2-3 Field Declarations______________________________ 2-17,
Table 2-4 Template for Filter Utilities _______—_~~ "~~~ 228
Table 3-1 Archive Libraries for Modules__~_~ "~ "~~~ """~~~ "3-18
Table A-1 Parameter Types and C/FORTRAN Data Type !
o Declarations.________________________________A-¥8
Table A-2 Property Name, Data Type, and Widget Type !
L .. Correspondence __________ A-11
Table A-3_Parameter to Widget Correspondence ___—————~~~ "A-14
Table A-4_Data Port Type to String Correspondence. ________~_A-18
Table A-5_Module Flags and Meaning____~—— "~~~ "~~~ "A-(
Table A-6_Module Types and C/FORTRAN Descriptions _—_——~~"A-21,
Table F-1 Field Arguments for FORTRAN Routines_ " F-2
Table G-1_Object Vertex and Primitive Data Applicability _~~~—~~"G-13
Table G-2 Converting C Language Data Declarations !
o toFORTRAN G-50
Table H-1_Recognized C and FORTRAN Types ________________H-4
List of Figures

Figure 1-1 Data Flow Between Kernel and Modules 1.9
Figure 2-1 Trregular Field Computational and Coordinate ~~~~~~~~ ~ !
o Space Mappings 2-1,
Figure 2-2 1D Computational and Coordinate Field __~~~~—~~~ " 29
Figure 2-3 2D Rectilinear Coordinate Field _____—_~_~______~_~2-10
Figure 2-4 2D Computational, 3D Coordinate Irregular Field __~ " 2-11
Figure 2-5 3D Computational, 3D Coordinate Irregular Field __~~~2-13
Figure E-1 Hierarchical Structure of Model, Cells and Nodes _____ E-§
Figure E-2 'UCD Cell Types, Nodes, Mid-Edge Nodes,and” =~~~ !
. _________NodeNumbering ___________________________ E-6

CONTENTS-10

AVS DEVELOPER'S GUIDE

CHAPTER 1 AVS
OVERVIEW

Introduction

The AVS system allows users to dynamically connect software modules to
create data flow networks for scientific computation. These modules pass
data of mutually agreed upon types between each other. Programmers can
extend AVS by developing new modules. There are a variety of ways in
which modules can be integrated into AVS. These allow the user a spectrum
between dynamic configuration and maximum efficiency.

This manual describes what a programmer needs to know to write AVS
modules. The manual assumes an elementary understanding of the concept
of a data flow network and a working knowledge of either the C or the
FORTRAN programming languages. It also assumes familiarity with AVS
on the user level. For AVS user documentation, see the AVS User’s Guide.

AVS Overview

AVS consists of two major parts: the main application (which includes the
AVS Kernel) and AVS modules, which are computational units that can be
linked together into flow networks.

The AVS Kernel includes the Network Editor, the control panel Layout Edi-
tor, the user interface code, functions that control execution of AVS flow
networks, and communications functions. The functions that control the ex-
ecution of flow networks created by the Network Editor are collectively re-
ferred to as the flow executive. When a flow network is active, its modules
are invoked in turn (and only when necessary) by the flow executive.

User-written modules are implemented as separate UNIX programs. They
communicate with the AVS Kernel using the Berkeley UNIX socket mecha-
nism and, in some cases, use shared memory. UNIX domain (local machine)
sockets are used where possible for efficiency, otherwise, TCP domain sock-
ets are used (for example, when modules are running on a remote machine,
or there are no more UNIX domain sockets available).

Modules can also be "builtin," i.e., linked directly into the AVS Kernel. Sev-
eral of the modules supplied by Advanced Visual Systems are currently im-

AVS OVERVIEW 1-1

Modules

plemented as "builtin” modules. While you can develop your own modules,
you cannot create "builtin” modules.

As the number of modules in use increases, AVS may use quite a large num-
ber of process slots in the UNIX kernel. As an efficiency enhancement, users
can place multiple modules into a single executable. Placing multiple mod-
ules in a single executable can cut down on system memory used as well as
reduce the number of process slots needed. The programmer declares multi-
ple modules in a single program by including multiple description functions in
the source code, each of which describes the relevant entry points and data
structures for a single module. Next, these modules are linked together in one
executable. The description functions are registered with the AVS Kernel by
making calls to the AVSmodule_from_desc routine within a user-supplied
function that must be named AVSinit_modules.

AVS passes high-level descriptions of images and geometric data to the
graphics display modules (Data Output modules). AVS implements these
modules using the graphics library interface that each platform supports
(PHIGS, PEX, GL, XGL, Dore, X, etc.). This provides high performance ren-
dering in a device independent manner. AVS also uses the X-Window library
for windowing and for generating the user interface widgets.

Modules

The fundamental unit of computation in AVS is the module. Modules process
inputs to generate outputs. Modules are intended to be fairly high-level units
of computation. For example, a module might be designed to compute a
threshold for a scalar field, but it would be inappropriate to design a module
to add two numbers. Modules also have parameters that the user can adjust
at run time to affect the action of the computation.

Modules specify to the AVS Kernel what data inputs they expect to receive
from other modules (image data or a color map, for example). Data input can
be required by the module, or it can be optional. Modules can also specify
data outputs. You connect these outputs to other modules that have compati-
ble inputs. To allow user interaction, modules define user-interface parame-
ters that are displayed and monitored by the AVS Kernel (for example, a
threshold value or a file name).

The module writer assigns a data type to each user-interface parameter and
can associate with it a particular widget that you use to set and view the pa-
rameter’s value. For example, an integer parameter could be displayed and
controlled using a dial widget, but it could just as well utilize a slider or
typein widget. AVS users generally should be allowed to control parameter
values. However, a module can set a parameter value internally at any time,
which may be necessary if the user sets a parameter to an illegal or nonsensi-
cal value.

You can conveniently extend the capabilities of AVS by writing a new mod-
ule. Because AVS operates on fairly general data types, you can define new

1-2

AVS OVERVIEW

Data Types

modules to work with existing modules. Application developers can concen-
trate on algorithms that implement new functionality by building on capabil-
ities that already exist and utilizing the flexible user interface widgets. The
Module Generator helps developers in the process of creating these new
modules. A complete description of the Module Generator can be found in
the Applications Guide.

There are two kinds of modules, subroutine modules and coroutine modules. A
subroutine module’s computation function is invoked by AVS whenever its
inputs or parameters change. A coroutine module executes independently,
obtaining inputs from AVS and sending outputs to AVS whenever it wants. In
this document, "module” generally refers to a subroutine module, and "corou-
tine" refers to a coroutine module. Most of the modules provided with AVS
are subroutine modules.

Most subroutine modules consist of two main functions: the description
function and the computation function. You can write these functions in ei-
ther C or FORTRAN. The description function describes what data the mod-
ule takes as input and what data it produces as output, as well as the
parameters that control its behavior. The computation function performs the
operations intended by the module developer. It is called whenever an input
or user parameter changes. The data structures implicitly defined in the de-
scription function for inputs, outputs, and parameters are passed as argu-
ments to the computation function. The computation function typically
operates on the inputs and parameters to produce new output.

The flow executive calls a subroutine module’s computation function when
the module is marked as "changed” and it is the next changed module in the
run queue. A module is defined as "changed" when an input or parameter has
been modified. The run queue is only processed when the flow executive is
enabled. You can enable and disable the flow executive from the "Network
Tools" menu in the Network Editor.

You can convert many existing simulations and other scientific applications to
AVS coroutine modules by making the application use AVS data types, insert-
ing calls to transmit data to and from AVS, and writing a description function.

Data Types

There are two general classes of data in the system: primitive data and aggre-
gate data. Primitive data items are simple objects such as bytes, integers, float-
ing point numbers and text strings. Aggregate data items are the large chunks
of data that characterize modern scientific applications. One fundamental
type of aggregate data is called a field. Basically, a field contains computation-
al data along with associated coordinate data. For example, pressure and tem-
perature samples might be stored as computational data in a field, and the
sampling coordinates would be stored as the coordinate data in that same
field. The pressure and temperature samples can be associated as vector ele-
ments comprising each computational sample to be associated with a single
point.

AVS OVERVIEW 1-3

AVS Flow Networks

AVS contains aggregate data types useful for defining geometric as well as
numeric information. The geometry data type provides a flexible mechanism
for defining geometric objects. The unstructured cell data (UCD) type pro-
vides a way to define a geometric object composed of discrete cells with asso-
ciated data. UCD definitions are particularly useful for finite element analysis
and computational fluid dynamics applications. The molecular data type
(MDT) provides a way to define molecular and quantum structures. MDT ad-
dresses the needs of classical, substructure and quantum chemistry fields.

AVS also has other types of aggregate data, including colormaps and pix-
maps. Colormaps are data structures that define color lookup tables which
you can use to map numeric values to colors. Pixmaps are used to keep track
of X-Window pixel maps used to directly update the screen. Most users do
not deal directly with pixmaps because AVS provides modules that create
pixmap outputs from fields, geometries, and unstructured cell data types.

Any data type can be used as module input, but generally, only the primitive
data types are suitable for use as parameters. The only difference between a
parameter and module input is that parameters are usually associated with
user interface widgets.

AVS Flow Networks

An AVS user builds an application by constructing a network of modules. A
typical network might consist of modules performing three kinds of tasks:

* Importing data from outside AVS (or generating their own data) and con-
verting it into data of one of the AVS data types.

* Transforming AVS data in some way, producing output data of the same
or of a different AVS type.

* Rendering the data on a display screen, printer or plotter, or storing the
data to a file.

A module can receive data through an input port and transmit data through
an output port. A user who connects two modules is actually connecting an
output port of one module to an input port of another module. You can con-
nect two ports when they have matching AVS data types.

When a flow network contains remote modules (modules that are executing
on a remote machine), the data architecture (for example, the byte order or the
floating point format) used on the remote machine may be different. Howev-
er, this is not a problem for passing data between modules because the AVS
executive uses the External Data Representation (XDR) format when passing
data between dissimilar machines.

1-4

AVS OVERVIEW

Data Flow

Data Flow

The purpose of constructing a network is to provide a data-processing pipe-
line in which, at each step, the output of one module becomes the input of an-
other. In this way, data can enter AVS, flow through the modules of a
network, and finally be rendered on a display or stored outside AVS.

This process requires that each module in a network be invoked at the appro-
priate time. For a subroutine module, the computation function must be exe-
cuted whenever the inputs or parameters change. AVS has a flow executive
that is normally active during the life of the application. The flow executive
supervises data movement between modules, keeping track of which inputs
and parameters have changed and invoking modules in the correct order.

AVS uses a remote procedure call mechanism to establish communication be-
tween modules. When the user starts up a module, AVS creates a new process
in which that module runs. (When multiple modules are combined into a sin-
gle executable, a new process is hot created.) AVS also sets up a connection
between the module and AVS, using the Berkeley UNIX socket mechanism.
Both sides use remote procedure calls and, if possible, shared memory to
communicate through this connection.

AVS allows coroutine modules to execute independently. A coroutine is often
a simulation or animation; an application that executes multiple times to pro-
duce a series of frames or data sets. AVS communicates with coroutine mod-
ules through the same sort of remote procedure call mechanism it uses to
communicate with subroutine modules.

Modules will attempt to execute in parallel if all of the following conditions
are met:

e The user has specified the -parallel n command line option, where n is the
maximum number of modules that can execute at one time.

* There are multiple processors, local and/or remote, available for module
execution.

* The module has no input dependencies upon other modules that would
be executing at the same time. For example, networks often have multi-
ple, independent, parallel branches made up of multiple filtering and
mapping techniques. These independent branches can execute in parallel.

* Modules executing in parallel must be in different processes. If the mod-
ules happen to be compiled together to execute as one process (as most
AVS modaules are), the user can force execution as separate processes us-
ing either the blanket -separate option to AVS which will cause all mod-
ules to execute separately, or by fine-tuning their networks using the
Module Editor panel’s Process and Group controls to explicitly organize
different modules into different processes. See the "Advanced Topics"
chapter later in this manual and the "Module Editor" section of the User’s
Guide’s "Advanced Network Editor" chapter.

AVS OVERVIEW 1-5

Module Life Cycle

Module Life Cycle

When AVS starts, it searches for libraries of modules to load. The libraries are
specified by the avsrc file ModuleLibraries entry. First, AVS always reads the
system default startup file in /usr/avs/runtime/avsrc. Users may override or
supplement the options in the system startup file with a personal avsrc file.
AVS looks for user avsrc files in the following order: 1) ./.avsrc in the current
directory, 2) SHOME/.avsrc in your home directory.

For each ModuleLibraries entry, the library files specified are used. The mod-
ule palettes are built using information from the library file. Since the library
file is ASCII text, it is easy to edit and comment out modules that are not
wanted prior to starting AVS.

When a module is instanced in a network, the executable for the module is
run as a UNIX process (unless it is a "builtin” module). The module descrip-
tion function is called and information about the module’s inputs, outputs,
parameters, and computation function are sent back to the AVS Kernel. The
Kernel automatically builds user interface widgets for any input parameters.
If the module has specified an "initialize" function, that function is called.
Please note that during the initialization process, calls to AVScommand will
not work.

When it is time for a module’s computation function to run, the flow execu-
tive sends the module a message with the input port and parameter values.
The first message is not sent until all input ports with the REQUIRED option
have been attached and data is available, at which point the module’s compu-
tation function is called.

When a module is "hammered" (destroyed), the AVS Kernel sends a shut-
down message to the module. If the programmer has specified a destruction
function, it is called before the module exits. Please note that during the de-
stroy process, calls to AVScommand will not work.

Use of Shared Memory

Shared memory regions are a form of interprocess communication that allow
sharing of data between processes without having to copy the data. The data
must be placed in a memory buffer that is set up with UNIX system calls to be
a shared memory region. Multiple programs can then map to the same pages
of physical memory using their own virtual addresses, by making UNIX sys-
tem calls. There can thus be a single copy of the data being accessed by muilti-
ple programs.

The AVS field and UCD data types use shared memory. Geometries, pix-
maps, colormaps, user-defined data, the molecule data type, etc., do not.

The AVS kernel attempts to share data among modules when possible, by
placing the data in a shared memory region. Pointers to the data are passed

1-6

AVS OVERVIEW

Heterogeneous Network Support

between modules just as if each module had its own private buffer. This tech-
nigue cuts down on memory usage and also speeds processing because the
data does not have to be copied. (AVS 2 modules do not make use of shared
memory until they are recompiled and linked with AVS 3 or later libraries.)

The use of shared memory is normally completely transparent to the user.
However, because data is placed in a shared memory region by default when
AVS modules are executing on the same machine, modules cannot directly al-
ter data in an input port buffer. The shared data might also be in use by anoth-
er module that would be affected by the change to the data. If a module
wishes to modify data input data, it can set the special flag MODIFY_IN
when creating the port. This will cause a copy of the input data to be passed to
the module. If the module truly needs to directly modify the data in the input
buffer, its users must be aware that they must run AVS with ReadOnly-
SharedMemory 0 (disabled). See the description of AVScreate_input_portin
Appendix A.

AVS creates the shared memory keys as follows: the high-order byte of the
key is Ox1a; the next two bytes are the process id; the low order byte is a se-
guence number that is initially 0 for each process. If the desired key is already
in use, AVS increases the sequence number and tries again.

The use of shared memory may be limited or unavailable on certain plat-
forms. See the AVS Release Notes for more information.

Heterogeneous Network Support

AVS supports remote execution of modules. It uses the External Data Repre-
sentation (XDR) format to provide a machine independent representation of
data flowing between modules. The UNIX socket mechanism is used to pass
requests across the network. The Flow Executive executes modules in the
same order as if they were on a single machine. (AVS 2 modules do not use
the XDR format for data representation and so must be recompiled with AVS
3 or later libraries in order to execute properly across a network.) When ma-
chines on both ends of the socket have the same data representations, the
XDR translation layer is bypassed.

In AVS3, where connected modules on a remote host were in the same pro-
cess, data would be passed directly between them using a pointer passed
through the flow executive. (Most AVS modules were combined into a single
executable to support this.) However, if the remote modules were in different
processes, data flowed from a remote module to the AVS Flow Executive, and
then back to a downstream remote module, resulting in system network over-
head for every module-to-module connection on a remote host. A better solu-
tion is to run more than one remote module from a single UNIX process. See
Chapter Four for information on how to do this. Starting with AVS 4, addi-
tional sockets are created so data can be transferred directly between mod-
ules. This is called Direct Module Communcation (DMC).

AVS OVERVIEW 1-7

Data Flow Diagram

The user interface supporting remote module execution is built on the Mod-
ule Tools sub-menu of the Network Editor. The Read Remote Modules but-
ton brings up a browser panel which prompts the user for the name of a
remote host. The contents of the panel are constructed from a Hosts file, either
the system default in /usr/avs/runtime/hosts, or any such file specified in the us-
er’s .avsrc file with the Hosts keyword. The Hosts file contains the name of the
available remote hosts, a remote command to execute to establish contact
with the remote host (usually rsh) and the pathname to a directory of AVS
modules on the remote host. AVS creates a socket connection to the remote
host and looks for an executable file named list_dir in the specified remote di-
rectory. list_dir is a special program that executes on the remot host and dis-
plays a browser with the contents of the remote directory, i.e., module
binaries, available for execution. For complete information regarding the
loading and use of remote modules, see the AVS User’s Guide.

Data Flow Diagram

Figure 1-1 illustrates the collective impact of running multiple modules in a
single process, shared memory, and direct module communication on data
flow through AVS networks.

K is the AVS kernel. M1 and M2 are AVS modules. D represents an area allo-
cated for data.

Note that the AVS kernel is always in a separate process. Also note that some
twelve modules are "builtin" to the AVS kernel and execute in its process.
The next section describes which of the supplied AVS modules execute in
what processes.

In the AVS 3 and AVS 4 coroutine, no direct module communication case:

* When M1 and M2 are in different processes:

e Without shared memory (for example, when passing geometries be-
tween modules, when the host does not support shared memory, or
with -noshm specified), the data must be copied from M1 to the AVS
kernel, which then copies it to M2. There are three copies of M1’s
output data.

e With shared memory, M1 creates a shared memory segment. The
AVS kernel is involved in two ways: it receives control information
about the output data area from M1 and passes this along to M2, and
the kernel also attaches the shared memory segment itself. M2 at-
taches the shared memory segment. There is only one copy of M1’s
output data.

* When M1 and M2 are in the same process:

* The two modules share data by passing pointers. No shared memory
segments are involved. The kernel has only a control link to the mod-
ules’ process. Itis not involved in passing the data. There is only one
copy of M1’s output data.

1-8

AVS OVERVIEW

Data Flow Diagram

AVS 3 All Modules or AVS 4 Coroutine Modules
(no direct module communication)

M1 & M2 in different processes M1 & M2 in single process
- noshm -shm
M1
M1
M1
/ﬁ v
LD] % l K > D
K| K yy
\ D
M2 t M2
M2

AVS 4 Subroutine Modules
(with direct module commpnication)

M1 M1
D |
l same as above
K D
D] g 7y
M2 \ control
M2 <«—» communication

—_» dataattach or
access

— data copy

Figure 1-1 Data Flow Between Kernel and Modules

In the AVS 4 subroutine, with direct module communication case:

* When M1 and M2 are in different processes:

* Without shared memory, the kernel’s control communication channel
informs M1 that M2 requires its data. M1 then contacts M2 directly,
sending its output data to M2’s DMC socket. M2 copies the data into
its own area. There are two copies of M1’s output data.

* With shared memory, the AVS kernel’s control communication chan-
nel informs M1 that M2 requires its data. M1 then contacts M2 direct-
ly. M2 attaches the shared memory segment created by M1. The
kernel does not attach the shared memory segment. There is one
copy of M1’s output data.

AVS OVERVIEW 1-9

Data Flow Diagram

* When M1 and M2 are in the same process, behavior is the same as with-
out direct module communication.

The pathways are identical when one or both M1 and M2 are on a remote
host, with one exception. Under AVS 3, remote modules in separate processes
would behave has though there were no shared memory even if the remote
host supported shared memory. In AVS 4, remote modules behave the same
as local modules.

Note that parallel modules must execute in separate processes.

Shared memory, direct module communication, and multiple modules in a
single process can all be turned on and off with command line options and/or
.avsrc startup file keywords. Module processes can be further regulated with
the Network Editor’s Module Editor by adjusting the modules’ group. This
last option is described in the "Advanced Topics" chapter of this manual.

Some platforms’ operating systems limit the number and size of shared mem-
ory segments available, and/or the number of processes that can attach to a
shared memory segment. When such limits are encountered, AVS attempts to
fall back on the multiple process/no shared memory approach to passing
data among modules. Such limits are usually documented in the platform’s
release notes, along with information on how to increase the system limits, if
possible.

Multiple Module Processes in AVS

There are two main categories of processes in AVS: the AVS kernel and AVS
modules. The kernel always runs as a separate process. Some AVS modules
are part of the kernel and run in its process. These are the so-called "builtin"
modules:

generate colormap
display image
display pixmap
geometry viewer
graph viewer
image viewer
render geometry
transform pixmap (not present on all platforms)
colormap manager
image manager
render manager

Most of the rest of the AVS modules are compiled together in one of two bina-
ries. All of the modules in one of these binaries execute in a single process.
The actual partitioning of modules varies from release to release. In general:

e Al UCD modules are in the binary /usr/avs/avs_library/ucd_multm

1-10

AVS OVERVIEW

Release Compatibility

* Most of the rest of the supported modules are in the binary /usr/avs/avs_I-
ibrary/mongo

There is a set of modules, mostly coroutines, that each reside and execute in
their own, separate process. The library files /usr/avs/avs_library/Supported
and /usr/avs/unsupp_mods/Unsupported lists all modules and their correspond-
ing binaries.

Release Compatibility

With AVS 4 there are new elements in certain data structures, including the
"field" structure. To access the new elements, modules must be recompiled
and relinked. In general, AVS 3 modules continue to work properly under
AVS 4. You can use AVS 3 and AVS 4 modules together in a single network.

To take advantage of new AVS 4 features, such as mesh ids, existing user
modules must be recompiled using the new AVS 4 libraries. Code that uses
the AVSbuild_field routine cannot make maximal use of shared memory and
is no longer the recommended approach to creating fields. AVS will, however,
continue to support this routine. See Chapter Two for detailed information
about allocating fields in a module.

Portability Issues

This section describes issues to consider when writing code that runs on dif-
ferent platforms.

Writing Portable Code

With a little effort, you can write AVS modules that do not require source code
changes when porting between different platforms. Avoid the use of non-
standard operating system calls and "include” files, and do not rely on hard-
ware specific features such as integer word length.

When allocating space for data, don’t assume a particular size for a type dec-
laration such as short, int, float, or double. For example, to allocate an array of
64 integers, don’t allocate "64*4" bytes; rather, allocate "64*sizeof(int)".

When dealing with data structures built out of bytes, do not manipulate the
bytes as integers. In particular, when dealing with AVS images, the RGB data
is represented as a 4-vector of bytes. Do not assume that integers are four
bytes and manipulate the pixels as integers. When allocating space, for in-
stance, do not use "width*height*sizeof(int)"; rather, use "width*height*4*-
sizeof(char)".

AVS OVERVIEW 1-11

Portability Issues

If you cast a value of "char*" to "int*", add 1 to it, and cast it back to "char *", it
could have the result of adding 4 on some platforms or 8 (e.g., on a Cray) to
the original pointer value, so don’t assume a particular value.

When allocating memory for use within a single function, you should use the
ALLOC_LOCAL and FREE_LOCAL macros in port.h instead of system calls
peculiar to the local implementation of UNIX. This will cause AVS to use the
alloca call on systems that support it, and malloc on other platforms. FOR-
TRAN code should avoid using malloc on the local platform and use AVS-
data_alloc or AVSptr_alloc as appropriate.

Usually, FORTRAN statements cannot exceed 72 characters.

For machines that do not support a FORTRAN BYTE or LOGICAL*1 data
type, there are two routines in the AVS library, AVSload_byte and AVSs-
tore_byte, that you can use to access and store 8-bit integer values.

You should use the FORTRAN include syntax of ’INCLUDE file’, starting in
column 7, rather than the C preprocessor form.

An appendix describes a utility program, f77_binding, that generates inter-
language interface functions. These functions allow code written in C to call
subprograms written in FORTRAN, and vice-versa.

It is strongly recommended that user Makefiles follow the conventions of the /
usr/avs/examples Makefile to enhance portability. Particularly, using Makein-
clude and the macros it provides such as LASTLIBS, can simplify the task of
porting between platforms.

Porting Binary Data Files

When storing information in files, some data is stored in binary format. For
example, the first two items of an image file are the width and height stored
as a 4-byte integer. Field data is stored in binary format following an ASCII
header. Geometry files contain both binary and ASCII data. Machines that use
a converse byte ordering ("big-endian” vs. "little-endian”) from the machine
that produced the data file may reverse the order of bytes within larger data
values. The supplied AVS modules that read images are written to examine
the byte ordering of the size data in image files so that users may convenient-
ly transfer image information between platforms. If you write your own mod-
ule to directly read in image or field data, you need to be aware of this
problem.

Starting with version 3 of AVS, geometry files are written and read using XDR
format. With field files, the user has the option (on the write field module) of
writing fields in either XDR or a system’s native format. When written in
XDR, the byte ordering is well defined on all machines and there is no com-
patibility problem. Geometry files from earlier releases begin with a 4-byte
"magic humber" value which is different than that for AVS 3. The supplied
AVS modules that read geometries know how to read both formats. If some-

1-12

AVS OVERVIEW

Program Examples Online

one wants to write the old geometry format, defining the environment vari-
able AVS_GEOM_WRITE_V?2 forces the file writing routine to write the old
geometry format.

Volume data files should be compatible across machines since they contain
byte values only. Modules written to read volume data directly should read
the data as a stream of bytes.

Program Examples Online

There are two directories that you should refer to when writing code using
the AVS libraries. These directories contain many relatively simple program-
ming examples that illustrate the subroutines and programming techniques
you should use when creating new modules and geometry filters (programs
that create geometries from data). Each directory contains a README file that
describes the programs briefly so you can pick an appropriate template and a
Makefile to show you how to build a module on your machine.

The directory /usr/avs/examples contains module templates for both subroutine
and coroutine modules. The file README documents what the programs do.
AVS routines other than the geometry library routines are documented in Ap-
pendix A.

The /usr/avs/filter directory contains example geometry filters that use libgeo-
m.a routines to create geometries from user data. Appendix G documents lib-
geom.a.

AVS OVERVIEW 1-13

Program Examples Online

1-14 AVS OVERVIEW

CHAPTER 2

AVS
DATA
TYPES

Introduction

AVS promotes software reusability by defining a set of general, common
data types for module writers to use. Some of the data types have general
and specific versions; for example, a "field" is general, but a "2D field" is
more specific. Modules that accept more general input data can connect to a
greater number of other modules.

The data types supported in AVS can be broken into two categories: primi-
tive data and aggregate data. Primitive data types are bytes, integers, reals,
and strings. Aggregate types are fields, colormaps, geometries, and pixel
maps. In general, primitive data types are used for parameters and aggre-
gate types are used for data being passed between modules, but there are
many exceptions to this. A parameter is actually an input "port" that uses a
widgit to provide a value. Unlike data being passed between modules, pa-
rameters "ports"” are not visible by default.

The AVS data types currently supported are following:

e Byte implements 8-bit unsigned integers.

* Integer implements standard integers (maybe 32 or 64 bit, depending on
machine architecture).

¢ Real implements single-precision floating-point numbers.
e String and string block implement simple text strings.

¢ Field implements n-dimensional arrays with scalar or vector data at
each point. Fields also support arbitrary rectilinear or irregular coordi-
nate systems, and they can represent lists of points in coordinate space.
Fields can contain single or double precision floating-point, integer, or
byte data.

e Colormap implements a transfer function that you can use to map a
functional value into color and opacity values.

e Geometry implements geometric descriptions that the geometry render-
er can use to view objects. Geometry objects are usually created using
calls to subroutines in the geom library; see the "Geometry Library" ap-
pendix for more information.

* Pixel map is actually a reference to the X server’s representation of the
rendered form of an image.

AVS DATA TYPES 2-1

Introduction

e Unstructured cell data provides the capability to associate data and discrete
geometric objects within a single structure.

e Molecule data type addresses the needs of classical, substructure and quan-
tum chemistry fields. Detailed documentation on this data type is provid-
ed in the Chemistry Developer’s Guide.

e User-defined data allows you to define a local data structure and pass it to
other modules that also understand that particular data structure. It is
currently used for upstream feedback between modules.

Fields are AVS’s fundamental data type. They use the full generality of AVS’s
data type system to span a set of commonly used data types. This allows you
to write modules that are as general as is appropriate for the application
while, at the same time, allowing optimized algorithms to be used for specific
cases. You can represent the output data from a typical scientific simulation as
a field. AVS provides routines to facilitate the conversion of standard arrays
of data to fields.

When AVS calls a C language computational routine, it usually passes an ele-
ment of a certain data type as a pointer to that element. Most data types are
represented as structures, which are defined in type-specific include files.
Some simple types, such as integers, are simply passed directly. C routines
typically get direct pointers to the data for inputs and parameters, but point-
ers to pointers are used to allocate the data for outputs. Therefore, a module
that takes a field as input and produces a field as output is called as follows:

module_compute(field_in, field_out)
/* note double indirection for field_out */
AVSfield_float *field_in, **field_out;
{
int dims[3];
dims[0] = MAXX(field_in);
dims[1] = MAXY (field_in);
dims[2] = MAXZ(field_in);
*field_out = (AVSfield_float *)AVSdata_alloc("field 3D float",dims);

... compute ...

return(l);

}

Since FORTRAN programs do not have direct access to C structures, there are
two different ways of getting access to fields in a compute function. The first
way is by having the individual elements of the C structure get passed as sep-
arate arguments. For example:

FUNCTION COMPUTE(F, NX, NY, NZ,...)

where F is a 3D array with dimensions NX, NY, NZ. AVS attempts to make the
arguments to the computation function a natural representation of that data
type for the programmer. The implication of this is that the computation rou-
tine written in FORTRAN often has more formal arguments than there are in-
puts, outputs, and parameters, with multiple formal arguments representing
a single input, output, or parameter.

2-2

AVS DATA TYPES

Bytes

This approach is somewhat cumbersome and restrictive, particularly in light
of issues like shared memory allocation, the range of field types that can be
handled by a module, the ease of producing an invalid field, etc. It is retained
from earlier AVS releases for the sake of compatibility and is documented
more fully in Appendix F.

The preferred approach is to pass a field as a single integer argument that is
used by many of the same field accessor functions that a C module calls, as
well as by additional functions provided specifically for FORTRAN. The
module MUST include an AVSset_module_flags call to use the single argu-
ment approach since the default is to pass multiple arguments. The single ar-
gument approach is illustrated fully in /usr/avs/examples/test_fld2_f.f.

Table 2-1 summarizes the type declarations used for arguments to module
computation functions that correspond to input ports, parameters, and out-
put ports:

Table 2-1 C and FORTRAN Type Declarations for AVS Data Types

AVS C Input or C Output FORTRAN Input or FORTRAN Output
Data Type Parameter Data Data Type Parameter Data Type Data Type

Type
byte char char * BYTE BYTE
integer int int* INTEGER INTEGER
real float * float ** REAL REAL
string char * char ** CHARACTER*(*) CHARACTER*(*)
field AVSfield * AVSfield ** INTEGER (or mult. args.) INTEGER (or mult.args.)
colormap AVScolormap * AVScolormap ** INTEGER (or mult. args.) INTEGER
geometry GEOMedit_list GEOMedit_list * INTEGER INTEGER
pixel map AVSpixdata * AVSpixdata **
ucb UCD_structure UCD_structure INTEGER INTEGER
User-Defined structure * structure INTEGER INTEGER

Colormaps and User-Defined data can also be passed a single or multiple ar-
guments. The routine AVSset_module_flags must be called to specify the sin-
gle integer argument method. Pixmaps cannot be passed as arguments to a
FORTRAN computation routine.

Bytes

Bytes are declared using the data type "byte". A byte is passed to a computa-
tion routine in C as a char (char * for output) and to a subroutine in FOR-
TRAN as a BYTE.

Integers

Integers are declared using the type "integer". An integer is passed to a sub-
routine in C as an int (int * for output) and to a subroutine in FORTRAN as an
INTEGER. AVS has a number of data types for parameters that are also repre-

AVS DATA TYPES 2-3

Floating-Point Numbers

sented as integers: "boolean”, "tristate”, and "oneshot". See the documentation
for the AVSadd_parameter routine in Appendix A, "AVS Routines".

Floating-Point Numbers

AVS supports floating-point data. Single-precision floating-point numbers are
declared using the type "real”. This corresponds to the C type float and to the
FORTRAN type REAL or REAL*4. A single-precision floating-point number
is passed to a computation routine in C as a float * (float ** for output) and to
a subroutine in FORTRAN as a REAL (a pointer to a REAL for output).

Text Strings

Text strings are the standard one-dimensional character strings. A character
string is declared using the type "string". It is passed to a computation routine
in C as a char * (char ** for output) and to a subroutine in FORTRAN as a
CHARACTER *(*) (a pointer to a CHARACTER *(*) for output).

There is also a multiple line string parameter of type "string_block" which is a
character string that expects to handle embedded newlines.

Fields

A field is a general representation for an array of data. The array can have any
number of dimensions, and the dimensions can be of any size. Each data ele-
ment in the array can consist of one value or a vector of values. All values in
the array are of one of four types: unsigned character (byte), integer, single-
precision floating-point, or double-precision floating-point.

A field is often used to represent data elements that correspond to points in
space. For example, each data element of a three-dimensional field might be a
vector of values representing temperature, pressure, and velocity at some
point in a volume of fluid. The field has an implicit or explicit mapping of
data elements to coordinates that represent the corresponding points in space.
In other words, a field is a relation between two kinds of space: the computa-
tional space of the field data and the coordinate space to which the field data is
mapped.

Mapping Computational Space to Coordinate Space

AVS assumes that the computational space is logically rectangular. In the
computational domain, the mesh is similar to a uniformly spaced lattice in
Cartesian space. In this logical space, each dimension of the data array forms

2-4

AVS DATA TYPES

Fields

a perpendicular axis beginning at the origin, and the interval between data el-
ements is 1 for each dimension.

AVS supports three types of mapping between computational and coordinate
space: uniform, rectilinear, and irregular.

Uniform Fields

In uniform fields, the coordinate mapping is direct and implicit. Each dimen-
sion of computational space is implicitly mapped to the corresponding axis of
coordinate space. The first dimension of computational space is implicitly
mapped to the X axis, the second dimension is implicitly mapped to the Y
axis, and so on. In each dimension, the coordinate that corresponds to a given
data element is the index of that element in the data array. The data is
mapped to a uniformly spaced lattice in Cartesian space between the mini-
mum and maximum extent values supplied for the field. Each cell is a con-
stant-length line segment for a 1D field, a square for a 2D field, a cube for a 3D
field, or a hypercube for a field of higher dimensions.

Because the coordinate mapping is uniformly spaced along each coordinate
axis, uniform fields need to specify a only minimum and maximum value for
each axis. These values represent the range over which the data extends and
are specified in the same data type as the data (e.g., if the data is comprized of
real values, you need to specify the extents with real numbers).

The minimum and maximum data values may be different from the data ex-
tend values if the field has been subsetted in some fashion (such as cropping,
downsizing, or interpolation). Then, the field data structure contains the orig-
inal field’s minimum and maximum values, while the coordinates array con-
tains the minimum and maximum extent of the subsetted data. The extents in
the coordinate array are stored in this order: minimum x, maximum X, mini-
mum y, maximum y, minimum z, maximum z, etc.

Mapper modules use the extents information to properly position their geo-
metric representation of the subsetted data in world coordinate space. For ex-
ample, a downsized data set should not appear smaller than the original data
set; it should appear at the same coordinates but with less resolution (fewer
computational values within the coordinate area). The computational data is
treated as lying at regular intervals between the minimum and maximum ex-
tents, derived from the original data set.

As another example of how AVS uses extents, consider a data set that has
been cropped. The cropped portion of the data set should not necessarily be
positioned at the original minimum value along each axis. It should be posi-
tioned between the minimum and maximum extents that apply to the
cropped data so that it is positioned correctly relative to other cropped por-
tions of the data set and does not appear to be layered on top of them. The
cropped data extents are stored in the physical coordinates array, and the
original data extents are stored in the min_ext and max_ext arrays in the field
data structure.

AVS DATA TYPES 2-5

Fields

In the case of a "slicer" module, the extent information in the coordinates ar-
ray is used to position the slice correctly in space. For example, when taking a
2D slice from a 3D data set, the computational dimension of the field repre-
senting the slice is two, but the physical (n-space) dimension is three. If the
slice is orthogonal to the Z axis, the X and Y extents for the slice are the same
as for the original data set, and are the same in both the coordinates array and
the min_ext and max_ext arrays in the field data structure. However, in the
coordinates array of the slice, the Z min and max are equal to each other and
are used to position the slice along the Z axis in 3D space. The Z min and max
in the min_ext and max_ext arrays are the same as in the original data set.

In some cases a uniform field can have a physical (n-space) dimension differ-
ent from the computational (ndim) dimension. Such a situation occurs, for ex-
ample, when a 2D slice of data is extracted from a 3D data set. In order to
retain a sense of the original positioning of the 2D data, a third dimension can
be specified in the coordinate extents arrays. The additional dimension allows
a mapper module to position the data slice (and geometries derived from it,
such as a uniform mesh) correctly relative to other representations derived
from the original data (such as a volume bounding box or isosurface).

Rectilinear Fields

In rectilinear fields coordinate space has the same number of dimensions as
computational space. Each dimension of computational space is explicitly
mapped to the corresponding axis of coordinate space. The first dimension of
computational space is mapped to the X axis, the second dimension is
mapped to the Y axis, and so on. As in uniform fields, the data is mapped to a
lattice in Cartesian space. However, each dimension of the data array has a
separate and explicit coordinate mapping. The spacing of data elements along
each axis need not be uniform. Each cell is a variable-length line segment for a
1D field, a rectangle for a 2D field, a rectangular parallelepiped for a 3D field,
and so on. The cell dimensions can vary from one cell to the next within the
field.

Irregular Fields

In irregular fields, coordinate space might not have the same number of di-
mensions as computational space. Each data element in computational space
is explicitly mapped to a point in coordinate space. This allows for a variety of
mappings. For example, a 3D computational space can be mapped to a 3D co-
ordinate space in which each cell has curvilinear bounds. A 1D computational
space can be mapped to a 2D or 3D coordinate space that does not have cells,
but rather consists of a set of "scattered" points with a data element at each
point.

Figure 2-1 shows the various computational to coordinate space mappings for
irregular fields. The ndim is the dimensionality of the data array (a 1D array
of numbers, a 2D array of numbers, a 3D array of numbers). The nspace is the
line (1D), plane (2D), or volume (3D) within which the data points exist. To
establish the mapping between the two, each element of the data array must
have an explicit X (1D), XY (2D), or XYZ (3D) location in space defined for it.

2-6

AVS DATA TYPES

Fields

ndim=1 nspace=1 % = * %

ndim=1 nspace =2 *

ndim=1 nspace=3

ndim=2 nspace =2

ndim=2 nspace =3

ndim=3 nspace =3

Figure 2-1 Irregular Field Computational and Coordinate Space Mappings

AVS Mapping Information

AVS needs information in different forms to specify the three mappings.

For a uniform field AVS needs only the minimum and maximum coordinates
along each axis. The coordinates for each data element are implicitly assumed
to be equally spaced between the minimum and maximum coordinates. The
min/max coordinate values are placed in the coordinates array as well as in
the arrays min_ext and max_ext in the field data structure.

AVS DATA TYPES 2-7

Fields

For a rectilinear field AVS needs a mapping from each dimension of computa-
tional space to the corresponding axis of coordinate space. The mapping con-
sists of one X value for each subscript along the first dimension of
computational space, one Y value for each subscript along the second dimen-
sion of computational space, and so on. The total number of values in the
mapping is the sum of the dimensions of the field in computational space.

For an irregular field AVS needs a mapping from each data element in com-
putational space to a point in coordinate space. The mapping consists of a set
of coordinates (X, Y, and so on) for each data element. The total number of
values in the mapping is the product of each dimension in computational
space and the number of dimensions in coordinate space.

Table 2-2 summarizes these mappings:

Table 2-2 Field Mappings of Computational to Coordinate Space

Mapping Mapping Information Coordinates for Data
Element (i, j, ...)
Uniform Implicit—Computational Dimension X=i
to Coordinate Axes Y=j
Rectilinear Explicit—Computational Dimension X = X(i)
to Coordinate Axes Y =Y(j)
Irregular Explicit—Computational Element to X=X(i,], ...)

Coordinate Point Y=Y(,j, ..)

Examples of Field Mappings

This section presents several examples of fields and their mappings from
computational to coordinate space.

Example 1

A data set consists of 25 data elements, each representing F(X) for a given val-
ue of X. The field consists of 25 elements:

{F(X(i)),i =1,25

The computational space is one dimensional with 25 values for F(X). The co-
ordinate space is also one dimensional with 25 X coordinates, one for each
value of F(X). The spacing between points in X is not constant, so the field is
rectilinear or irregular.

2-8

AVS DATA TYPES

Fields

Figure 2-2 shows the mapping between computational and coordinate space.
It also presents a line graph, F(X(i)) vs. X(i), of the relation between the data

elements and the coordinate values.

FX(0)
A

» X(i)

Computational Space

Coordinate Space

Figure 2-2 1D Computational and Coordinate Field

The following is a summary of the field characteristics:

Data type:
Number of values per data element:

Number of computational dimensions:

Computational dimensions:
Number of computational values:
Mapping type:

Number of coordinate dimensions:
Number of coordinate values:

Floating-point

1

1

25

1*25=25

Rectilinear or irregular
1

25

Suppose that each data element in this example consisted of a two-compo-
nent velocity vector. In this case the field characteristics would be as follows:

Data type:
Number of values per data element:

Number of computational dimensions:

Computational dimensions:
Number of computational values:
Mapping type:

Number of coordinate dimensions:
Number of coordinate values:

Floating-point

2

1

25

2*25=50

Rectilinear or irregular
1

25

AVS DATA TYPES

2-9

Fields

Example 2

A scalar field is defined as a two-dimensional mesh, with nonconstant spac-
ing between both X and Y values. The field consists of 500 elements:

{F(X(i),Y(j)).i =1,20j=125

The field is rectilinear, with 20 X coordinates and 25 Y coordinates. Each cell
in coordinate space is rectangular. Figure 2-3 shows the mapping between
computational and coordinate space.

j Y(@)
A A

> i » X(i)

Computational Space Coordinate Space

Figure 2-3 2D Rectilinear Coordinate Field

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 1

Number of computational dimensions: 2
Computational dimensions: 20x 25

Number of computational values: 1*20*25 = 500
Mapping type: Rectilinear
Number of coordinate dimensions: 2

Number of coordinate values: 20+ 25 = 45
Example 3

A two-dimensional mesh is mapped to a sphere. One dimension of the mesh,
u, corresponds to lines of equal longitude on the sphere. The other dimension

2-10 AVS DATA TYPES

Fields

of the mesh, v, corresponds to lines of equal latitude on the sphere. The field
consists of 500 elements:

{F(X(uVv),Y(yVv),Z(yv)),u =1,20v=1,25
The field is irregular, with 500 X coordinates, 500 Y coordinates, and 500 Z co-

ordinates. Each cell in coordinate space has curvilinear bounds. Figure 2-4
shows the mapping between computational and coordinate space.

\Y Y(u,v)
A A
o N\ N
/ \

77 (NN

/7 / | .\
/A VW
[T 1] VN
11 1 1
[[11 |
I T 11
11 117
LN W I 1T T]
AN 177
QN \ | [77 /7

1\ 7

N\ /
/ Z”
» U » X(u,Vv)
Computational Space
Z(u,v)

Coordinate Space

Figure 2-4 2D Computational, 3D Coordinate Irregular Field

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 1

Number of computational dimensions: 2

Computational dimensions: 20 x 25

Number of computational values: 1*20*25 = 500
Mapping type: Irregular
Number of coordinate dimensions: 3

Number of coordinate values: 3*20*25 =1500
Example 4

A two-dimensional image is represented by a mesh of data elements, each of
which specifies the value of a pixel. Each data element is a vector of four bytes

AVS DATA TYPES 2-11

Fields

that specify the three color components and an alpha channel. The field con-
sists of 65536 elements, each with four values:

{Vo(i.j),i =1,256n=1,4}

The field is uniform.

The following is a summary of the field characteristics:

Data type: Byte

Number of values per data element: 4

Number of computational dimensions: 2

Computational dimensions: 256 x 256

Number of computational values: 4*256 * 256 = 262144
Mapping type: Uniform

Number of coordinate dimensions: 2

Number of coordinate values: 0

Example 5

A medical imaging data set contains 100 evenly spaced scan planes, each with
a resolution of 256 x 256 pixels. Each data element is a single byte. The field
consists of 6553600 elements:

{F(@,jk),i=1256j=1 256k=1, 100

The field is uniform.

The following is a summary of the field characteristics:

Data type: Byte

Number of values per data element: 1

Number of computational dimensions: 3

Computational dimensions: 256 x 256 x 100

Number of computational values: 1*256 * 256 * 100 = 6553600
Mapping type: Uniform

Number of coordinate dimensions: 3

Number of coordinate values: 0

Example 6

A fluid dynamics application is a three-dimensional simulation of fluid flow
through a nozzle. Each data element has five values: a three-component ve-
locity vector, temperature, and density. The field consists of 576 elements,
each with five values:

{V,(X(i,j,k), Y(i,j, k), Z(i,j,k)),i =1,12j=1,12k=1,6n=15

2-12 AVS DATA TYPES

Fields

The field is irregular, with 576 X coordinates, 576 Y coordinates, and 576 Z co-
ordinates. Many of the cells in coordinate space have curvilinear bounds. Fig-
ure 4 shows the mapping between computational and coordinate space.

Y(ij.k)

A A

—

fiEe

> i = X(i,j,K)

K Z(ijk)
Computational Space Coordinate Space

Figure 2-5 3D Computational, 3D Coordinate Irregular Field

The following is a summary of the field characteristics:

Data type: Floating-point
Number of values per data element: 5

Number of computational dimensions: 3

Computational dimensions: 12x8x6

Number of computational values: 5*12*8*6 = 2880
Mapping type: Irregular

Number of coordinate dimensions: 3

Number of coordinate values: 3*12*8*6 = 1728

Field Components

As represented in AVS, a field has the following components:

* The number of dimensions in computational space. This is an integer.

* The dimensions in computational space. This is an array of integers
whose length is the number of dimensions in computational space. Each
element of the array is the number of data elements along the correspond-
ing dimension of computational space.

e The number of variables or values for each data element. This is an inte-
ger. A field with one value for each data element is a scalar field. A field
with more than one value for each data element is a vector field. A field

AVS DATA TYPES 2-13

Fields

can also consist only of coordinates, with no values for each data element;
in this case the field represents a list of points in coordinate space.

The data type of each value for the data elements. This is an integer. The
data type can be unsigned character (byte), integer, single-precision float-
ing-point, or double-precision floating-point. AVS defines a constant to
represent each data type: AVS TYPE_BYTE, AVS_TYPE_INTEGER,
AVS_TYPE_REAL, and AVS_TYPE_DOUBLE. These constants are de-
fined in the include files <avs/avs.h> for C programs and <avs/avs.inc> for
FORTRAN programs.

MIN/MAX information for computational data elements. The minimum
values for each variable in the array of data elements are stored in an ar-
ray whose data type is the same as that of the data elements. The size of
this array is equal to the vector length of the field. The maximum values
for each variable in the array of data elements are also stored in an array
whose data type is the same as that of the data elements. The size of this
array is equal to the vector length of the field.

MIN/MAX extents for coordinates in each dimension of n-space. The
minimum extent is an array of floating-point numbers, with a size equal
to the number of dimensions in coordinate space. The maximum extent is
also an array of floating-point numbers with a size equal to the number of
dimensions in coordinate space.

Labeling information for each vector element in the array of computation-
al data. The labels are stored in a character array with a delimiter charac-
ter as the first character in the array. The delimiter is followed by string/
delimiter pairs. The number of pairs is equal to the vector length of the
field. The labels are useful for defining what each variable in the array of
data elements is. For instance one variable might be temperature, a sec-
ond one might be pressure and a third might be density.

The unit label associated with each vector element in the array of compu-
tational data. This is a character array with a delimiter character as the
first character in the array. The delimiter is followed by string/delimiter
pairs. The number of pairs is equal to the vector length of the field. The
unit labels are useful for defining measurement units for each variable in
the array of data. For instance one variable unit might be degrees centi-
grade and another might be pounds per square inch.

The array of data elements representing the computational space of the
field. Each element of the array is a value for a data element of the field.
For a vector field, this array has one more dimension than the number of
dimensions in computational space; the extra array dimension is the
number of values per data element. The size of the array is the product of
each dimension in computational space and the number of values per
data element. The elements of the array are stored in "FORTRAN" order,
with all values for each data element kept together. The array subscript
for the value per data element varies fastest, followed by the subscript for
the first dimension, the subscript for the second dimension, and so on. If
n_value is the subscript for the value per data element and i, j, and k are
the subscripts for the first, second, and third dimensions, respectively, the
array is accessed in C as follows:

data[K][j][i][n_value]
The same array is accessed in FORTRAN as follows:

2-14

AVS DATA TYPES

Fields

DATA(N_VALUE, 1, J, K)
AVS has a number of macros to make access to this array more convenient
for C language programmers. See Appendix B "AVS C Language Field
Macros".

* A flag indicating the type of mapping from computational space to coor-
dinate space. This is an integer, one of the following constants: UNI-
FORM, RECTILINEAR, or IRREGULAR. These constants are defined in
the include files <avs/field.h> for C programs and <avs/avs.inc> for FOR-
TRAN programs.

* The number of dimensions in coordinate space. This is an integer. For a
uniform or rectilinear field, this is the same as the number of dimensions
in computational space. For an irregular field, this can differ from the
number of dimensions in computational space.

* For a UNIFORM, RECTILINEAR, or IRREGULAR field, an array of
floating-point values representing the coordinates of the field. (The term
points is used interchangeably with the term coordinates throughout the
documentation.)

For a UNIFORM field, coordinate information is limited to minimum
and maximum extent fullword values for each physical dimension (n-
space) of the data. The minimum and maximum extent values in the coor-
dinate binary area are copies of the min_ext and max_ext values in the
field data structure, except when the field has been cropped, downsized,
or interpolated. Then the field data structure contains the original field’s
min_ext and max_ext values, while the coordinate section of the binary
area contains the minimum and maximum extent of the subsetted data.
Mapper modules can use this additional extent information to properly
locate their geometric representation of the subsetted data in world coor-
dinate space. The extents in the coordinate binary area are stored in the
following order: minimum X, maximum X, minimum Y, maximum Y,
minimum Z, maximum Z.

For a RECTILINEAR field, this array contains one X value for each sub-
script along the first dimension of computational space, one Y value for
each subscript along the second dimension of computational space, and
so on. The coordinate array has one dimension, and the size of the array is
the sum of the dimensions in computational space. All the X coordinates
corresponding to the first dimension of computational space are stored
first; all the Y coordinates corresponding to the second dimension of com-
putational space are stored second; and so on. If i, j, and k are the sub-
scripts for the first, second, and third dimensions of computational space,
and if idim1, idim2, and idim3 are the first, second, and third dimensions of
computational space, the X, Y, and Z coordinates are obtained in C as fol-
lows:

X = coordsi]

y = coords[idim1 + j]

z = coords[idim1 + idim2 + K]
The coordinates are obtained in FORTRAN as follows:

X = COORDS(I)

Y = COORDS(IDIM1 + J)

Z = COORDS(IDIM1 + IDIM2 + K)

AVS DATA TYPES 2-15

Fields

For an IRREGULAR field, this array contains a set of coordinates (X, Y,
and so on) for each data element in computational space. The coordinate
array has one more dimension than the number of dimensions in compu-
tational space; the extra array dimension is the number of dimensions in
coordinate space. The size of the array is the product of each dimension in
computational space and the number of dimensions in coordinate space.
All the X coordinates are stored first, then all the Y coordinates, and so on.
The subscript for the first dimension of computational space varies fast-
est, followed by the subscript for the second dimension of computational
space, and so on. The subscript for the dimension of coordinate space (X,
Y, and so on) varies most slowly. If n_coord is the subscript for the dimen-
sion of coordinate space and i, j, and k are the subscripts for the first, sec-
ond, and third dimensions of computational space, the array is accessed
in C as follows:

coords[n_coord][K][jI[i]
The same array is accessed in FORTRAN as follows:
COORDS(l, J, K, N_COORD)

AVS has a number of macros to make access to this array more convenient
for C language programmers. See Appendix B "AVS C Language Field
Macros".

* A unique, integer mesh_id identifier for a field representing the coordi-
nate mesh of the field. Fields have two main components: the data itself
and the X,Y,[Z] grid of coordinates in space at which the data exists. This
grid of coordinates is also called the mesh.

Often, when processed by an AVS network, the field data entering a map-
per module will change (for example, a change in an extract scalar pa-
rameter, or in the field legend settings) while the mesh remains the same.

Prior to AVS 4, a change in the data would cause the module to recom-
pute internal data structures related to the mesh such as the block table,
or geometries produced from the mesh, even though the grid of coordi-
nates had not changed.

In AVS 4, a new element has been added to the field data structure: the
mesh_id. A module can assign a unique mesh_id to a particular field data
structure. It changes the mesh_id only when it has changed the mesh.
Downstream modules can compare the mesh_ids of incoming field data
with that of the previous input. If the mesh_id is the same, it can elect to
not recompute values related to the coordinate mesh. This can substan-
tially improve performance.

Declaring Fields

When declaring or allocating fields, a programmer uses a field type string.
This string consists of the word "field" followed by words describing each of
the ways in which the field is specialized, such as "field 3D scalar uniform
float". When declaring input and output ports (with AVSadd_input_port or
AVSadd_output_port), you can leave out particular specifications to indicate
that your module can accept or produce a more general data type. For exam-

2-16

AVS DATA TYPES

Fields

ple, a module writer can declare an input port as accepting "field scalar" to in-
dicate that that module accepts any type of scalar field.

The AVS flow executive does not permit a user to connect a module’s output
to another module’s input if the output and input are declared to be conflict-
ing types of fields. For example, AVS does not allow a "field 2D" output to be
connected to a "field 3D" input. However, AVS does allow an output and an
input to be connected if one is a subtype of another. For example, AVS allows
a "field" output to be connected to a “field 2D" input.

The flow executive will not allow incompatible fields to be passed to a mod-
ule. If you declare an input port as accepting a field of type: "field scalar uni-
form float", but the upstream module outputs a field of type "field 2D scalar
uniform integer"”, the flow-executive will generate an error and not execute
your module.

In rare situations, you might have to check if the data type description is not
specific enough. If your data type description is: "field" but you really only
wanted 2D or 3D fields (and couldn’t handle 1D for example) your module
should check to ensure that a field of the appropriate dimension was received.

In a field declaration, the word "field" is mandatory and is always the first
word in the string. Specializing words are optional and can appear in any or-
der. The following table lists possible specializing words:

Table 2-3 Field Declarations

Field Component Value Specializing Words

Number of Dimensions n "nD"

Vector Length 1 "scalar”, "1-vector"
n "n-vector"

Data Type byte "byte", "char"
integer "integer", "int"
real "real", "float"
double "double", "real*8"

Number of Coord Dims n "n-coord", "n-space”

Mapping Type uniform "uniform"”
rectilinear "rectilinear"”
irregular "irregular”

For the number of dimensions of coordinate space, any string beginning with

"n-coord” is acceptable. For example, AVS recognizes "n-coords”, "n-coordi-
nate”, and "n-coordinates".

Manipulating Fields from C

When a C language module has declared an input port, output port, or pa-
rameter to be a field, the computation routine is called with one argument
corresponding to each field. If the field is an input port or parameter argu-

AVS DATA TYPES 2-17

Fields

ment, the subroutine parameter is declared as AVSfield *. If the field is an
output port, the subroutine parameter is declared as AVSfield **.

The type AVSfield is a structure defined in <avs/field.h>. Actually, there are
four different kinds of field, one for each of the data types that fields support:

Field Type Data Type
AV Sfield_char Byte

AV Sfield_int Integer
AVSfield_float Real
AVSfield_double Double

The only difference between these types is the type declaration for the data
array. For the generic type AVSfield, the data is defined to be a union. See
<avs/field.h> for more information.

An AVSfield structure is laid out as follows (using AVSfield_float as an ex-

ample):
typedef struct {
int ndim; /* no. of computational dimensions */
int nspace; /* no. of coordinate dimensions */
int veclen; /* no. of values per data element */
int type; [* data type */
int size; /* size of each value in data element */
int single_block; /* internal, type of memory allocation */
int uniform; I* mapping type: Uniform, Rectilenear, or Irreg. */
int flags; [* data validity flags */
int *dimensions; /* dimension along each axis; length is ndim */
float *points; /* coordinates for fields */
float *data; /* the field data itself as floats */

float *min_extent; /* range of the data, array size is nspace */
float *max_extent; /* range of the data, array size is nspace */

char *labels; /* labels for each value in a data element */

float *minimum; /* min data values for each value in a data element */
float *maximum:; /* max data values for each value in a data element */
int shm_key; [* internal, shared memory key */

int shm_id; [* internal, shared memory identifier */

char *shm_base; /* internal, shared memory base address */

char *units; [* units for each component */

int shm_size; [* internal, shared memory segment size */

int mesh_id; /* unique id for the "points" information */

} AVSfield_float;

To illustrate the relation between field declarations and elements of the field
structure, we use the example of a field representing fluid flow through a noz-
zle. The field has three dimensions in computational space, 12 x 8 x 6. Each
data element has five floating-point values. The field is irregular with a three-
dimensional coordinate space. The declaration for that field is as follows:

"field 3D 5-vector real 3-coordinate irregular”

The corresponding members of the AV Sfield structure and their values are as
follows:

2-18

AVS DATA TYPES

Fields

ndim 3

nspace 3

veclen 5

type AVS_TYPE_REAL

size sizeof(float)

single_block true if field is single malloc

uniform IRREGULAR

dimensions dims[3]={12,8,6}

points coords[3][6][8][12]

data data[6][8][12][5]

min_extent min extent of coords in each dim
max_extent max extent of coords in each dim
labels labels for each component

minimum min data value for each component
maximum max data value for each component
shm_key shared memory key

shm_id shared memory identifier

shm_base shared memory base address
units units of each component in data
mesh_id unique id for the "points" information

The include file <avs/field.h> defines preprocessor macros to help C program-
mers gain access to the components of a field, including the dimensions in
computational space, the data array, and the coordinate array. See Appendix
B "AVS C Language Field Macros" for more information.

Manipulating Fields from FORTRAN

The preferred mode of accessing a field input or output port in FORTRAN is
to pass the module’s computation function a single integer argument for each
field, rather than using the older method of passing several arguments. How-
ever, the module writer must specifically request the single integer argument
mode by adding the following call to the description function for the module:

CALL AVSSET_MODULE_FLAGS(SINGLE_ARG_DATA | other flags)

The module’s computation function receives a single integer argument that is
a pointer to the field, rather than having the components of the field passed as
multiple arguments. This field pointer value can then be passed directly to
field accessor functions (e.g., AVSfield_get_minmax) in order to access any
desired field element. When using the old multiple argument passing tech-
nigue, in order to access field elements that are new in AVS3 (min_extent,
max_extent, labels, minimum, maximum), it is necessary to call the routine
AVSport_field in order to retrieve the field pointer required by the field acces-
sor functions. The field accessor functions can then be used to retrieve any de-
sired value from the field.

The FORTRAN module then accesses field structures using accessor functions
on the single argument rather than by directly accessing the structure as a C
module does. For both input and output fields, the integer argument is actual-
ly a pointer to a field pointer. This is unlike C which declares input fields and

AVS DATA TYPES 2-19

Fields

output fields differently. For example, a computation routine that takes as its
first input port a "field 3D 3-vector real rectilinear” (or any field) is defined as

FUNCTION COMPUTE(INFIELD, ...)
INTEGER INFIELD

Most of the accessor functions either return the requested information or the
information is copied into an array passed in by the FORTRAN routine. For
instance, instead of referencing infield->ndim the FORTRAN routine would
call AvSfield_get_int:

LOCAL_NDIM = AVSFIELD_GET_INT(INFIELD, AVS_FIELD_NDIM)

The include file <avs/avs.inc> includes the necessary function declarations
and accessor constants. Those field arrays which are of predictable size, such
as the dimensions array, are filled directly by the accessor functions and it is
incumbent upon the FORTRAN module writer to ensure that the arrays that
are passed in are large enough for the maximum expected dimensions. Exam-
ples of using accessor functions such as AVSfield _get_int are provided in the
program /usr/avs/examples/test_fld2_f.f.

Accessing either the data or points array in a field is a little more involved
since the arrays are arbitrarily large. There are two approaches to accessing
each array. The first approach returns an offset index N between a local FOR-
TRAN array and the actual field data array. The N+1_th element of the local
FORTRAN array is the same as the first element of the desired array. This ele-
ment reference can then be passed into a second function which declares it to
be an array of a particular type and dimensionality. This approach is a little
awkward but is generally portable. An example of using this technique is pro-
vided in the program /usr/avs/examples/test fld2_f.f. The appropriate library
routines are AVSfield_data_offset and AVSfield_points_offset.

The second approach is to use the AVSfield data ptr and AVSfield -
points_ptr routines to retrieve the data pointer as an integer from the field
structure. Then pass the %VAL() of this integer to a second FORTRAN func-
tion which can then declare an array of the anticipated type and dimensions.
This is easier, but less portable, than the first technique since some FORTRAN
compilers support %VAL, others %LOC, and some may not support this non-
ANSI FORTRAN feature.

Creating Fields

For allocating and freeing field structures, AVS provides several routines that
are accessible from both C and FORTRAN. These routines ensure that a field
is created which is internally self consistent (e.g., if it contains a 20 x 30 2D
computational array the appropriate data and points arrays are automatically
allocated) and which takes advantage of shared memory storage when possi-
ble. For instance, to create a "field 3D 3-vector real rectilinear” of size 20 x 20 x
20 make the following call in C:

output_field=AVSdata_alloc("field 3D 3-vector real rectilinear",dims)

2-20

AVS DATA TYPES

Fields

where dims is a 3 element integer array containing 20,20,20. If an existing field
is available as a template, AVSfield_alloc may be called to make a duplicate.

Before allocating new data, modules must free the data left over from their
previous invocation. Failure to do this will eventually consume all available
memory, shared memory segments, and swap space, causing the module
(and perhaps AVS) to die. Fields may be freed using AVSdata_free or AVS-
field_free:

AVSdata_free("field", output_field);

or

AV Sfield_free(output_field);

Examples of creating fields may be found in the directory /usr/avs/examples.
See especially read_image.c, read_vol.c, threshold.c, and test_fld2_ff.

Scatter Data

A scatter is a list of points in coordinate space with an optional scalar or vector
data element for each point. AVS represents scatters as 1D irregular fields. For
example, a scatter with scalar real data and 3D coordinates would be declared
as a "field 1D scalar real 3-coordinate irregular”. The one dimension of the
field in computational space is the number of points in the scatter. The length
of the data array is the product of the number of points in the scatter and the
number of values per data element at each point.

A module can declare a scatter to have no data by declaring the vector length
to be 0. For example, a scatter with no data and 3D coordinates is declared as
"field 1D 0-vector 3-coordinate irregular”. Such a field has no data array. The
number of dimensions is declared as 0, and the one dimension of the field in
computational space is the number of points in the scatter. This dimension is
necessary to calculate the length of the coordinate array.

Image Data

AVS generally represents two-dimensional images as 2D uniform vector
fields. Each vector contains four elements of byte data, and each byte repre-
sents one component of a pixel value. Thus, an image is usually declared as a
"field 2D 4-vector byte". The following table shows which vector element cor-
responds to each component of the pixel value. The table is zero-based, as in a
C language vector; in FORTRAN the vector index is one-based. For portabili-
ty of modules to machines with different byte/integer organization, it is im-
portant that images be treated as "byte" arrays rather than "integer" arrays.

Byte Component
0 alpha
1 red

AVS DATA TYPES 2-21

Colormaps

2 green
3 blue

The alpha byte is not used in determining color; some modules use it to con-
vey other information, such as opacity.

You can find examples of how to creating a 2D uniform vector field for use as
an image in /usr/avs/examples/read_image.c and /usr/avs/examples/read_image_f.f.

Volume Data

AVS represents some volumes as 3D scalar fields of bytes, usually declared as
"field 3D scalar uniform byte". The value of each byte is between 0 and 255 in-
clusive. Some modules use the field data as indices into colormaps. For the
read volume module each dimension of the field must be less than 256.

You can find examples of how to create a 3D scalar uniform byte field for use
as a volume in /usr/avs/examples/read_vol.c and /usr/avs/examples/read_vol_f.f.

Colormaps

A colormap is a data structure that implements a transfer function that as-
signs a color to each value between an upper and a lower bound. A colormap
consists of four arrays of floating-point values, one each for hue, saturation,
value, and opacity. Each value is between 0.0 and 1.0 inclusive. A colormap
also has an integer size or number of colors, which is the length of each of the
four arrays. A colormap has floating-point lower and upper bounds that de-
termine the resolution of the colormap. The lower bound is an index that
maps to the first element of each array. The upper bound is an index that
maps to the last element in each array.

In C, a colormap is represented by an AVScolormap structure, defined in
<avs/colormap.h> as follows:

typedef struct {
int size; /* number of entries in each array */
float lower; /* Oth entry maps to this value */
float upper; [* size-th entry maps to this value */
float *hue;
float *saturation;
float *value;
float *alpha;

} AVScolormap;

A C routine declares a colormap input argument as AVScolormap * and a col-
ormap output argument as AVScolormap **.

A FORTRAN computation routine can input a colormap by passing a single
argument, which is an integer colormap id, and use accessor functions to ac-

2-22

AVS DATA TYPES

Geometries

cess the contents of the colormap. To do this, a module must set the SINGLE_-
ARG_DATA module flag which tells AVS to pass both colormaps and fields
as single arguments:

AVSset_module_flags(single_arg_data)

Use the AVScolormap_get and AVScolormap_set routines to access the con-
tents of the colormap. In either C or FORTRAN, a new colormap can be creat-
ed using AVSdata_alloc as in:

colormap_out = AVSdata_alloc("colormap”, dimensions)

where dimensions is a one element integer array with the colormap size as the
first element of the array.

If the module flags are not set to single-arg-data, a FORTRAN computation
routine inputs a colormap by declaring a series of parameters:

INTEGER FUNCTION my_module(size,lower,upper,hue,sat,val,alpha)
INTEGER size
REAL lower, upper
REAL hue(size), sat(size), val(size), alpha(size)

Using this older approach, a FORTRAN routine outputs a colormap as fol-
lows. Note the use of POINTER variables to supply an extra level of indirec-
tion:

INTEGER FUNCTION my_module(size, lower, upper, phue, psat, pval, palpha)
POINTER (phue,hue), (psat,sat), (pval,val), (palpha,alpha)
REAL hue(size), sat(size), val(size), alpha(size)

FORTRAN programmers can also use the more portable AVSptr_offset func-
tion to return an offset index between the colormap array and a local refer-
ence array when the multiple argument approach is used.

An example of using colormap input within a FORTRAN module using both
of these approaches is provided in /usr/avs/examples/colorizer_f.f.

Geometries

AVS passes geometric information between modules by using a data struc-
ture called an edit list. The edit list describes changes to the geometry of a par-
ticular scene. Generally a user module sends edit lists as outputs. It is possible
for a module to use edit lists as inputs, but AVS3 does not support routines to
extract geometric information from an edit list. Geometry output is typically
used as input to an AVS-supplied renderer module such as the geometry
viewer.

A geometry data object must be inserted into an edit list in order to be passed
along via an output port. The edit list can also contain an arbitrarily long list
of changes to be made in the current scene. Each change pertains to a particu-
lar object, camera, or light source. Changes are made in the order specified in

AVS DATA TYPES 2-23

Geometries

the edit list. The AVS data type for an edit list is GEOMedit_list. A C lan-
guage module computation routine declares an argument representing an in-
put port or parameter as GEOMedit_list and an argument representing an
output port as GEOMedit_list * (note the single asterisk). In FORTRAN both
kinds of argument are declared as INTEGER.

Each object, camera, or light is referred to by a name that is an ASCII string.
By default, an object name is modified by the port through which it is com-
municated. This prevents two different modules from modifying each other’s
objects. For example, two "arbitrary slice” modules would each try to modify
the data for the object named "arbitrary slice". Since the name is modified by
the port, the first arbitrary slice module modifies "arbitrary slice.0", and the
second modifies "arbitrary slice.1". When it is desirable for a module to use
the absolute name of an object, it can precede the object name by a "%" charac-
ter (e.g., "%arbitrary slice").

AVS creates any object that doesn’t already exist the first time an attempt is
made to change that particular object.

Camera names are ASCII strings of the form: cameran, where n ranges from 1
to the number of views on the particular scene.

Light names are ASCII strings of the form lightn, where n ranges from 1 to 16.

AVS has routines that allow a module to change several properties of an ob-
ject in an edit list:

e Geometric data defining the object

e Surface or line color

¢ Render mode (Gouraud, Phong, wireframe, etc.)

e Parent (the name of the parent object)

* Object material properties

* Object, camera, and light transformation

¢ Obiject visibility, deletion

¢ Obiject color, light source color and camera background color
e Camera background color

e Light source on/off, type

e Texture mapping

¢ Transformation mode (controls how objects are transformed)
¢ Selection mode (controls how objects are picked)

e Center of rotation and scaling

* Viewable region of data

* Viewing projection

2-24

AVS DATA TYPES

Geometries

Manipulating Edit Lists

When a module is invoked, it typically initializes the edit list from the previ-
ous execution. This both frees the data from the previous run and creates an
empty edit list for use on the current run. The module places into the edit list,
changes that it wants to make for this invocation. A module uses routines in
the geom library to create and use edit lists, geometry objects, and light sourc-
es. See the "Geometry Library" appendix for more information.

A module typically uses the following steps in preparing an edit list for out-
put:

* Initialize the edit list, using GEOMinit_edit_list in C or GEOM_INIT_E-
DIT_LIST in FORTRAN. This creates a new list or empties an existing
list.

* Create and/or modify geometry objects, cameras, or lights sources, using
routines in the geom library.

* Maodify the edit list, using routines whose names begin with GEOMedit
in C or GEOM_EDIT in FORTRAN (such as GEOMedit_geometry or
GEOM_EDIT_GEOMETRY).

* For a coroutine module, use AVScorout_output to output the list, and
then use GEOMdestroy edit list in C or GEOM_DE-
STROY_EDIT_LIST in FORTRAN to deallocate the list.

A module must deallocate an existing edit list before reusing the list. For a
subroutine module, the edit list passed to the module as an output argument
is the edit list the module created on its last execution. The module must deal-
locate this list at the start of each invocation of the module, normally by call-
ing the GEOMinit_edit_list routine in C or GEOM_INIT_EDIT_LIST in
FORTRAN before modifying the list:

[*C*
my_module(output)
GEOMedit_list *output;
{
/*
* Deallocate edit list from last invocation;
* initialize edit list for this invocation.
*/
*output = GEOMinit_edit_list(*output);

< rest of module >

}

C FORTRAN
FUNCTION MY_MODULE(OUTPUT)
EXTERNAL GEOM_INIT_EDIT_LIST
INTEGER OUTPUT, GEOM_INIT_EDIT_LIST
OUTPUT = GEOM_INIT_EDIT_LIST(OUTPUT)

< rest of module >

AVS DATA TYPES 2-25

Geometries

A coroutine module can use GEOMdestroy_edit_list in C or GEOM_DE-
STROY_EDIT_LIST in FORTRAN to deallocate a list after calling
AVScorout_output:

[*C*
GEOMedit_list output;
< generate edit list "output" >

AVScorout_output(output);
GEOMdestroy_edit_list(output);

C FORTRAN
INTEGER OUTPUT
< generate edit list "OUTPUT" >

CALL AVSCOROUT_OUTPUT(OUTPUT)
CALL GEOM_DESTROY_EDIT_LIST(OUTPUT)

You can find examples of manipulating geometry edit lists in the directory /
usr/avs/examples. The programs polygon.c and polygon_f.f are subroutine mod-
ules; gix.c and qix_f.f are coroutine modules.

Templates for New Filter Utilities

AVS provides several C-language and FORTRAN-language templates for
those who wish to write their own filter utilities. (If your data format is simple
enough, you may be able to use one of the templates without modifying it.
The mesh format, in particular, can often be used without modification.)

Each template handles a particular type of object defined in the Geometry Li-
brary. Table 2-4lists the AVS-supplied filter templates. Each one reads a file
from stdin, writes a file to stdout, and accepts no command-line options.

Table 2-4 Template for Filter Utilities

Source Filename(s) Executable Filename Object Type
mesh.c, mesh.f mesh_to_geom Mesh

polygon.c, polygon.f polyg_to_geom Disjoint polygon
polyh.c polyh_to_geom Polyhedron
sphere.c sphere_to_geom Sphere

The filters are all located in directory /usr/avs/filter.

2-26

AVS DATA TYPES

Geometries

Writing a New Filter Utility

This section provides pointers for those who wish to create new filter utilities,
using the template programs listed in the table above.

The basic procedure for creating a geom-format object is:

1.

5.

Decide which of the geom-format objects conforms most closely to
the application data:

Polyhedron
A list of vertices with an indirect list of pointers into these verti-
ces for each polygon.

Polygon
A list of vertices for each polygon.

Mesh
A 2D array of values, either scalars (for a height field) or verti-
ces.

Sphere
A list of center points and radii.
Polytriangle
A single list of vertices representing polylines, disjoint lines, or
a triangle mesh, where the connectivity is implied by the partic-
ular data type.
Note that no tools exist for direct conversion of non-linear geome-
tries, such as spline surfaces and quadrics.

Create an instance of that geom-format.

Perform any necessary processing on the object, such as generating
normals.

If necessary, convert this object to an optimized-format object, such
as a polytriangle.

Write the object to a file.

The Geometry Library contains routines that help with these tasks.

The following sections describe the steps for converting a variety of object
types to geom format.

Converting a Polyhedron

Start with the template polyh.c, then:

* Create a polyhedron object.

e Add vertices.

* Add alist of polygons (as a list of pointers).

* Generate normals (if necessary).

e Convert to polytriangle object — both wireframe and surface descrip-

tions.

AVS DATA TYPES 2-27

Geometries

Converting a Polygon

Start with the template polygon.c or polygon.f, then:

e Create a polyhedron object.
e Add disjoint polygons (either faceted or smooth).
* Generate normals (if necessary).

e Convert to polytriangle object — both wireframe and surface descrip-
tions.

Converting a Scalar Mesh

Start with the template mesh.c or mesh.f, then:

e Create a mesh from a list of scalars.
e Generate normals (if necessary).

e Convert to polytriangle object — both wireframe and surface descrip-
tions.

Converting a Mesh

Start with the template mesh.c or mesh.f, then:

e Create a mesh from the vertices.
e Generate normals (if necessary).

e Convert to polytriangle object — both wireframe and surface descrip-
tions.

Converting a Sphere

Start with the template sphere.c, then:

e Create a sphere object from the sphere centers and radii.
Converting a Disjoint Line

There is no starting template for this case. You should do the following:

e Create a polytriangle object.
e Add disjoint lines to this object.

Converting a Polyline

There is no starting template for this case. You should do the following:

¢ Create polytriangle object.
e Add zero or more polylines to this object.

2-28 AVS DATA TYPES

Pixel Maps

Pixel Maps

A pixel map is a data structure that incorporates a reference to an X Window
System pixmap. An X pixmap is an array of pixel values that can be a destina-
tion for a rendered image. It resides in the X server. (In contrast, an image is a
data structure that includes an array of colors and resides in client memory.)
A pixel value can be a colormap index on a pseudo color system.

A pixel map data structure includes an Xlib Pixmap id, the Xlib Window id of
the window associated with the pixmap, the Window id of that window’s
parent window, and other information which is dependent on extensions to
the X-Window Server.

In C, a pixel map is defined as an AVSpixdata data type. A pixel map input
argument is declared as AVSpixdata *, and a pixel map output argument is
declared as AVSpixdata **. AVSpixdata is a structure defined in <avs/avs_pix-
data.h> with the following components:

typedef struct _AVSpixdata {

int parent;

int window;

int pixmap;

intis_buffer; /* 1 if pixmap is from the render geometry module */
} AVSpixdata;

A FORTRAN computation routine cannot take a pixel map as an argument.

Because pixel maps rely heavily on specific hardware and software features,
they are not very portable or easy to use. Programmers should not try to use
pixel maps to perform image processing; the "image" field type (“field 2D 4-
vector byte uniform") is more portable and interfaces to a wider variety of
other modules.

Unstructured Cell Data

The Unstructured Cell Data (UCD) type provides a way to aggregate 3D
primitive objects and associated data into a single data structure. The 3D ob-
jects do not have to be connected, i.e., they are not required to share nodes or
define a surface. UCDs are useful to represent volume information that is not
structured enough to be represented as a field data type.

The use of unstructured cell data is detailed in Appendix E. An example of
creating a UCD data structure from a definition in a file is provided in /usr/
avs/examples/read_ucd.c. An example of creating a UCD data structure based
on user parameter input is provided in /usr/avs/examples/gen_ucd.f. Examples
of manipulating UCD data structures are found in /usr/avs/examples/ucd_ex-
tract.c and ucd_thresh.c.

AVS DATA TYPES 2-29

Molecular Data Type

Molecular Data Type

In order to better address the needs of the chemistry community, a Molecule
Data Type has been added to AVS. This data type addresses the general needs
of classical, substructure and quantum chemistry fields.

The use of the Molecular Data Type is detailed in the Chemistry Developer’s
Guide. Module source examples working with this data type can be found in
the directory /usr/avs/examples/chemistry.

User-Defined Data Types

AVS provides limited capabilities for users to implement their own data
types. There are also two standard AVS data types that are defined using this
mechanism. User-defined data types may be useful for problems that are best
defined using data structures that are different from those built into AVS.
However, existing modules are unlikely to be able to deal directly with the
new data type; the user has to convert to a more standard type eventually
(such as "field" or "geometry") or simply not use existing modules.

The user-defined data type may also be useful for sending a subset of data
back "upstream" in a network to feed back information to a module that is
sending data "downstream". The two module must both recognize the data
type defined for this purpose.

Chapter 4 discusses in detail upstream feedback and the declaration and use
of user-defined data types. For an example module that uses upstream feed-
back and a user-defined data type, see the sample programs, pick_cube.c,
user_data.c, and user_data_f.f in the /usr/avs/examples directory.

2-30

AVS DATA TYPES

CHAPTER 3 AVS
MODULES

Modules

A module is the fundamental building block in an AVS network. A module
typically has one of three purposes:

e To import data from outside AVS (or generate its own data) and convert
it into data of one of the AVS data types.

* To transform AVS data in some way, producing output data of the same
or of a different AVS type.

* To render or store AVS data on an external device, such as the display
screen or afile.

AVS has a library of modules that perform these tasks for many types of
data. This chapter describes how to write your own modules. To simplify
the process of writing new modules a Module Generator has been provid-
ed. Documentation on the Module Generator can be found in the Applica-
tions Guide.

Module Components

This section describes the anatomy of AVS modules.

Name
The name of a module is a string that identifies the module to the user. The
name appears on the module icon in the module palette and in the work-
space.

Type

A module is of one of four types, depending on its function:

AVS MODULES 3-1

Module Components

Data Input
A module that generates data or imports data from outside AVS and con-
verts it into one of the AVS data types.

Filter
A module that transforms AVS data in some way, producing output data
of the same or of a different AVS type.

Mapper
A module that converts AVS data to a "geometry" data type.

Data Output
A module that renders or stores AVS data, usually of the type geometry,
on an external device, such as the display screen or a file.

These module type distinctions affect only the presentation of the module in
the AVS user interface. The module type determines in which menu the mod-
ule icon appears in the module palette.

Ports

A module may have zero or more input ports and zero or more output ports. A
port is a channel through which data passes to or from other modules. Each
port has a name and an AVS data type associated with it. An input port is rep-
resented in the Network Editor by a colored bar at the top of the module icon,
and an output port is represented by a colored bar at the bottom of the icon.
The color (or colors) of each bar indicate the port’s data type.

Data modules usually read or generate their own data and therefore do not
generally have input ports. Renderer modules often display or write their
own output data and therefore do not generally have output ports.

When you instance a module in AVS (that is, move the module icon from the
Network Editor module palette to the workspace), you connect each input
port to an appropriate output port of another module, and connect each out-
put port to an appropriate input port of another module. You can connect a
pair of ports only when the data types of the ports match. The data types
match when they are the same or when one is a subtype of the other. For ex-
ample, a port declared to be of type "field" matches a port of type "field 2D",
but a port of type "field 2D" does not match a port of type "field 3D". You can-
not connect an output port to an input port of the same module.

Some input ports require a connection to an output port of another module
before the module can be invoked (executed by AVS). For other input ports, a
connection is optional. The module developer controls this using the AVScre-
ate_input_port routine.

3-2

AVS MODULES

Module Components

Parameters

A parameter is a variable that has a constant value during an invocation of a
module. The AVS user can change the value of the parameter between mod-
ule invocations by manipulating a user interface "widget" attached to the pa-
rameter. A widget is a virtual input device such as a dial or a file browser.

A parameter has a name, a type, and an initial value. Some parameters also
have bounding information, such as a range of allowed values; AVS then en-
sures that the value of the parameter remains within the bounds. Parameter
types include most primitive AVS data types along with constrained variants
such as "boolean" and "choice". For information on parameter types, see the
documentation for the AVSadd_parameter routine in Appendix A.

Each parameter is usually connected to a widget that enables the user to
change the value of the parameter between module invocations. You can con-
nect a parameter only to a widget that is compatible with the parameter’s
data type. Each parameter type has a default widget type, but the module can
override the default and attach a parameter to another compatible widget.
For information on the permissible widget types and the default widget type
for each parameter type, see the documentation for the AVSconnect widget
routine in Appendix A

A parameter can also have properties. A property usually determines some as-
pect of how the associated widget presents the parameter. By setting proper-
ties on a parameter, a module can customize how the user interface handles
the parameter. Each property is meaningful only with certain widgets. For a
description of the available properties, see the documentation for the AVSad-
d_parameter_prop routine in Appendix A

A module can dynamically alter the current value or bounds of a parameter.
AVS then updates any widget associated with the parameter. See the docu-
mentation for the AVSmodify_parameter routine in Appendix A for more in-
formation.

In some cases properties can be updated during computation using AVSmod-
ify_parameter_prop. For instance, the default text shown for a boolean pa-
rameter could be changed to a new value based on labels in an input field.
Some changes do not have a noticeable effect if the widget currently attached
to the parameter can not accommodate the change.

Examples of defining parameters are provided in the example program /usr/
avs/examples/widgets.c.

Parameters As Input Ports

AVS makes a distinction between parameters and inputs. By default, a param-
eter is attached to a widget and input is received through a port. From the
Network Editor, a user can turn any parameter into a port on that module (see

AVS MODULES 3-3

Module Components

the AVS User’s Guide for information on how this is done using the parameter
edit capability of the Network Editor). Once a parameter has a port, it be-
haves very much like an input port. The only difference is that when a new
value is generated for that port, the widget associated with that parameter (if
any) is updated with the value. You can disconnect the widget from the mod-
ule if this behavior is not desired. Assigning a port to a parameter allows the
you to simultaneously feed a parameter value to multiple modules.

While it may appear that parameters are just a special form of input port,
there are a couple of important differences:

e Parameter ports are invisible by default and there is no way to make them
visible within the module code. The user makes them visible when invok-
ing the widget that is associated with the parameter.

* Parameters do not accept any arbitrary data type. For example, modules
cannot declare pixmaps as a parameter data type.

Functions

Each module has one or more functions associated with it. The module writer
supplies these functions, and AVS invokes them at various times during the
life of the module. The following list describes the basic kinds of functions
found in a module and discusses the purpose of each:

e Each module has a description function. The description function identi-
fies the module to AVS and declares its name, ports, and parameters. AVS
invokes this procedure when it first learns about a module’s availability
and again when the user makes an instance of the module, by moving the
modaule icon from the Network Editor module palette to the workspace.

e Each subroutine module has a computation function. This function does
the computational work of the module, typically using the input data and
parameters to produce output data. AVS invokes this function when the
flow executive is active and when the module’s input data or parameters
change. The arguments to the computation function correspond to the
module’s input ports, output ports, and parameters.

A coroutine module does not have a computation function; the module’s
main program itself determines when to perform its computation.

* A module may have an initialization function. The initialization function
may take such actions as allocating memory or creating a window. AVS
invokes this function when the user makes an instance of the module (by
moving the module icon from the Network Editor module palette to the
workspace). The initialization function is called before the Kernel has fin-
ished creating the module. Some functions will not work in this context,
notably AVScommand. The initialization function has no arguments and
returns no value.

* A module may have a destruction function. The destruction function may
take such actions as freeing memory or destroying a window. AVS in-
vokes this function when the user destroys the module (as by moving the

3-4

AVS MODULES

Module Components

module icon from the Network Editor workspace to the "hammer" icon).
The destruction function has no arguments and returns no value.

The Description Function

Using a set of library functions, the description function describes the mod-
ule’s name, type, inputs, outputs, and parameters. C and FORTRAN source
files can contain more than one module and therefore more than one descrip-
tion function. The source file must contain a user-written routine named
AVSinit_modules that declares all the description functions in the file. Within
the AVSinit_modules routine, use the library function, AVSmodule_from_-
desc, to declare each module defined in the file. FORTRAN programmers can
use the AVSinit_modules routine itself as the description function if there is
just one module defined in the source file. The description function takes no
arguments and returns no value.

The following is the C language version of a sample description function for a
module that computes the threshold of a 3-dimensional scalar field. The
threshold module has one input port, one output port, and two parameters.

void threshold()

{

int thresh_compute();
int in_port, out_port;

AVSset_module_name("threshold", MODULE_FILTER);
in_port = AVScreate_input_port("Input Field", "field 3D scalar",

REQUIRED);

out_port = AVScreate_output_port("Output Field", "field 3D scalar");
AVSinitialize_output(in_port, out_port);
AVSadd_float_parameter("thresh_min", 0.0, FLOAT_UNBOUND,

FLOAT_UNBOUND);

AVSadd_float_parameter("thresh_max", 255.0, FLOAT_UNBOUND,

FLOAT_UNBOUND);

AVSset_compute_proc(thresh_compute);

The following is the FORTRAN version of the same routine;

SUBROUTINE AVSINIT_MODULES

#include 'avs/avs.inc’
EXTERNAL AVSCREATE_INPUT_PORT, AVSCREATE_OUTPUT_PORT
INTEGER IN_PORT, AVSCREATE_INPUT_PORT
INTEGER OUT_PORT, AVSCREATE_OUTPUT_PORT
EXTERNAL THRESH_COMPUTE
CALL AVSSET_MODULE_NAME('threshold’, "filter’)
IN_PORT = AVSCREATE_INPUT_PORT(Input Field’,
+ ‘field 3D scalar’, REQUIRED)
OUT_PORT = AVSCREATE_OUTPUT_PORT('Output Field’,
+ ‘field 3D scalar’)
CALL AVSINITIALIZE_OUTPUT(IN_PORT, OUT_PORT)
CALL AVSADD_PARAMETER(thresh_min’, 'real’, 0.0,
+ FLOAT_UNBOUND, FLOAT_UNBOUND)
CALL AVSADD_PARAMETER(thresh_max’, 'real’, 255.0,
+ FLOAT_UNBOUND, FLOAT_UNBOUND)

AVS MODULES 3-5

Module Components

CALL AVSSET_COMPUTE_PROC(THRESH_COMPUTE)
RETURN
END

In general, description functions perform the following tasks:

Set the module name and type using AVSset_module_name. A descrip-
tion function must call this routine.

Create the input and output ports using AVScreate input_port and
AVScreate_output_port. A description function may have zero or more
calls to each of these routines, depending on how many input and output
ports it has. Each routine returns an integer port identifier for use as an
argument to other routines, such as AVSinitialize_output.

Create the parameters using AVSadd_parameter or AVSadd_float_pa-
rameter. A description function may have zero or more calls to each of
these routines, depending on how many parameters it has. Each routine
returns an integer parameter identifier for use as an argument to other
routines, such as AVSconnect_widget.

Set the computation function using AVSset_compute_proc. A description
function for a subroutine module must call this routine. A description
function for a coroutine module does not call this routine.

Specify special treatment with AVSset_module_flags (for example, speci-
fying SINGLE_ARG_DATA in order to receive field inputs or outputs as
single arguments in FORTRAN).

A description function can also take the following optional steps:

Use the AVSinitialize_output routine to tell AVS to preallocate memory
for output data before invoking the module computation function. This
routine pairs an output port with an input port. Before invoking the mod-
ule computation function, AVS frees data at the output port and allocates
a new data structure of the same size and dimensions as the data at the in-
put port. This frees the computation routine from the necessity of allocat-
ing memory for the data structure.

Use the AVSautofree_output routine to tell AVS to free memory allocated
for output data before invoking the module computation function. By de-
fault, AVS does not free the memory allocated for output data during the
previous invocation of the module computation function. AVSautofree_-
output and AVSinitialize_output are mutually exclusive. For futher in-
formation on memory management see the Memory Allocation Debugging
section in Chapter Four.

Set an initialization function using the AVSset_init_proc routine.
Set a destruction function using the AVSset_destroy_proc routine.

Use the AVSconnect_widget routine to declare a preference that a param-
eter be attached to a widget of a given type. Each type of parameter is as-
sociated with a default widget type. This routine allows the module to
override the default.

For example, a module can use a parameter of type "string"” for a file path-
name. The default widget for a string parameter is a text type-in. The

3-6

AVS MODULES

Module Components

module description function can use AVSconnect_widget to connect the
parameter to a file browser. The following is a C language example:

int p;
p = AVSadd_parameter("Data File", "string”, "/mydata”, ", ");
AVSconnect_widget(p, "browser");

The following is a FORTRAN example. Note that a space is required
when specifying empty strings:

EXTERNAL AVSADD_PARAMETER
INTEGER P, AVSADD_PARAMETER

P = AVSADD_PARAMETER(Data File’, 'string’, /mydata’,”’, ")
CALL AVSCONNECT_WIDGET(P, "browser’)

e Use the AVSadd_parameter_prop routine to add a property to a parame-
ter. By calling this routine, a module can customize how the user interface
handles the parameter.

The Computation Function

Each subroutine module must have a computation function in addition to a
description function. AVS invokes the computation function when the flow
executive is active and the module’s inputs or parameters change.

The computation function can have any name. The module identifies the
computation function to AVS by calling the AVSset_compute_proc routine in
the description function. You must declare the computation function to return
an integer. It should return a value of 0 to indicate an error and 1 to indicate
success. In the case of an error, the flow executive does not invoke any other
modules whose inputs depend on the erring module’s outputs.

The arguments to the computation function correspond to the module’s in-
puts, outputs, and parameters. A C language computation function has one
argument for each input port, output port, and parameter declared in the de-
scription function. In the parameter list, all the input ports are represented
first, then all the output ports, then all the parameters. Within each category,
the arguments appear in the order in which the ports or parameters are de-
clared in the description function.

For a FORTRAN computation function, the general ordering of ports and pa-
rameters is the same as in C. However, there are two alternatives for passing
arguments. The default approach is to pass aggregate structures such as fields
and colormaps as multiple arguments in order to gain direct access to each ele-
ment of the structure. Another approach is to set the module flag (using AVS-
set_module_flags) to single arg_data. This causes AVS to pass fields,
colormaps, and user-defined data types as a single argument. The argument
is actually a pointer to the data structure pointer itself, and can be used as an
argument to language independent access routines. For more information on
the use of single_arg_data and on declaring arguments to FORTRAN compu-
tation functions, see Chapter 2.

AVS MODULES 3-7

Module Components

C language computation functions pass input port and parameter arguments
as pointers to an object of the same C data type as the AVS data type declared
in the description function for that port or parameter. An argument that rep-
resents an output port is usually passed as a pointer to a pointer to an object
of the appropriate data type. This double indirection is provided to allow the
computation routine to allocate memory for the output data. For example, a C
language computation function declares an input field argument as AV Sfield
* and an output field argument as AVSfield **. Arguments that represent
ports or parameters of some data types, such as integer, are passed as the ob-
jects themselves.

Because FORTRAN arguments are passed by reference, a FORTRAN compu-
tation routine usually declares an argument to be of the FORTRAN type that
corresponds to the AVS data type of the port or parameter. For example, an
argument that represents a floating-point input port, output port, or parame-
ter is declared to be of type REAL.

The computation routine usually performs some operations on the input data
and parameters to produce output data. By default, the computation function
is responsible for freeing memory allocated for output data on previous invo-
cations of the module and for allocating memory for output data on the cur-
rent invocation.

Note: Failure to free the memory allocated on previous module invocations
will eventually consume all available memory, shared memory segments,
and swap space, causing the module (and perhaps AVS) to die.

Rather than using malloc and free, modules should call AVSdata_alloc, AVS-
field_alloc, and AV Sfield_free since these routines automatically make a field
of the desired dimensions and free fields in an appropriate manner. The mod-
ule can use the AVSinitialize_output and AVSautofree_output routines in
the description function to eliminate the need for some of this memory man-
agement. For futher information on memory management see the "Memory
Allocation Debugging" section in Chapter Four.

Initialization Function

If a module defines an initialization function, AVS invokes the it when the
user instances the module (moves the icon from the Network Editor module
palette to the workspace). An initialization function performs tasks like allo-
cating memory or creating a window.

Use the AVSset init_proc routine to declare the initialization routine from
within the description function.

Destruction Function

If a module defines a destruction function, AVS invokes it when the user de-
stroys a module (moves the module icon from the Network Editor workspace
to the "hammer" icon). A destruction function performs tasks like freeing
memory or destroying a window.

3-8

AVS MODULES

Subroutines and Coroutines

Subroutines and Coroutines

AVS has two types of modules: subroutines and coroutines. The chief difference
between the two is the way they interact with AVS to do their computational
work. In essence, a subroutine module does its computation whenever AVS
asks it to, usually when the module’s input ports or parameters change. A
coroutine module does its computation whenever it wants.

Subroutines are the most common type of AVS module. They are used in the
demand-driven portions of a network where a module needs to compute only
when input data or a parameter has changed. Coroutine modules are typical-
ly simulations or animations. A coroutine usually performs a number of inde-
pendent computations, each of which represents one iteration of a series, and
sends output to AVS after each iteration. For example, the AVS particle advec-
tor module is a coroutine.

Subroutine Modules

A basic subroutine module as written by a programmer con